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Abstract

We attempt to show that the slightly less secure privacy system
of the Tor network can be considered to be sufficient in certain
PIR use cases, especially in a real-world environment in which
millions of users are on Tor. By considering the e-private
model presented by [13], we investigate mathematically the
security differences between PIR and Tor. In addition, we
empirically show that although Tor is less secure, the latency
and throughput of Tor vastly outperforms PIR, especially as
the size of the database grows.

1 Introduction

Consider dark pools, which allow investors and traders to re-
quest a large order of stocks from a bank or other financial
entity without publicly revealing their intentions. This allows
an investment to avoid substantial price devaluation and spec-
ulation from competing financial entities, both of which are
existing issues in standard exchanges. For example, Goldman
Sachs can hide their business interests from competitors by
requesting a trade through a dark pool. However, this does
not protect Goldman Sachs’ investments from the owner of
the dark pool, thus leaving opportunities for front running.
This motivates the need for a system in which users can hide
their queries from a potentially compromised database server.
Private information retrieval (PIR) is a set of cryptographic
protocols designed to enable users to do just this [5].

PIR guarantees a strong definition of privacy whereby a
database server learns nothing of a user’s query. Yet, PIR
has been shown to be infeasible in physical deployments,
because current PIR servers must access every element in a
database to protect a user’s query (and the desired record by
extension). Therefore, both the computation and the commu-
nication costs of the server increase superlinearly with respect
to the database size [4].

Rather than fix the PIR complexity problem, we examine
the case where the security guarantees of PIR are excessive
and the more computationally efficient, albeit less secure [12],
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anonymous communication channels are sufficient. In partic-
ular, we consider the The Onion Routing (Tor) network as an
alternative for many use cases of PIR. The Tor network sends
onion-encrypted messages over a pre-established circuit made
up of a number of relay nodes that sit between a user and some
end-point service. We believe that Tor can be comparable to
PIR in many cases such as the dark pool example given above.
While PIR does not hide the user query from the database,
Tor hides the user but not what is queried. For example, the
PIR server would not learn what record Goldman Sachs is
interested in, while the Tor server does not learn that Goldman
Sachs is making a query in the first place.

Although Tor is not able to offer the complete security guar-
antees as PIR, previous research has shown that privacy can
be increased with more users and more nodes [13]. Specif-
ically, leakage is minimal in a real-world environment with
millions of users while still being computationally feasible.
In this paper, we attempt to mathematically define the leakage
and security of Tor while also empirically comparing latency
and throughput of queries to a database server to substantiate
our computational complexity saving claims. The paper is
organized as follows:

e Section 2 describes relevant usage cases of PIR and
TOR in other privacy-preserving systems, while also
describing the CPIR scheme used in our model.

e Section 3 discusses the theoretical results of [13], and
explains how Tor could behave like a less secure CPIR
system.

e Section 4 and 5 describes the design and implementation
of our client/server model, as well as the assumptions
made in regards to the query distribution of a single
client.

e Section 6 presents the experimental data of the latency
and throughput of the communication networks.



2 Background

2.1 PIR

First described by Chor et al [7] in 1995, Private Informa-
tion Retrieval (PIR) is a protocol that allows private access
of public databases. Specifically, PIR schemes allow a client
to access an element of a potentially compromised public
database without exposing to the database which specific ele-
ment was accessed. Although this is clearly a very powerful
security guarantee, it is computationally very expensive, be-
cause existing PIR schemes must operate on every element of
a database [4].

Chor et al provides two different levels of privacy pro-
tections: Information-Theoretic PIR (PIR-IT), and Compu-
tational PIR (CPIR). In PIR-IT schemes, the query is sent
to several identical, non-colluding servers. The client col-
lects the responses from each of the servers and combines
the results locally. PIR-IT schemes provide a computation-
unbounded guarantee on privacy. More specifically, database
servers would never be able to learn the query result. On the
other hand, PIR-IT is difficult to employ practically, because
the non-collusion assumption among servers is infeasible in
practice.

In the computational variant of PIR, hardness assumptions
are used to reduce the overall computation cost of the server.
Specifically, we reduce security guarantees only to adversaries
which are computationally bounded. Unfortunately, the over-
all cost of PIR-systems are still so high that CPIR-systems
are still impractical for databases with over 100k entries [4].
However, recent research by [4] introduces SealPIR, a CPIR
system which utilizes query compression techniques with
existing efficient CPIR protocols in order to further reduce
overall network costs.

