Privacy-First Infrastructure Design for Hospital Record Management using
GDPR Compliant Blockchain

Ankita Sharma
Brown University

Abstract

The blockchain datastructure has caught the attention of
many. By design, it is resistant to modification, tamper
proof, and transparent. It uses decentralized consensus
to maintain an append-only ledger that everyone can see.
While the blockchain has made great strides integrating
into our lives and enabling the existence of cryptocur-
rency, its fundamental properties may prevent its usage
with policies like the General Data Protection Regula-
tion coming into affect that mandate that data stored by
the data processor should be subject to many require-
ments such as the ’right to erasure’ in which data must be
deleted. In this paper, we present a GDPR compliant in-
frastructure design for record management in which the
primary data stores are blockchains. We chose to apply
this design to create a generic hospital record managing
application because the hospital industry is often the vic-
tim of data breaches. Our application and resulting demo
is fully GDPR compliant and publicly verifiable (via a
public blockchain) while maintaining reasonable privacy
for its data subjects.

1 Introduction

In order for a blockchain to accommodate requests
like the ‘right to erasure’, private data cannot be stored
on a blockchain since deleting data confirmed on a
blockchain breaks the fundamentals of a blockchain.
Instead, we store this data, encrypted, some where off
the chain and use public blocks on the blockchain as a
pointer to tell us where to find the data. In other words,
blocks on the public chain would contain anonymous
metadata associated with the transaction and contain a
link to where encrypted user data is stored. This link
could be thought of as a pointer or key in a database. By
storing this data off the chain, we retain the fundamental
properties of the blockchain by never running into a
situation where a block needs to be removed or the

James Rolfe
Brown University

entire blockchain reconstructed. However, to further
extend this idea and to apply the blockchain’s tamper
proof properties to the data, which is desirable, the user
data that is stored off the chain can also be stored in
a separate, private blockchain. If the user wishes to
remove their data (right to erasure) the entire private
blockchain can be deleted and the pointer in the database
would point to nothing. This multi-dimensional design
satisfies blockchain properties at the meta and granular
per user level. If a user removes their data the main
blockchain can continue to operate and function as if
nothing happened.

We decided to apply these idea to the healthcare sector.
The motivation for this decision arises from our own
observations and experiences. The healthcare field often
lags behind in its technical readiness; as an example,
the use of paper medical records and fax as a means
for transferring medical records is still prevalent. Fur-
thermore, multiple hospitals have been fined for GDPR
non-compliance; lacking the infrastructure to prove
and guarantee that secure medical information is not
disclosed arbitrarily. The penalties these hospitals face
are non-trivial. Just last year (2018), the central hospital
of Barreiro Montijo in Portugal was fined 400,000 euros
for being unable to prove GDPR compliance '. For
these reasons, we modeled the construction of a GDPR
compliant blockchain for organizations like hospitals
that store personal records.

We wanted our proof-of-concept to target the following
potential problems that pertain to the current healthcare
ecosystem:

1. Unrestricted access to patient data

2. Malpractice through patient record tampering

Uhttps://iapp.org/news/a/first-gdpr-fine-in-portugal-issued-against-
hospital-for-three-violations/

3. Patient cheating e.g. getting Opiates prescribed in
10 different hospitals

4. Slow and insecure removal and transfer of medical
records

Our implementation does not make use of a full fledged
network of distributed nodes. However, our imple-
mentation can easily be extended to using legitimate
blockchain implementations like Bitcoin? or the XRP
ledger.?

2 Background

A blockchain is a network of blocks containing all
the transaction history. Each block in the blockchain
contains an index, timestamp, hash of the previous
block, transaction data, and a nonce for proof of work
calculations. The hash of each block is based on the
hash of the previous block as well as the data of the
current block.

Prev. Block—

Prev. Block—
0x002

Block 1 Block 2

Transaction Data 2

Transaction Data
1

A new transaction is first added to a list of unconfirmed
transactions. Mining is the process of adding new
blocks to the blockchain by confirming transactions.
Mining produces a proof of work which is used to
confirm each transaction and check that a node has
performed the necessary calculations to confirm a block
by brute forcing the solution to a particular output of
an encrypted hash function. To perform proof of work,
a hash must be produced for the given block. Then
the hash is verified by checking that the hash produced
using the current nonce of the block has the correct
amount of leading zeroes. The nonce field in the block
can be adjusted in order to generate the desired hash
and the amount of leading zeroes can be configured to
customize the difficulty of mining (more zeros leads to
higher difficulty). All of the other fields in the block
must stay the same.

