
Analyzing Encrypted Analytics
Luke Zhu

Abstract
Integrating column-level encryption into data
analytics could make it possible for analysts to
conduct queries on encrypted data by default. We
found that adding encryption slows down queries by
at least 2.5x and requires a somewhat sophisticated
key management solution.

1 Intro
Around a decade ago, big data tools like Hadoop and
Spark made analyzing TBs to PBs of data possible.
Nowadays, these tools are widely used in enterprise
[2]. While big data distributions come with features
for protecting data-at-rest and data-in-transit [3, 4],
data presented to analysts is left in plaintext. This
means that data analysts typically have access to TBs
of data, some of which is personally identifiable
information (PII) like name, address, and social
security number.

While basic authorization features exist in data lakes
to solve this problem, the amount of work needed to
ensure privacy standards are met cause corners to be
cut. Access control and ETL are two components
which require lots of time to configure:

Access Control: While data lakes and data
warehouses come with access control features,
there’s a reason to believe that they aren’t be used
properly. In 2017, 207 HDFS clusters were found
exposing 5.12 PBs of data were found through the
Shodan search engine [1]. This means that hundreds
of clusters were not configured to use basic security
features at all. Also, data lakes and data warehouses
contain hundreds of tables. Many of these tables have
dozens of columns. It’s impractical for admins to
properly configure access for each of these tables.

ETL: PII needs to manually removed or masked
before being put into the data lake or warehouse. This
means that every new table created requires a custom
ETL pipeline to be made. This is difficult when
hundreds of tables needed to be updated from dozens
of upstream databases.

To summarize, existing approaches require too much
manual work given the scale of data. As a result, we
decided to explore the potential of a more automated
solution: encrypting all data by default and auditing
all decryption requests.

The main contributions of this paper are as follows:

● Exploring the feasibility and performance
impact of integrating encryption into
Apache Spark. (Section 5)

● Describing a basic implementation of secure
encrypted Spark involving delegating
identity and access management to AWS.
(Sections 3 and 4)

2 Background

2.1 Model
We protect against employees in the company are
honest but curious. These employees may often work
with the data and incidentally see large amounts of
PII. The main change in our solution is that these
users now see encrypted data by default. If they need
to decrypt some data in order to properly do their job,
their decryption request is audited. This dissuades
employees from excessively decrypting zip codes or
decrypting fields like SSN at all.

We also aim to identify malicious employees that
want to extract inside knowledge.

Example Attack: A marketing analyst is ready to
leave for another company and wants to get the
contact information and subscription renew dates for
existing customers. To do this, they would run a SQL
query to fetch the query through the SQL dashboard
they use daily.

In our solution, the marketing employee must decrypt
the contact info and subscription renewal dates in
order to see them. As a result, these queries will be
audited. While this doesn’t prevent the employee
from running a query, the legal ramifications of doing
so effectively do.

We also consider malicious employees who want to
delete or modify. We aim to solve this issue by
maintaining compatibility with time travel (also

known as point-in-time recovery) tools and access
control features.

It should be noted that the level of privacy described
is weaker than differential privacy, which prevents
analysts from running queries after exceeding a
privacy loss budget.

2.2 Related Work

Big data distributions also come with access control
features. Enterprise distributions of data lakes and
data warehouses generally come with file and table
access control [5,6]. Some now support column-level
and row-level access control [7]. Free distributions do
not. As noted earlier, these leave time consuming
access management and ETL tasks to the user.

BigQuery supports column-level encryption functions
[8]. We explore the feasibility of automatic
encryption and decryption as a solution but do not
implement it.

Researchers in 2019 have worked on incorporating
fully homomorphic encryption into Spark [9, 10]
using the Microsoft SEAL library [11]. We focus
instead on the key management aspect in our
implementation and avoid forking Spark. Customers
often use managed services/distributions like AWS
EMR or Apache Ambari, which use their own Spark
JARs.

Open-source contributors have worked on integrating
encryption into Spark by extending the Parquet file
format [12, 13]. We survey into both format-specific
approaches and format-agnostic ones.

3 Design

Figure 1: Users send queries using the encryption
and decryption UDFs to the Spark cluster. Encrypted
data keys are stored in the key server and decrypted
through KMS.

