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Abstract — High-throughput experiments such as gene expression microarrays in the life sciences result in very large datasets. In 
response, a wide variety of visualization tools have been created to facilitate data analysis. A primary purpose of these tools is to 
provide biologically-relevant insight into the data. Typically visualizations are evaluated in controlled studies that measure user 
performance on predetermined tasks. To evaluate and rank bioinformatics visualizations based on real world data analysis 
scenarios, we need a more relevant evaluation method that focuses on data insight. This paper presents several characteristics of 
insight that enable us to recognize and quantify it. Ideally, users want maximum insight from the data in the least possible time. 
Based on this, we evaluate five popular microarray visualization tools on the amount and types of insight they provide and the time it 
takes to reach the insight. Though we use this technique to analyze bioinformatics visualizations, it can be applied in other domains. 

Index Terms— H.5.2 User Interfaces - Evaluation/methodology, Graphical user interfaces (GUI), I.6.9 Visualization - Information 
visualization, Visualization systems and software, Visualization techniques and methodologies  
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1 INTRODUCTION

iolgists use high-throughput experiments such as mi-
croarray to answer complex biological research ques-
tions. Experiments, such as gene-expression microar-

rays [1], [2] result in datasets that are very large. The data-
sets usually contain information about several thousand 
genes. Scientists use these datasets to infer complex interac-
tions between genes and proteins. But due to its magnitude, 
microarray data is prohibitively difficult to analyze without 
the help of computational methods.  
 The advent of high-throughput experiments is causing a 
shift in the way biologists do research, a shift away from 
simple reductionist testing on a few variables towards sys-
tems-level exploratory analysis of 1000s of variables simul-
taneously [3]. Hence, they use various data visualizations to 
derive biologically relevant insights. The main purpose in 
using these visualizations is to gain insight into the ex-
tremely complex and dynamic functioning of living cells. In 
response to these needs, a large number of visualization 
tools targeted at this domain have been developed [4], [5], 
[6]. 

However, in collaborations with biologists, we received 
mixed feedback and reviews about these tools. First, with a 
wide variety of available tools, there is significant confusion 
among the biologists about which tool to use. Second, be-
cause of the open-ended and exploratory nature of the 
tasks, it is unclear how and if these tools meet their needs in 
providing insight. 

The ultimate goal of the research reported in this paper 
is to evaluate some of the popular microarray data visuali-
zation tools, such as Spotfire® [7]. The key research ques-
tions are: How successful are these tools in assisting the 
biologists in arriving at domain-relevant insights? How do 
various visualization techniques affect users’ perception of 
data? How does user’s background affect the tool usage?  

The immediate goal is to devise an evaluation method-
ology that better reflects the needs of the bioinformatics 
data analysis scenario.  Typically, visualization evaluations 

have focused on controlled measurements of user perform-
ance and accuracy on predetermined tasks [8], [9]. How-
ever, to answer these research questions requires an evalua-
tion method that more closely matches the exploratory na-
ture of the biologists’ goals. The main consideration for any 
researcher is discovery. Arriving at an insight often sparks 
the critical breakthrough that leads to discovery: suddenly 
seeing something that previously passed unnoticed, or see-
ing something familiar in a new light. Ultimately the real 
function of any visualization and analysis tool is to make it 
easier for an investigator to glean insight, whether from 
their own data or from external databanks. Thus, our pri-
mary focus is on insight. We devise and deploy a novel 
insight-based approach to visualization evaluation that can 
be generally applied in other data visualization domains. 

2 RELATED WORK 
A large number of studies have been conducted to measure 
effectiveness of visualizations using different evaluation 
methods.  
Controlled experiments: Many studies have evaluated 
visualizations through rigorous controlled experiments [8], 
[9]. In these studies, typical independent variables control 
aspects of the tools, tasks, data, and participant classes. De-
pendent variables include accuracy and efficiency meas-
ures. Accuracy measures include precision, error rates, 
number of correct and incorrect responses, whereas effi-
ciency includes measures of time to complete predefined 
benchmark tasks. E.g., [10] compares three different visu-
alization systems on different tasks in terms of solution 
time and accuracy.  
Usability testing: Usability tests typically evaluate visuali-
zations to identify and solve user interface problems. 
Methods involve observing participants as they perform 
designated tasks using a ‘think aloud’ protocol, noting the 
usability incidents that may suggest incorrect use of the 
interface, and comparing results against a predefined us-
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ability specification [11]. Refer to [12] for an example of a 
professional usability study of a visualization.  
Metrics, Heuristics, and Models: Different from empirical 
evaluations are inspections of user interfaces by experts, 
such as with heuristics [13]. Examples of specific metrics for 
visualizations include expressiveness and effectiveness cri-
teria [14], data density and data/ink [15], criteria for repre-
sentation and interaction [16], high-level design guidelines 
[17], principles based on pre-attentive processing and per-
ceptual independence [18], and rules for effectiveness of 
various visual properties [19].  Cognitive models, such as 
CAEVA [20], can be used to simulate visualization usage 
and thereby examine the low-level effects of various visu-
alization techniques. 
Longitudinal and Field Studies: A longitudinal study of 
information visualization adoption by data analysts is pre-
sented in [21]. Their work suggests advantages when visu-
alizations are used as complementary products rather than 
stand alone products. [22] examines users’ long-term ex-
ploratory learning of new user interfaces, with ‘eureka re-
ports’ to record learning events.  

