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Abstract 
Integrating column-level encryption into data 
analytics could make it possible for analysts to 
conduct queries on encrypted data by default. We 
found that adding encryption slows down queries by 
at least 2.5x and requires a somewhat sophisticated 
key management solution. 

1 Intro 
Around a decade ago, big data tools like Hadoop and 
Spark made analyzing TBs to PBs of data possible. 
Nowadays, these tools are widely used in enterprise 
[2]. While big data distributions come with features 
for protecting data-at-rest and data-in-transit [3, 4], 
data presented to analysts is left in plaintext. This 
means that data analysts typically have access to TBs 
of data, some of which is personally identifiable 
information (PII) like name, address, and social 
security number. 

While basic authorization features exist in data lakes 
to solve this problem, the amount of work needed to 
ensure privacy standards are met cause corners to be 
cut. Access control and ETL are two components 
which require lots of time to configure: 

Access Control: While data lakes and data 
warehouses come with access control features, 
there’s a reason to believe that they aren’t be used 
properly. In 2017, 207 HDFS clusters were found 
exposing 5.12 PBs of data were found through the 
Shodan search engine [1]. This means that hundreds 
of clusters were not configured to use basic security 
features at all. Also, data lakes and data warehouses 
contain hundreds of tables. Many of these tables have 
dozens of columns. It’s impractical for admins to 
properly configure access for each of these tables. 

ETL: PII needs to manually removed or masked 
before being put into the data lake or warehouse. This 
means that every new table created requires a custom 
ETL pipeline to be made. This is difficult when 
hundreds of tables needed to be updated from dozens 
of upstream databases. 

To summarize, existing approaches require too much 
manual work given the scale of data. As a result, we 
decided to explore the potential of a more automated 
solution: encrypting all data by default and auditing 
all decryption requests. 

The main contributions of this paper are as follows: 

● Exploring the feasibility and performance 
impact of integrating encryption into 
Apache Spark. (Section 5) 

● Describing a basic implementation of secure 
encrypted Spark involving delegating 
identity and access management to AWS. 
(Sections 3 and 4) 

2 Background 

2.1 Model 
We protect against employees in the company are 
honest but curious. These employees may often work 
with the data and incidentally see large amounts of 
PII. The main change in our solution is that these 
users now see encrypted data by default. If they need 
to decrypt some data in order to properly do their job, 
their decryption request is audited. This dissuades 
employees from excessively decrypting zip codes or 
decrypting fields like SSN at all. 

We also aim to identify malicious employees that 
want to extract inside knowledge. 

Example Attack: A marketing analyst is ready to 
leave for another company and wants to get the 
contact information and subscription renew dates for 
existing customers. To do this, they would run a SQL 
query to fetch the query through the SQL dashboard 
they use daily. 

In our solution, the marketing employee must decrypt 
the contact info and subscription renewal dates in 
order to see them. As a result, these queries will be 
audited. While this doesn’t prevent the employee 
from running a query, the legal ramifications of doing 
so effectively do. 

We also consider malicious employees who want to 
delete or modify. We aim to solve this issue by 
maintaining compatibility with time travel (also 

 



 
known as point-in-time recovery) tools and access 
control features. 

It should be noted that the level of privacy described 
is weaker than differential privacy, which prevents 
analysts from running queries after exceeding a 
privacy loss budget. 

2.2 Related Work 

Big data distributions also come with access control 
features. Enterprise distributions of data lakes and 
data warehouses generally come with file and table 
access control [5,6]. Some now support column-level 
and row-level access control [7]. Free distributions do 
not. As noted earlier, these leave time consuming 
access management and ETL tasks to the user. 

BigQuery supports column-level encryption functions 
[8]. We explore the feasibility of automatic 
encryption and decryption as a solution but do not 
implement it. 

Researchers in 2019 have worked on incorporating 
fully homomorphic encryption into Spark [9, 10] 
using the Microsoft SEAL library [11]. We focus 
instead on the key management aspect in our 
implementation and avoid forking Spark. Customers 
often use managed services/distributions like AWS 
EMR or Apache Ambari, which use their own Spark 
JARs. 

Open-source contributors have worked on integrating 
encryption into Spark by extending the Parquet file 
format [12, 13]. We survey into both format-specific 
approaches and format-agnostic ones. 

3 Design 
 

 

Figure 1: Users send queries using the encryption 
and decryption UDFs to the Spark cluster. Encrypted 
data keys are stored in the key server and decrypted 
through KMS. 

3.1 Query Path 

The user sends queries to the Spark SQL application 
through traditional options like spark-shell or 
spark-submit. The Spark driver schedules tasks 
to be run on the executors. A query looks like the 
following: 

df.select(decrypt(col(“SSN”))) 

  .first() 

// or 

spark.sql(“SELECT decrypt(SSN) FROM 

df“).show() 

If the user uses an encryption method like above, 
SparkSQL will fetch the corresponding AES secret 
key for the table-column pair or create it. The key is 
used for encrypting and decrypting all values in the 
column in memory. 