Zhttps://bitcoin.org/en/

3https://xrpl.org/

“https://medium.com/@venkinarayanan/how-blockchain-works-
b0a62ca2fcal

Difficulty: 4 Difficulty: 8

binaryHash: 0000100011110011.. VALID
hash: 08f3..

binaryHash: 0000000000100111.. VALID
hash: 0027..

binaryHash: 0001011010111100.. NOT VALID
hash: 16bc..

binaryHash: 0000010111000010.. NOT VALID
hash: 05¢c2..

5

For each degree of difficulty, the average time to perform
proof of work doubles. The difficulty value is updated
to ensure that blocks are added to the blockchain at
consistent intervals. In other words, it would take less
time between the addition of new blocks as new nodes
join the network if the difficulty remained the same. The
difficulty value reflects the amount of computing power
in the network and so as more nodes enter the network,
the difficulty should increase.

The data stored on the blockchain is tamper-proof due to
the use of encryption and digital signatures because if a
block (other than the last block) was modified then the
previous hash field of the next block would be incorrect.
The blockchain is ideal for scenarios that entail mutually
untrusted parties to collaborate without relying on a cen-
tral authority.

3 Design

Standard asymmetric encryption serves as the basis of
our design. Each user in the system is associated with a
unique public and private key pair.

PublicKey Private Key

Decryption plain Text 6

The patient information interacting entities include
the public blockchain, a patient card, and the hospital
database. The public blockchain is responsible for stor-
ing unique patient registrations in our ecosystem. When
a patient registers with any hospital in our ecosystem
for the first time, this registration is recorded on the
public blockchain. Registration entails the generation
of a unique public and private key pair for the patient.
The public key is stored as a transaction on the public
blockchain and the private key is returned to the patient
in the form of a patient card. The patient card can
be thought of as storing capabilities or secure tokens

Shttps://Ihartikk.github.io/jekyll/update/2017/07/13/chapter2.html
Ohttps://www.ssI2buy.com/wiki/what-is-a-public-and-private-key-
pair

that grant access to a patient’s medical records. Each
hospital has their own database which stores a patient’s
encrypted medical records.

Here is a break down of these components:

Patient Information Interacting Entities

& Public Blockchain
o Hospital hash(UID)
o Patient pub_key
e Card
o UID
o Priv_key
o Hospital_ID
» Hospital DB (private blockchain)
o K- Encrypted(UID, pub_key)
o V- Encrypted(linked list of medical records, pub_key)

Our ecosystem contains physicians, hospitals, and
patients with the following properties:

Ecosystem

o Physician
o Name
o Physician_id
o Hospitals

« Patient
o Name
o Patient_id
o Card

¢ Hospital
o DB
o Registered Physicians
o Blockchain

Each hospital in our ecosystem interacts with the public
blockchain and each hospital stores a patient’s encrypted
medical records. The hospital that stores a patient’s
encrypted medical records corresponds with the hospital
listed on the patient’s card. Each hospital validates the
patient’s card when processing a request. If a patient
wishes to transfer their medical records to another
hospital, that field of their card is updated so that they
can continue seeking treatment seamlessly. Below lays
out how a patient would register with a hospital in
our implementation. Note that each hospital employs
a special hash function to disassociate the id on the
card with the information stored on the blockchain to
guarantee patient privacy by making the public metadata
stored on the blockchain unidentifiable.

| neshedtui)
Ny

enclmed_record,pub_key)

heshed{uid)
ub_key

encuid, pub_key)

Hospital A

Hospital B " Hospital C ‘

mam e / |
Hasher Hasher / Hasher
i I s / Y
Register A I .
% B Linked list of
r :S:Eﬁ(D encrypled medical

. __records
UID = name ¢ p -2

If a patient would like to seek treatment, a patient would

first need to present their card to a physician. The card
enables the physician to make a successful write request
to the hospital server. The hospital server employs the
unique hash function on the id listed on the patient
card to look up the public key for that user. The public
key allows the hospital to find the key where patient
information is stored in its database; the key being the
encrypted patient_id. The hospital can verify that the
card has not been tampered with by also decrypting the
encrypted key with the private key listed on the card; if
this does not equal the patient_id, the request is rejected.
A successful write request will store the encrypted
medical record in the hospital database. This flow is
mapped out below.

