GDPR Compliance by Construction in Noria

Wensi You
Brown University

Abstract

EU’s General Data Protection Regulation(GDPR) grants in-
dividuals unprecedented control over their data, which poses
tremendous challenges for the design of applications that
handle personal data. [S] proposes new abstractions for stor-
ing/processing user data and argues that the partially state-
ful dataflow model such as Noria is the key technology that
can make such abstractions feasible. However, Noria is not
compliant-by-construction yet. Therefore, we seek to revise
the design of Noria to make it compliant-by-construction. We
implement new features to Noria that allow users the “right
to access”, “right to object”, “right to delete”, and "right to
secure transfer”.

1 Introduction

Users’ control over their private data has become an increas-
ingly important topic. To protect user data privacy, EU’s Gen-
eral Data Protection Regulation (GDPR) grants individuals
significant control over their data. It challenges the design of
applications that store/process personal data. It poses chal-
lenging engineer questions to researchers and engineers, as
the traditional abstractions of data storage/processing do not
fit naturally with the GDPR regulations. This challenge calls
for a new conceptualization/abstraction of web applications’
processing and query of user data: data need to be stored in
a way that allows users to access and delete their data, and
inform users of the purposes of any processing of their data.

What kind of database could potentially meet this chal-
lenge? According to [5], “such databases should become dy-
namic, temporally-changing federations of end-users’ con-
tributed data, rather than one-way data ingestors and long-
term storage repositories that indiscriminately mix different
users’ data”[p2]. Following this approach, two major chal-
lenges are posed here: first, if base tables are used for storing
end users’ data, where to store derived/aggregated data? Like-
wise, when users request to delete their data, how to efficiently
delete all base and derived data? This requires us to find a

Zeling Feng
Brown University

Zhoutao Lu
Brown University

proper place to store the derived data and to define clear re-
lations between the base data and the derived data. For this
challenge, [5] argues that the backend can build material-
ized views over user shards — “These materialized views are
what applications query, and different applications may define
different views that suit their needs”[p3].

The second challenge is closely related to the first one: sup-
pose we only save user data in base tables and create/store all
derived data in materialized views, could this design achieve
the same or even better performance compared with the tra-
ditional designs? As [5] points out, “This requires a system
with support for a large number of materialized views (tens
or hundreds of thousands with many users), with efficient
dynamic view creation and destruction, and with excellent
read and incremental update performance” [p3-4].

Dealing with these two challenges is essential for any fea-
sible new abstraction. Fortunately, as [5] points out, “a key
enabling technology for making this design efficient already
exists”, which is Noria, a partially-stateful dataflow model.
Noria “supports high-performance, dynamic, partially materi-
alized, and incrementally-updated views over input data” [4]
[p4].

However, even if Noria represents a promising direction for
making this new abstraction feasible, Noria itself is not GDPR
compliance by itself. For example, there is no user shard in
Noria and currently, there is not yet a mechanism that allows
sharding by users. Moreover, there is not yet a mechanism for
users to access, delete their data, or get the purposes of the
processing for their data. Furthermore, Noria does not have a
secure way to export users’ data to other applications.

Therefore, this project aims to investigate how to update
Noria’s current data-flow system to achieve GDPR compli-
ance without affecting its performance. Specifically, we seek
to allow Noria to grant users the right to access, right to era-
sure without undue delay, right to data portability, and right
to object "anytime to processing".



2 Background

The new abstraction proposed by [5] requires a database to
be able to: “l. logically separate users’ data so that the as-
sociation of ingested, unrefined ’base’ records with a data
subject remains unambiguous; 2. model the fine-grained de-
pendencies between derived records and the underlying base
records; and 3. by appropriately adapting derived records, han-
dle the removal of one user’s data without breaking high-level
application semantics.”[p2]

Moreover, to put into practical use, a database also needs
to achieve low latency and efficient memory use. Essentially,
a balance needs to be struck between privacy protection and
performance efficiency. A design with a high degree of pri-
vacy protection and large performance overhead could hardly
be put into practical use. Fortunately, Noria, a streaming data-
flow system, may constitute a feasible solution. It is a database
model that combines the benefits of relational databases (al-
lowing updating base table schemas and queries without
downtime) and the benefits of in-memory key-value cache
and stream-processing systems (conveniently storing query re-
sults). More importantly, the design of Noria’s dataflow model
makes it convenient to achieve the three requirements [5] for
making the database GDPR compliant.