2.2 SealPIR
2.2.1 Query Compression

Here, we provide a simple explanation of the cryptosystem uti-
lizes by SealPIR to compress and send queries. When query-
ing from the database, the client must in actuality send n
ciphertexts to the server. Specifically, the ith ciphertext is
an encrypted 1 for the desired ith element, and an encrypted
0 otherwise. In this fashion, the query touches all elements
of the database, while FHE allows the client to recover the
desired record. However, sending n ciphertexts for one de-
sired result is clearly inefficient. Therefore, SealPIR provides
a method of sending one ciphertext to the server, while the
server expands the ciphertext. Although this is relatively more
expensive for the server, it significantly saves communication
cost between the client and the server.

SealPIR utilizes a Fan-Vercauteren FHE cryptosystem
(FV). In FV, plaintexts are represented as polynomials of
degree at most N with integer coefficients modulo ¢, where

N and t are parameters chosen by the user [4]. Specifically,

the polynomials are elements in the quotient ring R, = j}[fl .
In addition, ciphertexts are polynomials in the quotient ring
R, =% b For a security parameter

q — xN +1° y p q

Therefore, for a client whose desired record is the ith ele-
ment of the server, SealPIR encrypts the plaintext x' € R, as
query = Enc(x') € R,. Thus, the server receives Enc(x') as
the query from the client, which is then expanded and handler
server-side.

2.2.2 Query Expansion

At a high level, the server expands query = Enc(x') into n
ciphertexts, where the ith ciphertext is Enc(1) and all other
ciphertexts are Enc(0). [4] describes both the method and the
proof of correctness of their algorithm, which is not described
fully here. However, for the sake of our implementation, it is
important to note that the cost of the n ciphertexts, therefore,
has been shifted from the client to the server. More specifi-
cally, the client is now only in charge of sending 1 ciphertext,
while the server must expand that query obliviously. We dis-
cuss the empirical results of this cost in a later section.

2.3 Tor

The Tor network as employed today was born out of a paper
written by the Free Haven Project and the U.S. Naval Research
Labs in 2004 [9]. The number of total daily international users
of the network range from roughly 1.5 million to 2 million [1].
It is an overlay network which means it works atop common
internet protocols such as TCP which has made its adoption
quick. It works as follows.

Say Alice’s client wants to communicate with Bob’s server
through Tor. Alice has her Tor client query a directory server
for nodes in the network and their public keys in order to
establish a circuit of nodes or "hops", the default being three.
Once Alice’s client has chosen the nodes that will participate
in her circuit, they do a Diffie-Hellman handshake to exchange
shared symmetric keys. It is important to note that while
second and third routers know that someone has a shared key
with them, they don’t know who has the other key.

When Alice sends a packet to Bob’s server, her client first
encrypts the packet with the shared key of the last router in her
established circuit, followed by the shared key of the middle
router, and then the shared key of the entry node or first router.
We say Alice has now created an "onion of encryption” which
she will send to Bob. As the onion travels through the network,
a layer of encryption is peeled back at each router that has the
necessary key. Eventually the last hop, or exit node, decrypts
the final layer of encryption and can send the packet onto
Bob’s server that is unaware Alice is the one communicating
with it (barring authentication of some form).

While adversaries can see that users are on Tor and could
theoretically see what elements of a database are accessed,



users are basically anonymous. In particular, unless a majority
of the onion routers are compromised, TOR has a certain level
of privacy guarantees [3].

3 Private Retrieval

In this section, we discuss a theoretical result proved by [13]
and discuss their formulation of e-privacy, a differential-
privacy based definition of privacy that extends from not only
IT-PIR and CPIR, but also to other less secure privacy systems.
More specifically, they provide a flexible metric to describe
all privacy protocols. The definition is provided below.

Definition 3.1 (g,8)-Privacy. A protocol is (€,9)-private if
there are non-negative constants € and & such that for any
possible adversary-provided queries Q; and Q; and for all
possible adversarial observations O, we have:

P(0|Q;) < €°P(0|Q;) +8

Intuitively, this means that an adversary could provide a
user with two queries and the adversary would not be able
to distinguish the resulting networks between the two. (Note
that under this model, the adversary is assumed to be passive
and all users are assumed to be honest.)

Under this definition, it is clear that IT-PIR is (g, §)- pri-
vate for € = 0 and & = 0 (a perfectly secure system with no
leakage). In addition, [13] shows that CPIR systems are €-
private where 9 is negligible. Clearly, this is a very strong
definition of privacy. The adversary has a lot of control over
the users’ actions and can limit the space of potential obser-
vations and queries substantially. Particularly, it was shown
that Anonymous Request Networks such as Tor are actually
not e-private [13], and for anonymous communication to be
achieved, a certain number of users and requests must be com-
pleted on the network [3]. However, in the case where we
are not attempting to achieve anonymous communication, but
rather avoid the adversary learning the request for a specific
user, this PIR-privacy definition is excessive. Therefore, it is
not a suitable definition for the usage case we are considering,
where we are more concerned about the adversary learning
the request of a certain user.