3.1 Query Path

The user sends queries to the Spark SQL application
through traditional options like spark-shell or
spark-submit. The Spark driver schedules tasks
to be run on the executors. A query looks like the
following:

df.select(decrypt(col(“SSN”)))

 .first()

// or

spark.sql(“SELECT decrypt(SSN) FROM

df“).show()

If the user uses an encryption method like above,
SparkSQL will fetch the corresponding AES secret
key for the table-column pair or create it. The key is
used for encrypting and decrypting all values in the
column in memory.

3.1 Key Server

When a key for a (table, column) pair does not exist,
code in the Spark executors generates a data key
using AWS Key Management Service (KMS). AWS
KMS generates data keys using a Customer Managed
Key which cannot be viewed by all users.

We store an encrypted version of the (table, column)
key in a Golang server connected to etcd. When the
key is needed, the Spark application will fetch the
key from the server and send a decryption request to
AWS KMS. This ensures that only users with
authorization to decrypt the key can use it.

The data key is used to encrypt or decrypt every row
in the dataset, so we cache the plaintext in memory
for each Spark executor. This is a potential
vulnerability only if the user is able to read the
memory of other Spark applications running that
have the desired data keys. In that case, they would
also be able to access AWS credentials as they are
also loaded into memory.

3.2 Encryption

Basic AES encryption and decryption provided by
javax.crypto. Spark UDFs are used to encrypt and
decrypt values.

3.3 Authorization

Users use AWS credentials in order to access
resources.

spark.encryption.aws.access.key=AK...

spark.encryption.aws.secret.key=w/4...

Generally, users would also set the following
variables in order to access files on S3:

spark.hadoop.fs.s3a.access.key

spark.hadoop.fs.s3a.secret.key

Using the same credentials allows admins to integrate
S3 bucket-level and file-level access control with our
application’s table and column permissions.

4 Implementation
The current implementation consists of 250 lines of
Go and 220 lines of Java and is available at
https://github.com/luke-zhu/encrypted-spark.

It was difficult to find a way to modify Spark without
significantly dropping performance. For example, not
using the Parquet file format means losing the
Parquet vectorized reader, which is around 9x faster
than non-vectorized file readers [15].

5 Evaluation

5.1 Performance
We compared writing 100,000,000 small strings to
disk with encrypting and then writing the strings.
This was run on a local Spark cluster on a Dell
XPS13 laptop.

The final size of the plaintext was 445 MB and the
decrypted size was 2.5 GB. This is due to poorer
compression of encrypted data and AES padding.

When using a single CPU in a single-core
environment, it took 40x longer to save the encrypted
DataFrame (875 seconds vs 19 seconds). When
utilizing all 8 CPUs, it took 35 seconds to save the
encrypted DataFrame vs 15 seconds to save the
decrypted DataFrame.

In both cases, CPU was the bottleneck. This suggests
that more efficient methods for encryption and

decryption would improve performance. Using an
optimized C++ implementation or writing a custom
implementation that operates on Tungsten types
could speed things up significantly.

The penalty for using encryption is significant but
less than an order of magnitude large. This suggests
that encryption could be useful in the future.

However, there are other problems with a UDF-based
approach that makes some queries hard to write.

5.2 Feasibility of Automatic Encryption

An original goal of the project was to support
automatic encryption. In this case, the user would
write Spark SQL code without defining any UDFs.
We decided to drop this from the implementation
because (1) the Parquet DataSource contained
significant optimizations related to vectorization and
(2) the Parquet DataSource could not be extended to
include encryption without modifying the Spark
source code itself.

Without modifying the Spark source code, it’s
possible to add functionality to Spark through the
following interfaces:

● DataSources
● Optimizer rules
● UDFs and native functions

Unless one heavily duplicates the code in the Parquet
DataSource while creating a new DataSource, it
seems difficult to integrate encryption into Spark.

Modifying the Spark source code could lead to a
fairly performant implementation. For example, it’s
possible to add operators and rules to the optimizer to
determine whether encryption or decryption is
needed.

5.3 Other Performance Issues

Encryption leads to performance losses in various

● File size: Compression improves when there
are patterns in the values. Encryption
removes these patterns.

● Partitioning: Spark queries can run more
quickly by only loading data from relevant

https://github.com/luke-zhu/encrypted-spark

files. Order preserving encryption is needed
in order to not lose locality.

5.4 Problems with Authorization

In order to make key performance feasible, we
needed to generate data keys using KMS. However,
this means that our application must manage the
lifecycle of these keys. We were not able to get
access management into the application.