Specifically, the unique design of Noria is to divide the
storage of data into two places: the disk, and the memory,
with the relation between the data stored in these two places
clearly defined. Noria stores basic user data in base tables at
the disk, and derives other data (data that web applications nor-
mally precompute/store in base tables) in materialized views
and store these derived data in server memory. What data to
derive is based on the application’s queries. Then, to deal
with the potentially exploding demand for space from these
materialized views, Noria has partially-stateful operators to
evict states that are infrequently used. The second technique
of Noria to optimize memory use is to merge overlapping
subgraphs [4].

Currently, Noria performs well for satisfying the major
needs of read-heavy web applications (i.e., query processing,
in-memory caching, and data storage). But it seems that when
Noria was initially designed, it did not specifically target at
GDPR compliance. Therefore, even though Noria has great
potential for achieving GDPR compliance-by-construction, it
has not yet implemented the features that would allow users’
strong control of their data.

For example, Noria does not support sharding by users. Ac-
cording to [5], ‘GDPR compliance by construction’ requires
the base tables to shard by users, so when a user accesses
his/her data, the application can simply send back the corre-
sponding user shard; and when a user requests to delete his/her
data, we can simply delete the corresponding user shard with-
out traversing the whole database. Moreover, GDPR requires
that users be provided with information regarding "the pur-
poses of processing”. But Noria has not yet had such a mech-

anism. [5] suggests we can “...analyze the dataflow below
user shards and generate a description of all materialized
views and applications that a given user’s data can reach and
thereby might affect. Such an analysis would provide an au-
tomated means of extracting the information required, and
might also facilitate compliance with the GDPR’s right to
objection, which allows data subjects to reject certain types
of processing” [p6].

Furthermore, for many web applications, there is a need for
specifying distinctive policies for whether users can delete
certain data for not. For example, for a question/answer online
forum like Quora, the user may pose a question and then
request to delete it. If we allow the question to be deleted, it
would make other people’s answers to that question invalid.
So it might be a more reasonable policy to not allow users
to delete their questions. Achieving this should allow the
application developer to set which data is removable and
which is not. However, the current version of Noria does not
explicitly support this.

Another feature needed for making Noria GDPR compliant
is a mechanism for the trusted transfer of user data. To achieve
this, Noria needs to be equipped with proper cryptography
schemes. When a user asks for transferring his/her data to
another controller, Noria should make sure the data can be
transferred in properly encrypted forms and guarantees that
the data controller’s identity is correct.

The lack of the above-mentioned features prevents Noria
from being GDPR compliant. Of course, to be completely
GDPR compliant, Noria may also need other features. But
we believe implementing the above features is an important
starting point, as it could afford users strong control over
their data, and web applications using this updated version of
Noria can conveniently protect user rights without excessive
engineering efforts or performance overhead. If Noria can
be GDPR compliant-by-construction, we will have a web
backend that not only combines the benefits of the relational
database, key-value cache, stream-processing systems but also
achieves a high level of privacy protection.

3 System Design

This section introduces our overall design to support features
about GDPR in the Noria system (See figure 1).

3.1 User shards

If we have a way to split the user data into different universes,
then it is by construction easy for each user to access and erase
his/her data. A key design choice here is whether to shard user
data logically, or physically. Currently, Noria [4] has sharding
support but it is based on key ranges rather than users. As it
is not quite feasible to predict the maximum amount of users
before applications are launched, we choose to shard user data
logically rather than physically. To achieve that, we create



Moria Server

User Column

P z
Purposes urposes

m = I = Market

Market g1

== Allce's Shard
— Bobs Shard

Figure 1: System design diagram

a mechanism to set an index on the column that represents
a data subject. Developers can use "SET USER-COLUMN
column-name" to specify the user-column for any table. Not
all tables have to set the user-column (the rationale is if a
table does not contain any user-related data, then it does not
need to set a user-column). We require that there can be at
most one user-column for any base table, and developers can
change the user-column from one column to a different one
(for example, for a ‘message’ table, the user-column can be
initially set to the ‘sender’ column; but if the business logic
changes, the developer can reset the user-column to be the
‘receiver’ column).

With the user column being specified for database tables,
the right to access is realized. When a user requests to get
his/her user shard, we retrieve all records belonging to the
user from database tables. Another approach is to install a
recipe for each table to read user-related records. It introduces
new materialized views for user shard reading, which will
have the overhead of updating when base tables are changed.
Currently, we use ad-hoc indexing to avoid it.