Although Tor is not secure when there is only one user
making a request (since an adversary can theoretically observe
aroute of a request through the network), consider the case
where there are u users simultaneously using the network.
In this case, the adversary could not link a request with a
user unless all users made the exact same request (Note other
information could be leaked, but we are only interested in
linking a user with a request). Therefore, for u users and a
database of size k we could bound the probability of all u users
requesting the same output. This happens with probability:

P(all users select same index) =

P(all users select index i) =

N

i=1

k 1
ke fu—l
More specifically, this probability decreases with both the

database size and the number of users. Thus, when consider-
ing the fact that PIR is often usable in large database settings,
and that the number of users of Tor are large, the probability
of this event becomes negligible, and the privacy guarantees
of PIR is unnecessary for these usage cases.

4 Design

At a high-level, we use a client/server model where the server
hosts a database and the client wants to query an element in it.
This section is broken down into three subsections to describe
this model. The first discusses the server and client design,
and the second and third describe the two methods we use to
query the database that resides on the server.

4.1 Client/ Server Design

The client and server we created communicate over the inter-
net through the use of sockets. To simplify the programming
and communication of the server and client, they both must
agree on certain parameters out-of-band before beginning a
round of communication such as the the number of elements
in the database, the size of each element, and the database ab-
straction to use. The following sections describe the specifics
of their implementation.

4.1.1 Client

The client, as found in client_main.cpp, consists of one
large main function that handles all interaction with the server.
The interesting piece of the client’s code is the timing func-
tionality. It is within this code that we measure round-trip
latency which includes (random) query generation, writing
and reading the query and response from sockets respectively,
and doing any necessary parsing of the response to make it
human readable/printable. The results of these latency tests
are printed out to a text file which we then uploaded to a
spreadsheet application for analysis.

4.1.2 Server

We created an asynchronous server whose control flow starts
in server_main.cpp where it creates either a PlainServer
instance or a PIRServer instance and generates a database
corresponding to command-line options. Both of these classes
will be described in more detail in the two querying sec-
tions. For now, it suffices to know that both PlainServer



and PIRServer inherit from base class TCPServer which ac-
cepts incoming connections and passes them to its inner-class
TCPConnection for handling.

TCPConnection contains a handful of handler functions in
it that correspond to the type of server that was created (this
is specified at run-time) such as handle_read_galkeys ()
that reads, processes, and stores the Galois keys generated
by the client which are used for the PIR protocol. In general,
handle_read_<protocol> handles the reading of informa-
tion from the client, processing it, and generating a response.
handle_write_<protocol> simply writes the response to
the client back out to the socket. The read and write handlers
call each other and thus create a loop that is only exited when
the client sends an EOF.

4.2 PIR Querying

PIR querying follows the process described above in §2.2
using the SealPIR library. A few changes were made to inte-
grate the library such as extending the PIRServer class by
TCPServer and adding a generate database method. But the
overall control flow of structuring a query client-side and gen-
erating a response server-side remains the same. Each time a
client connects to a fresh instance of a PirServer, they must
do a Galois key exchange "handshake" to sync with the server.
Once this is complete, they can query as many times as they
wish without re-exchanging keys.

4.3 Tor Querying

Tor querying from a client/server perspective is nothing more
than querying a database abstraction that is an n-byte array
where an element of size [/ at position i is contained at in-
dices [i,i+ ). Tor’s main functionality comes from its large
user-base and the fact that it is an overlay network so TCP
applications need not change their implementation to work
with Tor. To get our application to route traffic through the Tor
network, we use Tor version 0.4.1.6 along with torify (1)
which acts as a wrapper for Tor.

Since Tor revolves around its network, we chose a database
representation that was similar to a bare-minimum PIR
database so as to keep our tests similar but ensure that what
Tor lost in communication overhead, it gained back in com-
putation overhead.

5 Implementation

Our client/server implementation consists of around 800 lines
of C++ code and around 2,000 lines of C++ code if the code
from SealPIR that was merged into our code-base is included.
To change the number of hops ([2,9)) in our Tor service, we
edited the source code of version 0.4.1.6 and recompiled the
binary. Our server was hosted via an Amazon t3a.medium

EC2 instance with a 2.5 GHz AMD EPYC 7000 series proces-
sor, 4096MiB of memory, and up to 5 Gigabit network speeds.
Our client was a MacBook Pro with a 2.9GHz Dual-Core Intel
Core 15 processor, 16GB of memory, with up to 1 Gigabit
network speeds.

