
Impact of GDPR on Service Meshes

Ghulam Murtaza
ghulam_murtaza@brown.edu

Amir R. Ilkhechi
ilkhechi@brown.edu

Saim Salman
saim@brown.edu

Abstract
Through a swift migration that took place in early 2000s,
many companies moved their data and services to clouds. This
rapid adoption allowed little opportunity for the researchers
to study the downsides of such massive shift in terms of pri-
vacy. Therefore, soon after the change, companies started to
suffer detrimental data breaches. As a response, the Euro-
pean Union passed some regulations (e.g., GDPR) to mandate
privacy requirements on companies handling data related to
EU citizens. As a result, the companies started to abide with
the rules by changing their widely deployed systems. Such a
change is still on progress and requires massive engineering
efforts because of the design issues inherent within the old
systems. Another shift that we are witnessing is a widespread
adoption of Service Meshes. In this project, we argue that
using the standard tools that a service mesh manager such
as Istio provides, it is possible to satisfy at least some of the
most important rules mandated by GDPR.

1 Introduction

The introduction of cloud computing led to a tremendous shift
in data storage, processing, and manipulation. Compared to
the traditional systems, this novel paradigm not only offered a
superior level of optimization, utilization, flexibility but also
it was more scalable which attracted a large number of IT
companies.

Soon after the commercial adoption by companies such
as Amazon in early 2000s, a booming ”cloud-based“ trend
started to be formed. The shift was so swift that the potential
disadvantages of cloud systems were completely overlooked.

Among the most concerning threats faced by cloud-based
companies is the breach of their (and therefore their users’)
private data. Moreover, among the most important examples
of data privacy disasters, we can find are: 2013-14 Yahoo (3
billion user accounts) [10], 2014-18 Marriott International
(sensitive data of 500 million customers) [9], and 2014 eBay
(sensitive data of 145 million users) incidents [2].

As a response, the European Union passed Data Protection
Directive (DPD), which went into effect in 1995. More re-
cently, General Data Protection Regulation (GDPR) replaced
DPD with a promise of a better level of privacy protection
for European citizens [5]. To be more specific, GDPR is a
regulation that mandates businesses to protect the personal
data and privacy of EU citizens. Companies failing to comply
with GDPR, could face a hefty fine.

The introduction of GDPR has brought about changes in
the practices in cloud management both within and outside
of EU. Indeed, even companies located in non-EU territories
process EU citizens’ data and they should all comply just like
companies located in EU. Therefore, what we are particularly
interested in is the impacts of GDPR on applications.

The introduction of the GDPR has led to companies tai-
loring their production level to the needs of the GDPR. For
example, Facebook is going through such a process which
is led by a Dublin-based data protection team. According to
Facebook, it is the largest cross-functional team in Facebook’s
history [4]. Amazon is another example that promises GDPR
compliance through mechanisms such as encryption, moni-
toring and logging, and access control among many other [?].

As companies hasten to modify their systems to make them
GDPR compliant to not have to pay hefty fines (companies
can be made to pay 4% of their annual revenue [5]), this is
costing them huge amount of time and effort.

We noted that as companies are going through changes due
to the GDPR, another cause for change has been due to micro-
services and service meshes. Recently, companies have been
converting their monolithic applications into micro-services.
Micro-services are a different development method for appli-
cations and it provides benefits over monolithic applications
largely in maintainability, test-ability.

Although, micro-services have their own benefits, its not
a silver bullet and they come with their own drawbacks. To
alleviate some of the drawback, service meshes have been
invented. Service Meshes provide multiple features to micro-
services: fine-grained traffic engineering, state-of-the-art se-
curity (mTLS) and logging + authentication systems [6].

