Project Report: GDPR Compliant Key-Value Stores

Archita Agarwal
aal2

Abstract

We design a GDPR compliant key-value store for social net-
work applications. We focus on the Right of Access by the
Data Subject. The Right of Access is particularly interest-
ing in the social network setting because of the collaborative
nature of data generation in a social network. We propose a
Owner-Viewer paradigm to resolve dependencies when ac-
cessing the data. Our solution was implemented with Redis
and tested with a synthetic dataset for upto 10000 users. Data
access for a user with very high activity was completed in less
than a minute, while also supporting efficient functionality.
We believe this design is promising and could scale to realistic
social networks.

1 Introduction

The European General Data Protection Regulation
(GDPR) [6] was implemented in May 2018 [8]. It specified
that any entity operating in the EU or handling data of EU
citizens must enforce certain data protection policies or
be subject to penalties. Under these policies, a citizen is
guaranteed certain rights such as the Right of Data Access,
the Right to Transparency, the Right to Object and the Right
to be Forgotten. After the GDPR went into effect, there have
been several cases of organizations (and even individuals)
being held to account for violating these rights [2]. The
penalties for violating the GDPR can be as high as 4% of the
annual turnover of an enterprise [8]. Due to this high possible
cost, international organizations have been scrambling to
become GDPR compliant over the past few years.

However, several of the systems that are in use today were
not designed to handle the requirements imposed by the
GDPR. As such, becoming GDPR-compliant often necessi-
tates large changes to existing systems and workflows which
potentially introduce inefficiency. Given the engineering costs
of retrofitting existing systems to support entirely new func-
tionality that the systems were not originally designed for — it
is worth considering the alternative, compliance by construc-
tion [11]. We should explore the possibilities of building new

Marilyn George
mgeorge>

systems that incorporate GDPR compliant design while also
supporting the functionality of the original system efficiently.

In this paper, we design a key-value store to back a social
network application. Social networks are used by hundreds
of millions of people worldwide, and data is being processed
at the rate of petabytes a day for Facebook alone [1]. The
data generated is highly collaborative in nature — multiple
users interact on posts by adding comments and likes. In this
setting the right of access by the data subject (Art. 15) [6]
is interesting because there are questions of data ownership
before a user can access his/her data. All the data generated by
a user belongs to them, but some data might be meaningless
without contributions from other users.

We propose an Owner-Viewer paradigm to resolve owner-
ship of data and use a sharded design [11] for the key-value
store. The data we store to back a social media application
will be along the lines of Facebook’s TAO [10]. For our paper
we consider the following (limited) types of data and func-
tionality: user data (profile, friend lists, posts) and post data
(comments, likes). We generate synthetic datasets with upto
10000 users and test the performance of the data access for
a user. We note here that the design looks promising in our
small-scale implementation, the data access for a very active
user takes less than a minute to complete. However, the data
for 10000 users can be stored on one machine — there might
be several challenges to scale up to hundreds of millions of
users and petabytes of data.

2 Related Work

GDPR compliance requirements have led to substantial work
in terms of the effects on modern-day systems [12, 13]. The
influence of the GDPR requirements on storage systems in
particular has been studied previously by Shah et al [12]. The
authors study Redis, a popular key-value store, and attempt
to use inbuilt functions to implement GDPR compliant Redis.
They show that their approach leads to inefficient operations
on Redis and conclude that retrofitting existing storage sys-
tems naively to be GDPR compliant might come at a large

cost.

In this paper, we explore GDPR compliance by construc-
tion for key-value stores. This design paradigm was intro-
duced by Schwarzkopf et al. [11] along with an illustrative
design for relational databases. They introduce the concept
of sharding the data store into user-specific instances — ei-
ther physically or logically. This implies that a user’s data is
always stored in one shard and is therefore easy to access,
delete and manipulate in order to ensure GDPR compliance
with respect to that user. The paper also discusses how to
handle materialized views that need to access the data of mul-
tiple users. We use these principles to guide our design as
described in the following section.

3 Design

We design a key-value store to be used as the data store for
a social network application. We offer APIs for the social
network application to interact with our key-value store. The
APIs implement (limited) functionality such as the creation of
users, friendships, posts, comments and likes. We also allow
the social network application to invoke the right to access for
any user and receive all of the users associated data in return.

Our key-value store incorporates sharded design [11].
Sharding enables us to break up the data store into logical
units that can be accessed efficiently. We use both user-level
and post-level sharding in our design. Each user has a user-
specific logical shard of the key-value store that stores all the
keys to access the data they generated. This enables us to sup-
port efficient data access when a user wishes to invoke their
right of access. However, it is not sufficient to merely support
the right to access efficiently. We must ensure that we con-
tinue to support the functionality of the application efficiently.
If a user wants to use the view post functionality (accessing
collaborative data generated by multiple users) our design
would be inefficient if we only supported user-level sharding.
For instance, a popular post could have several hundred com-
ments from different users. The social network application
would have to access hundreds of user shards to render the
post for any one of those users. In order to support viewing a
post efficiently we create post-specific logical shards. Each
post shard now contains all the data required to render a post.
This makes post rendering very efficient. However, this design
choice introduces an overhead on the data access — a user’s
data access must now access each post they own separately.
We consider this an acceptable trade-off under the assumption
that post rendering will be more common than the invocation
of the right of access. Additionally, the text of Art. 15 [11]
does not specify a timeframe for the execution of the right of
access however we aim to allow data access in a reasonable
timeframe.