3.2 Description of Purposes for Data Process-
ing
GDPR requires that users be provided with information re-
garding "the purposes of processing". Applications should
allow users to object to data processing based on purposes. To
achieve that, we attach a specification that describes the pur-
poses of each materialized view. To get all purposes related
to a user’s data, we will attach the purposes of each query to
all relevant database tables by traversing the dataflow graph.
Upon request, we can report those purposes to show how

personal data is used in the system. In the current implementa-
tion, we use query names to specify the purpose of processing.
This can automatically extract all information concerning the
purposes and thus afford users the right to objection based
on purposes. This design is inspired by the suggestions given
by [5], which says “It might be possible, however, to analyze
the dataflow below user shards and generate a description of
all materialized views and applications that a given user’s data
can reach and thereby might affect” [p6].

3.3 Erasure policy

The GDPR’s Article 17 requests that enterprises must provide
users the right to request erasure of their data without undue
delay. To enable the right to erasure, it requires our system to
delete all direct and derived user data. As [5] mentions, “In
a compliant-by-construction design, this involves removing
a user shard from the system. Withdrawing a user shard ef-
fectively erases all data contained in it, and then remove or
transform dependent downstream information in the dataflow
and materialized views“[p6]. With the implemented sharding
mechanism mentioned in 3.1, it is convenient for Noria to
remove a user shard now. Moreover, as for the removal of
downstream dependent data, Noria [4] already has a powerful
mechanism: it can automatically track the derived informa-
tion, and when base table changes, Noria updates the derived
data with eventual consistency guarantee.

However, business logic may require more than what is
mentioned above. For example, some business logic may not
accept the removal of all user data (for example, some tax
application may not want users to delete their tax-related infor-
mation). Therefore, we believe there should be a mechanism
to allow developers to set different policies upon users’ dele-
tion requests. Three different policies are available for this
scenario, i.e., remove, anonymize, and object to removal, with
the first one as the default policy. Developers can rewrite the
default to other erasure policies with the CREATE statement
using the keyword "UNDELETABLE’ or ’ANONYMIZE’.
A meta field will be added to each base table to represent
this policy. To implement this mechanism, a meta field is
added for each base table to indicate whether it is deletable,
anonymizable, or undeletable. When a user asks to delete all
his/her data, only the data that is deletable will be removed.
After deleting the proper data in base tables, derived data
in materialized views that depend on the deleted base data
will automatically be removed, thanks to the dataflow mech-
anism already contained in Noria. In terms of anonymizing
users’ data, we rewrite the ’delete’ operations arriving at the
base table to "update’ operations, which sets the value of the
user column to an anonymized ID. It is worth noting that the
deletion is eventual, as removing dependent downstream data
requires extra time than only deleting data in base tables. If
the policy is set to be anonymizable, user identifier will be
replaced by an anonymous hash.



3.4 Trusted transfer for user shards

To transfer user data, we can just export all data stored in
that user’s shard. But we need to make sure we use proper
cryptography schemes. OpenPGP [3] is an influential mes-
sage format to ensure the confidentiality and integrity of the
data transfer. GnuPG [1] is an open-source implementation
of OpenPGP. We encrypt the whole data export using the
new data controller’s public key so that only the new data
controller can receive and decrypt data. Also, we require the
old data controller to sign on the message so that the new
data controller can verify that the data is unaltered and can be
trusted.

There is a limitation that only the new controller could
access/view user shards, while users are unable to check the
content or verify that the shards contain complete data. In
order to encrypt the message for multiple recipients, Saltpack
[2] might be a viable option.

3.5 Guard data for an objecting user’s shard

GDPR also requires that users have the right to object at
any time to the processing of their data. Borrowing the idea
from [5], we augment the data-flow in Noria [4] with a new
operator "guard", which checks whether the user has objected
to the specific processing. Whether a user allows certain pro-
cessing constitutes an “objection policy”. These policies are
stored as an auxiliary piece of data for the guard operator.
Furthermore, we assume that nodes in the dataflow for differ-
ent SQL queries, including the guard operator, will only be
shared among queries with compatible objection policies.

Besides, it also requires that when data flows through Noria,
the system should be aware of the user ownership of each
information so that we could look up its objection policy in
the auxiliary data. We add those guard operators right after
base nodes to bypass the problem of designating the user
ownership of each derived information.

Now, each base node is followed by a set of guard oper-
ators, each of which will be shared among queries that are
compatible in terms of objection policies. When user records
flow from base nodes, the guard operator will be able to know
its user ownership conveniently and check against its auxil-
iary information on objection to determine whether to pass it
down or not.