1



We propose that service meshes can be easily utilized to
trivially satisfy at least some GDPR requirements using only
the tools that they provide for us without a need to implement
complex modules on top of the existing systems. In summary,
we make the following contributions:

1. We identify the service mesh features that would allow
us to cater to the list of GDPR articles.

2. We make a application GDPR compliant and analyze the
performance degradation caused by the various features.

3. We suggest new features that would reduce the over-
head to make service mesh based applications GDPR
compliant.

2 Background

2.1 Service Meshes
The development community shifting away from monolithic
application design to a microservice-based architecture has
given the need for service meshes. Service meshes help de-
velopers by hiding the complexity and scale of deployment
and management of microservice-based architectures.

Service Meshes, considered by many as an orchestration
layer, is architectured similar to SDNs i.e. it has a data plane
and control plane. In Figure-1, one can see that the data plane
consists of a series of L7 proxies where the proxies can be
configured by the control plane. This allows developers unpar-
alleled functionality in securing, monitoring and configuring
their applications. The most common services meshes: Is-
tio [6], Linkerd [8], Kuma [7] provide a basic set of function-
ality to developers: (i) mTLS, (ii) service discovery, (iii) traffic
engineering functionality and (iv) monitoring + distributed
tracing service.

2.1.1 Istio Architecture

In this paper, we’ve focused specifically on the Istio service
mesh, shown in Figure-1. The Istio architecture consists of
multiple components (divided into the control and data plane):

1. Control Plane

(a) Mixer has a two-fold purpose: (i) it implements
various types of policies (mainly security policies)
and (ii) it gets telemetry data from the data plane
proxies

(b) Pilot is mainly used to configure the proxies to
facilitate traffic engineering capabilities.

(c) Citadel is mainly used for key and certificate man-
agement.

(d) Galley is used to insulating the rest of the Istio
components from the details of obtaining user con-
figuration from the underlying platform.

Figure 1: Istio Architecture

2. Data Plane

(a) Envoy Proxies [3]: There is a network of these
proxies, with each proxy paired with a service con-
tainer.

2.2 GDPR
European Union in 2016 introduced a set of articles (99 to
be precise) to enforce a set of rules and regulations to move
the the control of data from the companies back to the users
who actually own it [5]. GDPR (General Data Protection
Regulation) provides an expansive set of rules to guide the
entire lifetime of the data, but for our context we would be
focusing on how these regulations impact application design.
GDPR broadly divides the requirements under two categories,
1) Rights of the Users 2) Responsibilities of the Application
Providers

2.2.1 Rights of the User

GDPR tries to educate the users about their rights in the digi-
tal domain, by laying down articles that move the ownership
of the data from the applications providers back to the users.
In article 15 of GDPR gives users right to ask the application
providers about what they are storing, where and how long
the data would be stored and for what purpose. Furthermore,
article 18 gives users right to object to any of the data process-
ing done by the providers anytime for any purpose. And in
extreme cases, GDPR gives users right to ask the application
providers to delete all the data associated with the user as spec-
ified in article 17. Lastly in article 20, it gives users the right

2



No. GDPR Article Key Requirement Service Mesh Feature
5 Purpose Limitation Data should be acquired for a specific reason -
13 User Consent Data can not be collected or processed without consent Traffic Engineering Rules
15 Right of access by the user Provide users access to their data -
17 Right to be forgotten Users data should be deleted on request -
18 Right to restriction of processing Users data should only be processed by consented services Traffic Engineering Rules
20 Right to data portability Users data should be transferred to other domains when requested -
21 Right to object Users can opt out of any previous consented service at any time Traffic Engineering Rules
25 Data protection by design and default Safeguard + Restrict access to data mTLS
30 Records of Processing Activities Logs of all operations Logging
32 Security of processing Implement state of the art security mTLS, Access Policies
33/34 Data Breaches Notify users about data breaches without undue delay Auditing
46 Transfers subject to appropriate safeguards Control where data is stored Traffic Engineering Rules

Table 1: Augmented Architecture Designs

to port their data from one application provider to another in
case they want to use some competitor’s application.