Thus, a range of evaluation methods has been used to 
measure effectiveness of visualizations [23]. In the litera-
ture, controlled experiments are the most prevalent for 
identifying and validating more effective visualizations. 
Unfortunately, these studies evaluate visualizations based 
only on a set of predefined tasks. Test subjects are in-
structed to use the visualizations to find answers to specific 
questions that are given by the test administrators. While 
this approach is useful, it is too narrow to evaluate the 
benefits of open-ended discovery as needed by biologists.  

A primary purpose of visualization is to generate insight 
[24]. A measure of an effective visualization is its ability to 
generate unpredictable new insights that might not be the 
result of a preplanned benchmark task. Visualization can 
enable biologists to not only find answers but to also find 
questions, to identify new hypotheses. To evaluate this ca-
pability, visualizations could be measured in terms of in-
sight generation. Hence, we developed an evaluation pro-
tocol that focuses on recognition and quantification of in-
sights gained from actual exploratory use of visualizations 
[38].  This paper presents a detailed explanation and dis-
cussion of the methodology, as well as detailed results of 
applying the method to bioinformatics visualizations. 

3  PILOT STUDY 
The main challenge we faced in designing the experiment 
was precisely defining insight and how to measure it. The 
word ‘insight’ in ordinary usage is vague and can mean 
different things to different people. However, for the pur-
pose of our study we needed this term to be quantifiable 
and meaningfully reproducible. To do this we undertook 
an initial pilot study to observe how users’ recognized and 
categorized information obtained from microarray data 
using visualization tools. We used both GeneSpring® [25] 
and Spotfire® [7] to ascertain that these commercial tools 
were not too difficult to learn and could be used by novice 
as well as expert users. 

As the pilot experiment was exploratory in nature, we 

presented no strict protocol as to how users ought to pro-
ceed. We recruited five subjects at our institute to partici-
pate. As our recruits had no prior experience using these 
particular tools, we reduced their initial learning time by 
offering a brief introduction to the tool they would use 
along with a summary of the different visualization tech-
niques provided by the tool. Users were encouraged to 
think aloud and report any findings they had about the 
dataset. Pilot participants were supplied two datasets to 
work with, a table containing fake data that contained in-
formation about just ten genes, and the Lupus Dataset used 
in the final experiment (Section 4.1). We selected the 
smaller dataset for training as we believed this would facili-
tate users becoming familiar with the visualization tech-
niques faster. Once comfortable with using the visualiza-
tion tool, users were instructed to move onto the Lupus 
data.  

Due to the volume and rapidity of observations re-
ported, we concluded that we needed to record any future 
sessions on videotape. We also discovered that the users 
grew weary analyzing the practice dataset, despite us tell-
ing them that it was just a learning aid. They tended to 
spend too much time on it and, by the time they began 
looking at actual data, they were already fatigued. We 
found that our test subjects could learn a visualization 
technique just as quickly from real data, hence, we decided 
to use just the real data for final experiments. From the us-
ers’ comments we recognized the following quantifiable 
characteristics of ‘insight’. 

3.1 Insight Characteristics 
To measure insights gained from visualization, a rigorous 
definition and coding scheme is required. We recognized in 
the pilot that we could capture and characterize specific 
individual insights as they occurred in participants’ visual 
data analysis process.  This provided more detailed infor-
mation about the insight capabilities of the tools than sub-
jective measures from post-experiment surveys.   

We define an insight as an individual observation about 
the data by the participant, a unit of discovery.  These can 
be recognized in a think-aloud protocol. The following 
quantifiable characteristics of each insight can then be en-
coded for analysis.  We applied this scheme in the main 
experiment. Although we present them here in the context 
of biological and microarray data, we believe that this can 
be applied to other data domains as well.  The characteris-
tics of each insight are: 

 
Fact: The actual finding about the data. We counted only 

distinct facts for each participant. 
Time: The amount of time taken to reach the insight. Ini-

tial training time is not included. 
Domain Value: The value, importance, or significance 

of the insight.  Simple observations such as “Gene A is high 
in experiment B” are fairly trivial; whereas, more global 
observations of a biological pattern such as “deletion of the 
viral NS1 gene causes a major change in genes relating to 
cytokine expression” are more valuable.  The domain value 
is coded on a scale of 1 to 5 by a biology expert familiar 
with the results of the data. In general, trivial observations 
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earn 1-2 points, insights about a particular process earn an 
intermediate value of 3, and insights that confirm, deny, or 
create a hypothesis earn 4 or 5 points. 