The most challenging implementation-related parts of this
project were three-fold. First, getting the hang of CMake and
the idiosyncrasies of C++ took quite a bit of time. Different
compiler versions, library versions, and more made getting
everything set-up a multi-day affair. Second, reading through
and making sense of dense C++ cryptographic library code
without comments slowed down development and often made
debugging tricky. Finally, the concept of this project contains
a lot of subtleties that took a while for us to come to terms
with through reading papers and discussion.

6 Evaluation

In this section, we present some preliminary empirical results
from testing query send and retrieval through our client and
server implementations.

In Figure 1, we plotted the latency of our PIR design for
varying database sizes and element sizes with 10 trials for
each point in order to reduce variance. This metric of round-
trip latency includes the sending of the query, query expansion
server-side, and then the receiving of the result back at the
client.

The above figure clearly shows that increasing the database
size and the element size results in a higher latency. Particu-
larly, larger database size implies that the server must compute
more in order to expand the query in our FHE scheme, and
the larger element size implies more information that must
be communicated. In the largest case, the system could about
800 milliseconds to process approximately 2MB of data. Our
implementation of SealPIR was not able to handle larger
databases, which shows how PIR is very limited to smaller
DBs. In addition, when comparing the latencies to Tor, we
note that the latencies are much higher comopared to the la-
tencies that we see in the Tor network, even for a high number
of nodes.

When looking at Figure 2, we note that more hops in the
circuit leads to a higher latency. This intuitively makes sense;
if there are more hops in the circuit, it will naturally take a
longer time to reach the end of the path. In addition, we see
that for longer paths in the circuit, there is much more variance
in the resulting latency. In particular, the box plot is much
more spread out, which implies that the network would not
reliably perform faster/slower solely based on the number of
onion nodes. This could be based on the circuit construction
step that occurs for every request. Because the sites of the
nodes are chosen randomly all over the world, there is a lot
of variance for where the onions could be located.

When examining throughput of the Tor network for increas-
ing circuit size, we find that the throughput decreases. When
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Figure 1: Latency of PIR with respect to different database
and element size.
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Figure 2: Latency of Tor with respect to the number of hops
in the network. The database was calibrated to be of size
65,536 with an element size of 512.
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Figure 3: Throughput of Tor both client and server side with
respect to the size of the Tor network. There exists a negative,
albeit noisy, correlation between the two.

testing throughput against a plain query request, the through-
put was found to be approximately SmB/s, which demon-
strates the contrast in information both sent and received in a
cryptographic network.

7 Future Work

Going into the winter break and next semester we are plan-
ning a few avenues of future work. Namely, improved testing,
improved proofs, quantification of other PIR protocols, and
application of knowledge.

7.1 Testing

Automating our test framework more to gather additional data
could prove to interesting as both of us agree that we have just
started to scratch the surface with our experimental results.
Also, more work could be put into standardizing and stream-
lining our test framework. One easy improvement would be
to host the client as an Amazon EC2 instance to allow for
stable internet connection and configurable hardware settings.
We did not implement this currently out of convenience and
cost.

We also did not test our design and implememtation again
PIR databases in which the large size severly affected the
communication cost. More specifically, we not able to test
against databases that are hundreds of megabytes in size, be-
cause we were limited by our SealPIR framework. By further
generalizing the SealPIR framework to allow testing for larger
databases, we can hopefully find further significant evidence
in latency differences between PIR and Tor.



7.2 Proofs

Our proofs assume a passive or network adversary. Particu-
larly, this means that adversaries can observe but not manip-
ulate traffic or nodes. Building upon this to prove things for
active adversaries is an open line of research and one that we
think would be insightful for our research question. In addi-
tion, we currently have a very simplistic definition of security
for Tor. One potential question is whether we can strengthen
this privacy definition to be closer to the e-private definition
stated above.

7.3 Additional PIR Protocols

SealPIR came off the back of XPIR [2], and it claims to
be the fastest CPIR implementation. However, we have not
seen a paper that compares the real-world cost of more than
two PIR protocols. Other schemes such as Percy++ [10] and
ITPIR protocols such upPIR [6] and RAID-PIR [8] would be
interesting to compare.

7.4 Application

This project was born out of interest in developing a PIR
protocol for Yodel [11], meta-data anonymous voice calls.
After delving into the literature more and doing our own
quantification of PIR, we believe an interesting path for future
work to be developing a middle-ground between Tor and PIR
that both scales well and offers strong privacy guarantees.

8 Conclusion

Our preliminary results seem to show that the Tor network is a
potential alternative to PIR systems especially in cases where
the PIR security guarantees are excessive, while significantly
saving computation costs. Although Tor has more variance in
the query result by the nature of the circuit construction, it still
outperforms PIR queries on larger databases. Extending our
research to handle larger PIR databases and strengthening our
mathematical argument will be done to eventually attempt to

show that Tor is comparable to CPIR in certain environments.
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