Once we have the sharded key-value store, we can support
the right of access by a user. However, we still have to decide
what keys are ‘associated’ to a user and what a user can

rightfully claim ownership over. It is clear that a user’s profile
data and their post data belong to them. The case for shared
data is slightly less clear. To resolve this we propose a Owner-
Viewer paradigm for the shared data generated by a social
network. We say that for each piece of shared data created,
the users creating it can play the following roles:

o Owner-Owner: All users own the shared data for this
association. For instance, a friendship or group mem-
berships. When the right to access is invoked by either
of them they should receive the data. This is similar to
TAO’s bidirectional edges.

e Owner-Viewer: An Owner owns the data, for instance
a post. All Viewers can interact with this data, like or
comment on it. When the Owner invokes the right to
access it receives the data as well as all the interactions
associated with the data. When the Viewer invokes the
right to access it receives only the information associated
with the interaction, but not the data itself - this belongs
to the Owner. This is similar to the unidirectional edges
in TAO.

We ignore Viewer-Viewer associations currently as being
out-of-scope of the right to access. Then our right of access
functionality resolves data ownership using these rules and
returns all data associated with a user in this paradigm.

4 Implementation

We implemented the design using Redis [5] and the Python3
redis-py client [4]. The implementation is single server using a
single instance of the Redis server running on localhost. At the
time of writing this paper, the Github repository [3] contains
1000LOC for the APIs and experiments. We encountered one
major challenge while using Redis as the key-value store.
Redis only stores values as strings so we had to serialize our
dictionary data-structures or flatten them for easy access. We
made the choice to flatten the fields that would be accessed
repeatedly but keep the remaining fields in dictionaries. Our
design had to be modified to account for this. The other major
challenge that we faced was during testing: the generation of
the synthetic dataset and testing for correctness. We provide
a detailed explanation in the next section.

5 Evaluation

In order to evaluate our design we generated synthetic datasets
for 10, 100, 1000, 10000 users. The synthetic data was gen-
erated to model real-world social network patterns. We gen-
erated static key-value stores for each setting and evaluated
the efficiency of the data access for high-activity users (worst
case) and average users. We also tested the efficiency of ren-

dering' posts of various popularity levels. For simplicity, we
did not interleave data accesses with other operations on the
key-value store. The data generation posed some interesting
questions as detailed below.

Data Generation. We generate the synthetic datasets using
a Zipf distribution. This distribution is a power law which
explains several types of data on the Internet in practice [9].
In our context, this means that the frequency of a data item in
our dataset is inversely proportional to its length. This data
item could be a user’s friend list, number of posts (or) the
number of comments or likes on a post. Additionally, in the
real world there exist super-users who are very active on the
social network. The super-users have large numbers of friends,
posts, comments and likes. Similarly, there exist super-posts
that are very popular and get large numbers of comments and
likes. To achieve this distribution in our synthetic dataset we
used the following methods:

1. For a given number of users, we sampled a list of friend
counts from a Zipf distribution. However, these friend
counts had to be consistent i.e. realizable in the real
world. For example, for three users - (5, 3, 1) is not a
consistent set of friend counts. In order to check con-
sistency, we view the social network as a graph with a
vertex for each node and an edge for each friendship.
Then if the friend counts are a valid degree sequence for
the graph, they are also consistent. We used the Erdos-
Gallai theorem [7] to check this consistency condition.
The time required to generate a consistent set of friend
counts was fairly large and hence we used static friend
counts once generated. We ordered these counts in order
to keep track of the users with largest numbers of friends
for later steps. These users are then our super-users.

2. We generate posts according to a Zipf distribution for
each user, making sure the super-users have the most
posts. On each post we sample a Zipf distribution for
the number of comments, nested” comments and likes.
When we select a user to own a comment or like, we
weight by the number of friends a user has. This leads
to the creation of super-users — if they received more
friends in the generation they will be more likely to
comment and like posts.

3. We note here that the Zipf distribution has a parameter
that controls how skewed the distribution is — larger val-
ues of the parameter generate more skewed distributions
i.e. less number of longer data items. We adjust this pa-
rameter to enable us to generate data sets fast, but still

! Accessing and rendering in our context only involves plain printing of
the relevant data. A social network application might have more complicated
functionality and hence higher latency. Our numbers should be considered
indicative of the time to retrieve relevant data from the key-value store.

2We allow up to three levels of comment nesting.

attempt to keep the dataset statistics as realistic as pos-
sible. In Figure 5 we report the size of each dataset and
the total time taken (in seconds) to generate the contents
starting from pre-calculated friend counts. We denote
our datasets as D10, D100, D1000 and D10000 denoting
the number of users.