Hospital A Hospital B Hospital C

Hasher I Hasher ‘ Hasher

\rite{card,
medical_record,
seek_ireamenticard))
o uD /
Piv_key
Hospital ID

UID = nams + patient_id Dr.

We defined the following API endpoints. The API
endpoints that entail a physician reading, writing, or
transferring medical records are patient initiated in
which a card would need to be presented in order for the
physician to successfully make a request.

nashediuid) - nashedivid)
pub_key pub_key

a0d_biock))
registes(paint name, pasent i) register{physician_name. physican_id)
Hospital "
read(eard_ud) ‘ rea(card_uid)
|
wite{card, medical_record, physician id)
|

transfer{card, physician_id)

removefcard) -

seek_treatmeni(card) Paen, |
ranstecad, desl_hospial) -

% read_medical_record(card) /
tramster_medical_recordscard)

A patient can make the following requests with their
card and any updates to the patient blockchain that is
stored in the hospital database is treated as a transaction
that is automatically signed by the requester. —

We thought a bit about how an end-user would use our
application and mocked out the following web portals
for a patient, physician, and hospital.

localhost/privacy-first/demo/patient/sally

Name: Sally Read: i—/ PHYS,R%U'-T/ Remove:\r/
Patient_ID: XXX Hospital_1 Jane Hospital_1
Card: Hospital_2 Bob Hospital_2
B e s, pesotio o, | | Hospital_3 | | Alice Hospital_3
UID: 300X, Friv Key: XXCX, Hosp
fame 0% Response: Response: Response:
| XXX XXX XXX
Register: <
Hospilal 1 Treatment: l] Transfer: \} P?’Iy‘;‘_TlErlsfm{;
Hospital_2 .
Ll HOSpIial 1 Hnspla_: Hospital_1
Hospital_3 Hospital 2 ot £
Hospital_3 Hospital_1 Jane
Hospital_2 Bod
Remove Hosptal_3 Alica
Card . . 5
Response: Respanse: Response:
XXX XXX XXX

Partal for Patient Sally

localhost/privacy-first/demo/physician/jane

Name: Jane Treatment: ‘

Physician_ID: XXX

=>> Request for treatment from Sally
>»> Add note: She is doing great! |

Affiliated Register: \r/
Hospitals: B L Submit
P Hospital_1
Hospital 1 HOSp!taLz Patient Info: ‘
- Hospital_3
>>> Request to read medical records
for Sally. I
XXX
Phys Transfer: }
>>> Request to transfer medical
records for Sally
==> Transfer medical records to I
Hospital_1
L Submit

Portal for Physician Jane

localhost/privacy-firsttdemo/hospital/hospital_1

Name: Hospital_1

XXX i :

Jane >>> Sending request 1o be to check if hash_uid
==== exists in bc

XXX
=== >>> Sending request o bc to add new
XXX transaction

>=>> Register patient Sally

>>> Sending request to bc to mine new
transaction

Portal for Hospital_1

We envision future iterations to include translating a pa-
tient card to a QR code that a physician could scan in
order to make any of the patient initiated requests like
transfer/read/write. Also, we may have applications us-
ing our infrastructure design implement digital cards (as
a phone application) for ease of use. The underlines the
fact that the "card’ just needs to be something unique that
can hold a private key and tethered in some way to the
user.