Hypotheses: Some insights lead users to identify a new 
biologically-relevant hypothesis and direction of research. 
These are most critical because they suggest an in-depth 
data understanding, relationship to biology, and inference.  
They lead biologists toward ‘continuing the feedback loop’ 
of the experimental process, in which data analysis feeds 
back into design of the next experimental iteration [26]. 

Breadth vs. Depth: Breadth insights present an over-
view of biological processes, but not much detail; e.g., 
“there is a general trend of increasing variation in the gene 
expression patterns”. Depth insights are more focused and 
detailed; e.g., “gene A mirrors the up-down pattern of gene 
B, but is shifted in time”.  This also is coded by a domain 
expert. 

Directed vs. Unexpected:  Directed insights are those 
that answer a specific question that the user was searching 
for.  Unexpected insights are additional exploratory or ser-
endipitous discoveries that were not specifically being 
searched for.  This distinction is recognized by asking par-
ticipants to identify specific questions they want to explore 
about the dataset at the beginning of the trial. 

Correctness: Some insights are incorrect observations 
that result from misinterpreting the visualization.  This is 
coded by an expert biologist and visualization expert to-
gether. 

Category: Insights are grouped into four main catego-
ries: overview (overall distributions of gene expression), 
patterns (identification or comparison across data attrib-
utes), groups (identification or comparison of groups of 
genes), and details (focused information about specific 
genes).  These common categories were identified from the 
pilot experiment results after insights were collected. 

4  EXPERIMENT DESIGN 
The aim of the main study is to evaluate five popular bioin-
formatics visualization tools in terms of the insight that they 
provide to the users. A 3x5 between-subjects design exam-
ines these two independent variables: 
 1. Microarray dataset, 3 treatments 
 2. Microarray visualization tool, 5 treatments 

4.1 Microarray Datasets 
To examine a range of data scenarios, we used data from 
three common types of microarray experiments. The data-
sets are all quantitative, multi-dimensional data. Values 
represent a gene’s measured activity level (or gene expres-
sion) with respect to a control condition. Hence, higher 
(lower) values indicate an increased (decreased) gene activ-
ity level. Since our study is focused on the interactive visu-
alization portion of data analysis, the datasets were pre-
processed, normalized, pre-filtered, and converted to the 
required formats (as discussed in [27] and [28]) in advance. 
In general, the biologists’ goal is to identify and understand 
the complex interactions among the genes and conditions, 
essentially to reverse engineer the genetic code. The follow-

ing three datasets were used. 
 
1) Time-series dataset: Users were given an unpublished 
dataset from Karen Duca’s lab [29]. HEK293 cells, a human 
embryonic kidney cell line, were infected with the 
A/WSN/33 strain of influenza virus in vitro at an MOI of 5. 
At defined time points across the entire viral replication 
cycle in vitro, mRNA was extracted from infected and 
mock-infected cultures. The values in the columns were the 
log2 of the normalized ratios of experimental signal to con-
trol signal. The dataset used for analysis had 1060 rows  
(genes) over 5 time points.   Two additional columns repre-
sent the gene name and standard ID. 

Table 1: Time-series dataset used in the experiment 
GeneName GenBankId 1.5 Hr 4 hr 6 Hr 8 Hr 12 Hr 
aquaporin 4 AA001003 1.54 -0.21 1.49 -0.12 0.96 
… … … … … … … 

 

2) Viral dataset: Part of a published dataset from Michael 
Katze’s lab [30] was given to users. A549 cells, a human 
lung epithelial cell line, were infected with one of three in-
fluenza viruses in vitro (wild type A/PR/8/34, recombi-
nant strain of PR8 with the NS1 partially deleted, called 
NS1 (1-126), recombinant strain derived from PR8 with the 
NS1 gene completely deleted, called delNS). Other than in 
the NS1 gene, all three viruses are identical. At 8 hours post 
infection, mRNA was extracted from infected and mock-
infected cultures. The dataset used for analysis had 3 col-
umns (representing the 3 viral conditions) and 861 rows 
(genes).  Two additional columns represent the gene name 
and standard ID. 