Dataset. | Total time(s) | Users | Friendships = Posts | Comments | Likes
D10 0.113 10 11 12 135 222
D100 1.89 100 308 179 2250 3851
D1000 15.31 1000 4724 2008 16993 25494
D10000 182.46 10000 51070 18501 134141 192717 |
Figure 1: Data generation statistics
Performance. In this section we report the performance of

the data accesses for users as well as the post rendering. We
consider the first 10 user ids to be super-users. Their posts
are considered the super-posts’. In Figure 5 we show the
average running time of the right to access for a super-user
compared to the average running time over all users. Similarly,

Dataset Avg for SU(s) | Avg for all(s)
D10 ‘ 10 ‘ 0.013 0.013

Total superusers

D100 10 0.102 0.016
D1000 | 10 \ 0.402 0.011
D10000 10 26 0.01

Figure 2: Time taken for right of access

in Figure 5 we also show the average render time for a super-
post compared to the average render time over all posts. We

Dataset, |Posts by superusers Avg for SU(s) Posts by all Avg for all(s)
D10 12 0.0027 12 0.0027
D100 88 0.0038 197 0.0021

D1000 301 0.0053 1892 0.0015

D10000 2410 0.0051 20010 0.0014

Figure 3: Time taken for post rendering

notice that the average access time over all users remains
more or less constant, or even decreases as total number of
users increases. However, the average over the super-users
increases as we increase the number of users. This is due to
the effect of the Zipf distribution. The top 10 users’ activity
corresponds to the 10 largest numbers in the Zipf sample.
Hence the top 10 activity and therefore access time increases
as the number of Zipf samples increases. The posts by the
super-users have a similar property and so we can see the
same trend in the post render time. Overall, we see that the

3The fact that the super-users have lower user ids is an artifact of our data
generation.

post rendering remains under half a second for all users and
the data access is a couple of seconds at most even with 10000
users.

Conclusions. We have showed that the prototype sharded
design works with reasonable performance. The design is
worth studying for further extension, both in application func-
tionality as well as GDPR compliant functionality. Due to
time constraints we could not implement groups of users for
the social network but we believe that will be a simple exten-
sion. Another possible extension will be the implementation
of user-specific policies when viewing, commenting and lik-
ing a post. Our current datastore makes no distinction and
pushes the responsibility for privacy policy enforcement to
the social network application. On the GDPR compliance
front we could add encryption for data at rest to comply with
the security of data processing (Art. 32). We could also in-
corporate the right to data portability (Art. 20) and the right
to erasure (Art. 17) [6] by natural extensions of our current
design. Additionally we could work on scaling up the applica-
tion to millions of users by distributing data over several Redis
instances. This will give rise to additional questions about the
efficiency of data access and social network functionality.

References

[1] Brandwatch: Facebook. https://www.brandwatch.
com/blog/facebook-statistics/. Accessed: 2019-
12-09.

[2] Gdpr enforcement tracker. http://www.
enforcementtracker.com/. Accessed: 2019-08-18.

[3] Github: Gdpr-kv. https://github.com/
architaagarwal/gdpr_kv. Accessed: 2019-12-
09.

[4] Redis-py for python3. https://pypi.org/project/
redis/. Accessed: 2019-12-09.

[5] Redis: Remote dictionary server. https://redis.io/.
Accessed: 2019-12-09.

[6] Regulation (eu) 2016/679 of the european parliament
and of the council (general data protection regulation).
https://eur-lex.europa.eu/legal-content /EN/
TXT/HTML/?uri=CELEX:32016R0679#d1e3722-1-1.
Accessed: 2019-10-10.

[7] Wikipedia: Erdos-gallai. https://en.wikipedia.
org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem.
Accessed: 2019-12-09.

[8] Wikipedia: General data protection regulation.
https://en.wikipedia.org/wiki/General_Data_
Protection_Regulation. Accessed: 2019-12-09.

[9] Lada A Adamic and Bernardo A Huberman. Zipf’s law
and the internet. Glottometrics, 3(1):143-150.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. {TAO}:
Facebook’s distributed data store for the social graph.
In Presented as part of the 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pages 49—
60, 2013.

[11] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek,
and Robert Morris. Position: Gdpr compliance by con-
struction. In 7o be part of Poly’19: Towards Polystores
that manage multiple Databases, Privacy, Security an-
dor Policy Issues for Heterogenous Data, 2019.

[12] Aashaka Shah, Vinay Banakar, Supreeth Shastri, Melissa
Wasserman, and Vijay Chidambaram. Analyzing the im-
pact of {GDPR} on storage systems. In 1/th {USENIX}
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), 2019.

[13] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. Gdpr anti-patterns: How design and opera-
tion of modern cloud-scale systems conflict with gdpr,

2019.

https://www.brandwatch.com/blog/facebook-statistics/
https://www.brandwatch.com/blog/facebook-statistics/
http://www.enforcementtracker.com/
http://www.enforcementtracker.com/
https://github.com/architaagarwal/gdpr_kv
https://github.com/architaagarwal/gdpr_kv
https://pypi.org/project/redis/
https://pypi.org/project/redis/
https://redis.io/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e3722-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e3722-1-1
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

	Introduction
	Related Work
	Design
	Implementation
	Evaluation