Our system makes the following assumptions:

1. There is no collusion between the physician and the
hospital database admin

2. There is no collusion between the patient and the
hospital database admin

3. There is no mutual trust among physicians and hos-
pitals

4. Two-factor authentication can prevent identity theft
if a patient’s card is stolen or lost

5. Since a patient card is associated with immutable
information on the public blockchain, an alterna-
tive recovery mechanism for continued interaction
in our ecosystem would need to be thought about if
a patient’s card is stolen or lost

6. A patient can only be active with one hospital at a
time. However, it would take a matter of seconds
to transfer one’s records to another hospital using in
our system

7. Information is sent over encrypted wires to prevent
man in the middle attacks

4 Implementation

To scope down the implementation of our project and
to focus on creating a meaningful proof-of-concept, we
defined a configuration file that specifies the entities
involved and their contact information (i.e. ip address
and port number) and decided to use a single node in our
blockchain network - which can be scaled up in future
iterations.

We created proxy clients and servers for each of
the entities involved (i.e. hospital_proxy_server.py,
patient_proxy_client.py, blockchain_proxy_server.py,
physician_proxy_client.py) that are responsible for mes-
sage processing, invocation of internal API calls, and
spinning up a flask server for the creation and updating
of the entity’s web portal.

We created a DNS like service that essentially parses our
configuration file to simplify the lookup of other entities
in the ecosystem.

There were several interesting design decisions that
needed to be made to create clean interfaces and to en-
able the interoperability of all entities in our ecosystem.

Our implementation, in total, is about 4,500 lines of
code. The end result, that we encourage you to play
around with, entails running a startup script that will
kick-off all of the required proxy clients/servers and

navigating to the portal’s of each of the entities to see
how requests are made and processed using our service.
We felt that this experience would help demonstrate the
different perspectives and users of our service.

The main challenges that arose for us was accommodat-
ing the knowledge gap since we are far removed from the
medical field. This required a bit of research and investi-
gation to make reasonable yet realistic assumptions.

5 Evaluation

We achieved what we set out to address by testing that
our system can accommodate GDPR requirements, most
specifically the ‘right to erasure’ requirement. A patient
is able to request to remove their data from a hospital and
their data is indeed removed. We were able to confirm
this with the prototype we built. However, this was not
the only problem that we set out to solve. We also wanted
to tackle unrestricted access to patient data, malpractice
through patient record tampering, patient cheating, and
the slow and insecure removal and transfer of medical
records. We believe we solved these problems as well.

1. Unrestricted access to patient data - A physician
is unable to read patient data or update a patient’s
medical history without patient consent. We were
able to test this by confirming that when a physician
obtains a patient’s card and has updated a patient’s
medical history, for instance, they are unable to sub-
mit more updates for the patient since the card pro-
vided is immediately deactivated after the request to
write to a hospital’s database is made.

2. Patient record tampering - A patient’s data cannot
be tampered with since all patient data is encrypted,
all updates are signed by the requester, and in or-
der for anything meaningful to happen with patient
data, the patient card must be supplied. We men-
tioned above that we can solve a patient losing their
card with two factor authentication, but the patient
card indeed stores the capabilities that grant access
to a patient’s medical records.

3. Patient cheating - A patient is unable to register or
seek treatment from multiple hospitals at the same
time since the public blockchain maintains a record
of all patient registrations and each hospital con-
sults the public blockchain before accommodating
or processing any requests.

4. Slow and insecure removal and transfer of medical
records - These two requests happen in a matter of
seconds. The transfer of medical records is seam-
less since the public blockchain serves as a mecha-
nism for all participating hospital entities to consult

and utilize for the duration of a patient’s existence.
Since each hospital uses the same hash function to
disassociate a user id from the id stored on the pub-
lic blockchain, each hospital is able to obtain the
public key for each patient given the patient’s card.

To make our system more efficient, we presume uti-
lizing other data structures like a Merkle Tree for our
blockchain implementation may provide a performance
benefit when finding the block for a given hashed user
id.

6 Conclusion

Our infrastructure design accomplishes both GDPR com-
pliance and the use of a blockchain for the primary
data storage (through linking). This infrastructure could
be tailored to any application that has records and cor-
responding accounts (most applications). We showed
through our hospital record management application that
applications using our design can enable their users with
full control over their data without fear that an action on
their data be made unnoticed and without their consent.

7 Acknowledgements

A huge thank you to our professor Malte Schwarzkopf
for helping us make our idea come to fruition with the
willingness to provide us with feedback and guidance
throughout the process.