A reason to use managed key services like AWS
KMS, GCP KMS, and Azure Key Vault is that they
come with features like key rotation. However, it
would require a non-trivial amount of effort to
integrate this into this system, as the data key storage
is decoupled from the data storage.

6 Conclusion
Encryption in data lakes and data warehouses, if
feasible and easy-to-integrate, could change how data
analysis is done on PII. Our preliminary results show
that the encryption in spark is capped by CPU and
ends up slowing down file writes by least 2x.

In addition, encryption in Spark requires keys to be
kept in the Spark executors to maximize throughput.
Our

[1] https://blog.shodan.io/the-hdfs-juggernaut/

[2]
https://www.forbes.com/sites/louiscolumbus/2018/12
/23/big-data-analytics-adoption-soared-in-the-enterpri
se-in-2018/#1e5df70c332f

[3]
https://docs.aws.amazon.com/emr/latest/Management
Guide/emr-data-encryption-options.html

[4]
https://docs.cloudera.com/HDPDocuments/HDP3/H
DP-3.1.0/configuring-hdfs-encryption/content/hdfs_e
ncryption_overview.html

[5]
https://docs.databricks.com/administration-guide/acce
ss-control/table-acls/index.html

[6]
https://cloud.google.com/bigquery/docs/access-contro
l

[7]
https://www.qubole.com/blog/data-governance-for-sp
arksql/

[8]
https://cloud.google.com/bigquery/docs/reference/sta
ndard-sql/aead_encryption_functions

[9]
https://github.com/SpiRITlab/SparkFHE-Examples/w
iki

[10]
https://www.slideshare.net/databricks/encrypted-com
putation-in-apache-spark

[11] https://github.com/Microsoft/SEAL

[12]
https://databricks.com/session/efficient-spark-analyti
cs-on-encrypted-data

[13]
https://issues.apache.org/jira/browse/PARQUET-117
8

[14]
https://www.2ndwatch.com/blog/popular-aws-produc
ts-2018/

[15]
https://spoddutur.github.io/spark-notes/second_gener
ation_tungsten_engine.html

https://blog.shodan.io/the-hdfs-juggernaut/
https://www.forbes.com/sites/louiscolumbus/2018/12/23/big-data-analytics-adoption-soared-in-the-enterprise-in-2018/#1e5df70c332f
https://www.forbes.com/sites/louiscolumbus/2018/12/23/big-data-analytics-adoption-soared-in-the-enterprise-in-2018/#1e5df70c332f
https://www.forbes.com/sites/louiscolumbus/2018/12/23/big-data-analytics-adoption-soared-in-the-enterprise-in-2018/#1e5df70c332f
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.0/configuring-hdfs-encryption/content/hdfs_encryption_overview.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.0/configuring-hdfs-encryption/content/hdfs_encryption_overview.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.0/configuring-hdfs-encryption/content/hdfs_encryption_overview.html
https://docs.databricks.com/administration-guide/access-control/table-acls/index.html
https://docs.databricks.com/administration-guide/access-control/table-acls/index.html
https://cloud.google.com/bigquery/docs/access-control
https://cloud.google.com/bigquery/docs/access-control
https://www.qubole.com/blog/data-governance-for-sparksql/
https://www.qubole.com/blog/data-governance-for-sparksql/
https://cloud.google.com/bigquery/docs/reference/standard-sql/aead_encryption_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/aead_encryption_functions
https://github.com/SpiRITlab/SparkFHE-Examples/wiki
https://github.com/SpiRITlab/SparkFHE-Examples/wiki
https://www.slideshare.net/databricks/encrypted-computation-in-apache-spark
https://www.slideshare.net/databricks/encrypted-computation-in-apache-spark
https://github.com/Microsoft/SEAL
https://databricks.com/session/efficient-spark-analytics-on-encrypted-data
https://databricks.com/session/efficient-spark-analytics-on-encrypted-data
https://issues.apache.org/jira/browse/PARQUET-1178
https://issues.apache.org/jira/browse/PARQUET-1178
https://www.2ndwatch.com/blog/popular-aws-products-2018/
https://www.2ndwatch.com/blog/popular-aws-products-2018/
https://spoddutur.github.io/spark-notes/second_generation_tungsten_engine.html
https://spoddutur.github.io/spark-notes/second_generation_tungsten_engine.html