2.2.2 Responsibilities of the Application Providers

In GDPR’s article 24, it states that ultimate responsibility of
all the data lies in the hands of the application providers. So
its paramount for them to design their applications, under
article 32, such that they guarantee security of user’s data in
presence of adversaries. Its responsibility of the application
provider to make sure state of the art encryption and proce-
dures are followed to protect user’s data. In article 5 of GDPR
states that data should be collected for a specific purposed
and should not be used for anything else, its responsibility
of the application provider to make sure that data is used re-
sponsibly and according to the consent given by the user. It is
duty of the application provider, under article 30 and 46 re-
spectively, to give the users logs of all the activities that have
been performed with and on their data and to communicate to
the users where the data is physically stored. Lastly, in case
of a data breach, the application provider is obligated under
article 33/34 to report to both users and authorities without
undue delay.

The table 1 summarizes discussed articles.

3 Designing for Compliance

The fundamental goals of service meshes have led to the
availability of a multitude of features which help in making
applications GDPR compliant. In this section, we describe
each design goal along with the features that come under its
umbrella and how those features help in catering for respective
GDPR articles.

3.1 Service Meshes Design Goals

Security: Service Meshes provide mTLS between each ser-
vice (implemented by Envoy proxies (Section-2.1.1) and al-
low developers to define fine-grained access policies. As these

security features are integrated in the proxies and the control
plane, this allows the developers to automatically cater for
Article-25: Data protection by design and default and Article-
32: Security of Processing without modifying their application
code-bases.

Traffic Management: As service meshes data planes operate
on L7, one can add fine-grained policies i.e. at per user level.
This allows developers to add per-user policies to ensure each
users consent agreement is adhered to.

We envision that there would be automation policy genera-
tion methods in place rather than developers themselves spec-
ifying the policies. These automatic methods would allow de-
velopers not to worry about Article-13: user consent, Article-
18: Right to restriction of processing, Article-21: Right to ob-
ject, Article-46: Transfers subjects to appropriate safeguards
as the automatically generated fine-grained policies would
cater to them.

Observability: With each service being accompanied by a
Layer 7 proxy, its becomes trivial to generate detailed teleme-
try for all the service communication in the application. This
allows developer not to worry about Article-34, 35: Data
Breaches and Article-30: Records of processing activities.

Also, with detailed telemetry + logging capabilities,
developers also gain help for Article-15: Right of access
by the user and Article-20: Right to data portability but
they would need a GDPR compliant storage system to fully
support these articles.

Other than the various articles mentioned in this section,
there are other articles (Article-5: Purpose Limitation, Article-
15: Right of access by the user, Article-17: Right to be forgot-
ten, Article-20: Right to data portability), which although the
service mesh can’t directly cater for, given a GDPR compliant
storage system [13,14], service meshes can help in easing the
burden on the developer. For example, in Article-15: Right
of access by the user, assuming a GDPR compliant storage
system, an API could exist, which when the user requests
their data would be activated and would generate appropriate

3



Figure 2: Bookinfo Application

requests to the storage system and provide the user with their
data.

4 Implementation

To evaluate the impact of applying user specific policies in
a service mesh based application we decided to choose the
Bookinfo application developed by Istio developers [1]. We
deployed this sample application on Google cloud running
under Kubernetes engine enabled instance.

To start off, the first thing that need to be implemented
was a code that generated an arbitrary number of users with
some randomized policies. This script also would get the
users logged on with the website so that its cookie can be
used later to run benchmarks. To run the benchmarks we
used fortio [11] an application specifically designed to test
throughput of the servers. We sent variable number of Queries
per Second (ranging from 5 QPS to 100 QPS) with 25 threads
(each thread sends the configured number of QPS) and for
120 seconds. This tool reports us the mean, median, min, max
and specified quartile values of the response time distribution.
For our analysis we plotted the trend in a box-whisker plot
using 99th percentile as the max. To establish the impact of
having user specific traffic engineering rules, we measured
the server’s throughput with and without policy rules. Results
are discussed further in the evaluation section.

Similarly, we measured the impact of turning the logging on
at different rates and measured how the server’s throughput
varied with that. To achieve that Istio provides a neat API
to configure the rate of logging requests, we varied it from
default 1 percent all the way up to 100 percent [12].