There is a trade-off between node sharing and the flexibility
of guard operator. Because nodes that are shared among non-
compatible queries will force the guard operators to stay right
after those nodes, this incurs the problem of user ownership of
derived information. It is not uncommon that a set of queries
will have compatible objection policies. Therefore, in practice,
the current implementation will be easier to achieve with only
a limited performance overhead.

4 Implementation

4.1 Overview

We extend Noria’s functionality by adding "logical user
shard", "three deletion policies", "description of purposes for
all materialized views", "guard operator”, and "secure transfer
with GnuPG". Programmers can set user_column, deletion
policy, purposes for processing, etc., through SQL queries
submitted to Noria. The logical user shard requires an ad-
ditional column in base tables and also requires modifying
SQL parser to properly parse the additional specifier. For the
description of purposes, we reuse the already-existed name of
each query, which is attached to the base table when adding a
new SQL. User shards are encrypted and signed by invoking
GnuPG binary in Noria client to enable the secure transfer.
We rely on GnuPG to do the key management. In terms of
guard operators, we implement the operator standalone and
assume that dataflow nodes will not be shared among queries
that disagree on users’ objection policies.

We also extended the Noria server with additional HTTP
endpoints so that developers could send HTTP requests to
(1) fetch purposes of processing, (2) export user shards and
(3) import user shards in Noria Server. All these changes
comprise about 1,100 lines of Rust code in both Noria and
nom-sql. We also add unit tests to enhance the correctness
of new functionalities, while at the same time keeping the
integrity of existing unit tests.

4.2 Right to Access

We augmented the SQL parser so that the CREATE TABLE
statement will now accept a new attribute: USER_COLUMN.
An example query looks like this:

CREATE TABLE User (name TEXT, dob TEXT)
USER_COLUMN = name;

This query means that the column name is responsible for
identifying users. Rows that share the same value on this
column belong to the same user and are thus logically related.

Besides the requirement of being able to retrieve all the
data that belong to a user, GDPR also gives the users the
right to know where and how their data are used. To address
this, we have exposed APIs to developers so that they can
conveniently obtain information about which views the base
tables’ data flow into. This allows users to know where their
information are being used, which constitutes an important
aspect for the right to access. We expose this as a REST
API endpoint, and developers can retrieve the information by
accessing the /purpose endpoint.

4.3 Right to be forgotten

We have augmented the SQL parser similarly. The developer
can now append an optional annotation UNDELETABLE or



ANONYMIZE to notify noria which deletion policy should
the specific base table follow. According to GDPR, under
some circumstances, a service can choose to not allow users to
delete their data, which corresponds to the UNDELETABLE
annotation. Under some other circumstances, GDPR allows
user data to be maintained by services despite users’ request
for deletion, but requires the user data be anonymized, which
corresponds to the ANONYMIZE annotation. After base
tables are annotated with these policies, they can behave ac-
cordingly. A simple case is for tables annotated with the UN-
DELETABLE policy, the base table will simply ignore the
delete operation. When a delete request goes to the base ta-
ble which has been told to anonymize records, it will change
all the delete operations into update operations so that the
data can be properly anonymized. Thanks to the user column,
we have the knowledge about which part of the rows should
be anonymized for free. An example query looks like the
following:

CREATE TABLE User (name TEXT, dob TEXT)
UNDELETABLE USER_COLUMN = name;

4.4 Secure Transfer

We provide developers with two APIs to transfer user shards
from one instance to another. The first one is to export all
the user rows, encrypt them with the receiver’s public key,
and then sign the message with the sender’s private key. The
output is an GPG ASCII-armored message so that it can be
sent via email or other ways. The second API accepts a GPG
message and verifies whether it is exported from the authentic
sender and then decrypts and imports the user shard into the
receiver’s noria instance. We rely on GnuPG to provide all
encryption and digital signature services and developers need
to perform the key management themselves. Since both APIs
will involve private keys, it is not safe for the library to deter-
mine the way how users are going to use their passphrases
to unlock their private keys. We decide to leave this at the
application developers’ discretion, and developers only need
to provide a callback where the passphrase should be written
into the given file descriptor. As mentioned before, this im-
plementation has one disadvantage that the transfer can only
have one recipient which sometimes is inconvenient when the
intended recipients include both the user and the receiving
noria instance. This problem can be potentially solved by
using the Saltpack message [2] to enable multiple recipients.