3.1 Key Server 

When a key for a (table, column) pair does not exist, 
code in the Spark executors generates a data key 
using AWS Key Management Service (KMS). AWS 
KMS generates data keys using a Customer Managed 
Key which cannot be viewed by all users. 

We store an encrypted version of the (table, column) 
key in a Golang server connected to etcd. When the 
key is needed, the Spark application will fetch the 
key from the server and send a decryption request to 
AWS KMS. This ensures that only users with 
authorization to decrypt the key can use it. 

The data key is used to encrypt or decrypt every row 
in the dataset, so we cache the plaintext in memory 
for each Spark executor. This is a potential 
vulnerability only if the user is able to read the 
memory of other Spark applications running that 
have the desired data keys. In that case, they would 
also be able to access AWS credentials as they are 
also loaded into memory. 

3.2 Encryption 

Basic AES encryption and decryption provided by 
javax.crypto. Spark UDFs are used to encrypt and 
decrypt values. 

 



 

3.3 Authorization 

Users use AWS credentials in order to access 
resources. 

spark.encryption.aws.access.key=AK... 

spark.encryption.aws.secret.key=w/4... 

Generally, users would also set the following 
variables in order to access files on S3: 

spark.hadoop.fs.s3a.access.key 

spark.hadoop.fs.s3a.secret.key 

Using the same credentials allows admins to integrate 
S3 bucket-level and file-level access control with our 
application’s table and column permissions. 

4 Implementation 
The current implementation consists of 250 lines of 
Go and 220 lines of Java and is available at 
https://github.com/luke-zhu/encrypted-spark. 

It was difficult to find a way to modify Spark without 
significantly dropping performance. For example, not 
using the Parquet file format means losing the 
Parquet vectorized reader, which is around 9x faster 
than non-vectorized file readers [15]. 

5 Evaluation 

5.1 Performance 
We compared writing 100,000,000 small strings to 
disk with encrypting and then writing the strings. 
This was run on a local Spark cluster on a Dell 
XPS13 laptop.  

The final size of the plaintext was 445 MB and the 
decrypted size was 2.5 GB. This is due to poorer 
compression of encrypted data and AES padding. 

When using a single CPU in a single-core 
environment, it took 40x longer to save the encrypted 
DataFrame  (875 seconds vs 19 seconds). When 
utilizing all 8 CPUs, it took 35 seconds to save the 
encrypted DataFrame vs 15 seconds to save the 
decrypted DataFrame. 

In both cases, CPU was the bottleneck. This suggests 
that more efficient methods for encryption and 

decryption would improve performance. Using an 
optimized C++ implementation or writing a custom 
implementation that operates on Tungsten types 
could speed things up significantly. 

The penalty for using encryption is significant but 
less than an order of magnitude large. This suggests 
that encryption could be useful in the future. 

However, there are other problems with a UDF-based 
approach that makes some queries hard to write. 

5.2 Feasibility of Automatic Encryption 

An original goal of the project was to support 
automatic encryption. In this case, the user would 
write Spark SQL code without defining any UDFs. 
We decided to drop this from the implementation 
because (1) the Parquet DataSource contained 
significant optimizations related to vectorization and 
(2) the Parquet DataSource could not be extended to 
include encryption without modifying the Spark 
source code itself. 

Without modifying the Spark source code, it’s 
possible to add functionality to Spark through the 
following interfaces: 

● DataSources 
● Optimizer rules 
● UDFs and native functions 

Unless one heavily duplicates the code in the Parquet 
DataSource while creating a new DataSource, it 
seems difficult to integrate encryption into Spark. 

Modifying the Spark source code could lead to a 
fairly performant implementation. For example, it’s 
possible to add operators and rules to the optimizer to 
determine whether encryption or decryption is 
needed. 

5.3 Other Performance Issues 

Encryption leads to performance losses in various 

● File size: Compression improves when there 
are patterns in the values. Encryption 
removes these patterns. 

● Partitioning: Spark queries can run more 
quickly by only loading data from relevant 
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files. Order preserving encryption is needed 
in order to not lose locality. 

5.4 Problems with Authorization 

In order to make key performance feasible, we 
needed to generate data keys using KMS. However, 
this means that our application must manage the 
lifecycle of these keys. We were not able to get 
access management into the application. 

A reason to use managed key services like AWS 
KMS, GCP KMS, and Azure Key Vault is that they 
come with features like key rotation. However, it 
would require a non-trivial amount of effort to 
integrate this into this system, as the data key storage 
is decoupled from the data storage. 

6 Conclusion 
Encryption in data lakes and data warehouses, if 
feasible and easy-to-integrate, could change how data 
analysis is done on PII. Our preliminary results show 
that the encryption in spark is capped by CPU and 
ends up slowing down file writes by least 2x. 

In addition, encryption in Spark requires keys to be 
kept in the Spark executors to maximize throughput. 
Our  
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