5 Evaluation

In this section, our goal was to evaluate how service mesh
based applications performance degrades as various features
are put in use to make the application GDPR compliant. For
our evaluation, we leveraged Bookinfo [1] a small application
shown in Figure-2.

Figure 3: Policy Overhead

Figure 4: Logging Overhead

In our experimentation we mainly focused on two features:
(i) traffic engineering rules and (ii) logging. We wanted to
quantify the performance degradation both these features add.
To evaluate the performance degradation for these features, we
leveraged a load generator: Fortio [11] designed by Google.

Following, we’ll explain the experiments and results we
observed.

5.1 Traffic Engineering Rules
In BookInfo [1], there are three versions of the reviews micro
service. In this experiment, we added per-user rules where
each user would only be directed to one of the three versions.
We tested the application for 0 (no per-user rules added) and
2k users (2k rules added). Our results are presented in Figure-
3.

Surprisingly, we saw very little performance degradation,
even after we saturated ( > 50 QPS the application. On closer
inspection we realized that Istio caches the policy results
in the proxies itself which leads to very little performance
degradation. Moreover, we used our load generator against
the base-page (of the website), hence there were no cache
misses.

5.2 Logging
In this experiment, we enabled the distributed tracing feature.
This allows one to re-construct all the requests thereby

4



constructing how each users data flowed in the system. We
varied the logging rate from 1% (default) to 100% (each
request is logged) and plotted the results in Figure-4. The
degradation is still very minimal and this is due to the
minimalist nature of the application we used.

6 Discussion + Limitations

Even though the results look promising but the evaluation is
still missing some key features which would make it more
realistic. The application that was considered for evaluation
(even though its fully functional application) is still a very
simple compared to most applications that are both deployed
service meshes. So one extension of the evaluation would be
to run the same set of experiments on both larger and more
diverse set of applications.

Since we used Fortio to stress test our application, which
by definition is the worst case for the application, is still not a
realistic workload. So testing it on realistic workload traces
would give a rather more realistic picture of how putting these
policies and changes will impact performance.

Throughout our evaluation, we assumed that application is
built on top of a GDPR compliant storage system. Implement-
ing it from ground up would require non-trivial changes in
storage system and would adversely impact the performance
of the application as a whole.

7 Conclusion

In this paper, we’ve shown how service meshes already con-
tain a multitude of features that make making applications
GDPR compliant extremely easy. And our initial results show
that performance degradation is minimal. Hence, this is a
promising sign for developers to make their applications
GDPR compliant with the help of service meshes.

References

[1] Bookinfo application.

[2] ebay data breach.

[3] Envoy proxy - home.

[4] Facebook gdpr compliance.

[5] Gdpr articles.

[6] Istio.

[7] Kuma.

[8] Linkerd.

[9] Marriott data breach.
[10] Yahoo data breach.

[11] FORTIO. fortio/fortio.

[12] READ, . M. Collecting logs.

[13] SCHWARZKOPF, M., KOHLER, E., FRANS KAASHOEK,
M., AND MORRIS, R. Position: Gdpr compliance by
construction. In Heterogeneous Data Management,
Polystores, and Analytics for Healthcare (Cham, 2019),
V. Gadepally, T. Mattson, M. Stonebraker, F. Wang,
G. Luo, Y. Laing, and A. Dubovitskaya, Eds., Springer
International Publishing, pp. 39–53.

[14] SHAH, A., BANAKAR, V., SHASTRI, S., WASSERMAN,
M., AND CHIDAMBARAM, V. Analyzing the impact
of {GDPR} on storage systems. In 11th {USENIX}
Workshop on Hot Topics in Storage and File Systems

(HotStorage 19) (2019).

5


	Introduction
	Background
	Service Meshes
	Istio Architecture

	GDPR
	Rights of the User
	Responsibilities of the Application Providers


	Designing for Compliance
	Service Meshes Design Goals

	Implementation
	Evaluation
	Traffic Engineering Rules
	Logging

	Discussion + Limitations
	Conclusion