4.5 Right to Objection

We have implemented a new operator — Guard’ — to filter
user-related records according to users’ objection policies.
Each operator includes a persistent state for users’ objection
policies. With the operator, the records will only flow into
materialized views if the user allows his/her data processed
for a certain purpose. There are still two problems with this

implementation. First, we need to associate each guard opera-
tor with a purpose because of our assumption that users could
specify their policy in the level of different purposes and de-
velopers could use an additional HTTP endpoint to inform
the objection policy. Second, with our assumption, dataflow
nodes are shared among compatible queries, we need to find
a mechanism to identify the compatible queries and take that
into the current node sharing algorithm.

5 Evaluation

5.1 Spatial Impact

Let’s assume the table has »n indices, and to enable
user_column, we need to add a new index, so now we have
n+ 1 indices. The current Noria implementation’s index im-
plementation will duplicate the whole row so that the spatial
overhead is O(%) There could be a memory optimization
if we use a pointer instead of the whole row in the physical
layer. This is not implemented in the current version as this is
outside the current project scope, but we believe this could be
a good future improvement.

5.2 Temporal Impact

As the user shard introduces a new index and the index is up-
dated whenever rows are inserted or removed, this could cause
a performance overhead in PersistentState. We write some
micro-benchmarks to measure the overhead. The result shows
that when the user_column is enabled, it generates a roughly
13.689127% overhead. The workload being measured on is
simply adding and removing a single user’s records to the
persistent state. The figure 2 shows the performance impact
brought by adding one additional index, where the blue distri-
bution doesn’t involve a user shard while the red one has the
user shard enabled.

5.3 Requirements for Developers

First of all, developers must have adequate knowledge about
GDPR so that they can make correct decisions on where to
add policies and which column should be specified as the
user_column. Besides, as we delegate GnuPG to do key man-
agement, developers must have some knowledge about the
trust model in GnuPG so that they can use the API correctly
and thus have the base for securely transferring between in-
stances.

6 Conclusion

We hope our efforts can show the great potential of Noria to
serve as a high-performance and GDPR-compliant backend
architecture for read-heavy web applications. Hopefully, our
redesign provides “intuitive consistency semantics” [5] for



0.035

003 -

0.025

0.02

0.015

Density (a.u.)

0.01

0.005

150 200 250 300 350 400 450

Average time (us)

Figure 2: Relative pdf with/without user column. The red
distribution is with the user column enabled and the blue
distribution is with user column off.

large-scale web applications. With this updated Noria, web
application developers can now have more tools to build fast,
scalable and compliant applications that not only serve users’
needs in terms of performance but also their needs for a high
level of privacy protection.

Reconstructing Noria to be GDPR compliant-by-
construction has important implications. It may indicate the
possibility of a web application backend framework that not
only achieves high performance but also conforms to high
standards of data privacy. Previous designs often have to
make trade-offs between these two demands, but a compliant
Noria achieves both without sacrificing one for the other,
thus constituting a promising option for future read-heavy,
high-privacy-demand, and high-performance-demand web
applications. We hope our initial experimentation can
motivate a broader research effort to continue optimizing this
partially stateful dataflow model.

References

[1] The gnu privacy guard. https://www.gnupg.org/
index.html. Online; accessed 09 December 2019.

[2] Saltpack - a modern crypto messaging format. https:
//saltpack.org/. Online.

[3] IKS GmbH H. Finney D. Shaw R. Thayer J. Callas,
L. Donnerhacke. Rfc 4880. 2007.

[4] Jonathan Behrens Lara Timbo Araujo Martin Ek Eddie
Kohler M. Frans Kaashoek Robert Morris Jon Gjengset,
Malte Schwarzkopf. Noria: dynamic, partially-stateful
data-flow for high-performance web applications. In
USENIX Symposium on Operating System Design and
Implementation (OSDI), 2018.

[5] M. Frans Kaashoek Robert Morris Malte Schwarzkopf,
Eddie Kohler. Position: GDPR Compliance by Construc-
tion. In Poly 2019 workshop at VLDB, 2019.


https://www.gnupg.org/index.html
https://www.gnupg.org/index.html
https://saltpack.org/
https://saltpack.org/

	Introduction
	Background
	System Design
	User shards
	Description of Purposes for Data Processing
	Erasure policy
	Trusted transfer for user shards
	Guard data for an objecting user's shard

	Implementation
	Overview
	Right to Access
	Right to be forgotten
	Secure Transfer
	Right to Objection

	Evaluation
	Spatial Impact
	Temporal Impact
	Requirements for Developers

	Conclusion