Table 2: Viral dataset used in the experiment 
Name Description wt PR8 NS1 (1-126) delNS1 
ADCY9 adenylate-cyclase-9 0.54 0.91 5.8 
… … … … … 

 

3) Lupus dataset: Participants were presented a subset of 
published data from Timothy Behren’s lab [31]. In this 
study, after blood draw, peripheral blood mononuclear 
cells (PBMCs), comprising monocytes/macrophages, B and 
T lymphocytes, and NK cells, were isolated from control 
and Systemic Lupus Erythematosus (SLE) samples. mRNA 
was harvested for expression profiling using Affymetrix 
technology [32]. The column values represented expression 
values (average difference or AD) for each gene. Scaling 
was performed to allow comparison between chips. The 
dataset had 90 columns (consisting of gene expression from 
48 SLE samples and 42 healthy control samples) and 170 
rows (genes). Two additional columns represent the gene 
name and standard ID. 

Table 3: Lupus dataset used in the experiment 
Accession # Gene Ctrl 1 … Ctrl 42 SLE 1 … SLE 48
AB008775 Aquaporin 9 -63.7 … 100.1 4418. … 3433.2 
… … … … … … … … 
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4.2 Microarray Visualization tools 
For practical reasons, we limited this study to five microar-
ray visualization tools. We chose the tools based on their 
popularity and availability. We attempted to select a set of 
tools that would span a broad range of analytical and visual 
capabilities and techniques. Cluster/Treeview (Cluster-
view) [33], TimeSearcher [34], and Hierarchical Clustering 
Explorer (HCE) [35] are free tools, while Spotfire® [7] and 
GeneSpring® [25] are commercial tools.  

Clusterview (Figure 1) uses a heat-map visualization for 
both data overview and details. A compressed heat-map 
provides an overview of all values in the dataset, in row-
column format. Users can select a part of the overview to 
study in more detail.  It is standard practice in bioinformat-
ics to visually encode increased gene-expression values 
with a red brightness scale, decreased gene-expression val-
ues with a green brightness scale, and no-change as black. 
As a slight variation, some tools use a continuous red-
yellow-green scale with yellow in the no-change region.  

 
 
 
 
 
 
 
 
 
 

 

Figure 1: Cluster/Treeview (Clusterview) [33] 
 

TimeSearcher (Figure2) uses a parallel-coordinate visu-
alization for data overview. Line graphs and detailed in-
formation are also provided for each individual data entity. 
The views are tightly coupled using the concept of ‘brush-
ing and linking’, selecting a gene in one view highlights it 
in all views. TimeSearcher provides dynamic query widgets 
directly in the parallel-coordinate overview to support in-
teractive filtering based on user specified time-series pat-
terns. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: TimeSearcher [34] 
 
HCE (Figure 3) provides several different visualizations: 

scatter plots, histograms, heat maps, and parallel-
coordinate displays for data. HCE’s primary display uses 
dendrogram visualizations to present hierarchical cluster-
ing results. This clusters similar data items near each other 

in the tree display. HCE also provides histograms and scat-
ter plots for data analysis. In a multidimensional dataset, 
the number of scatterplots possible is very large. HCE in-
troduces a new concept of ‘rank by feature’ [36] to allow 
users to quickly find interesting Histograms and Scatter-
plots.  The visualizations are tightly coupled using the in-
teractive concept of brushing and linking. Users can ma-
nipulate various properties of the visualizations and also 
zoom into areas of interest.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Hierarchical Clustering Explorer (HCE) [35] 
 
Spotfire® (Figure 4) offers a wide range of visualiza-

tions: scatter plots, bar graphs, histograms, line charts, pie 
charts, parallel coordinates, heat maps, and spreadsheet 
views. Spotfire® presents clustering results in multiple 
views, placing each cluster in a separate parallel coordinate 
view. The visualizations are linked for brushing. Selecting 
data items in any view shows feedback in a common detail 
window. Users can zoom, pan, define data ranges, and cus-
tomize visualizations. The fundamental interaction tech-
nique in Spotfire® is the dynamic query sliders, which in-
teractively filter data in all views. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Spotfire® [7]  
 
GeneSpring® (Figure 5) provides the largest variety of 

visualizations for microarray data analysis: parallel coordi-
nates, heat-maps, scatter plots, histograms, bar charts, block 
views, physical position on genomes, array layouts, path-
ways, ontologies, spreadsheet views, and gene-to-gene 
comparison. We could not use some of the visualizations, 
such as physical position and array layout views, for this 
experiment due to lack of sufficient data. The visualizations 
are linked for brushing. Users can manipulate the visualiza-
tions in several ways e.g., zooming, customizing visualiza-
tions by changing the color, range, etc.  GeneSpring® also 
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includes data clustering capabilities. 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 5: GeneSpring® [25]  

 
 

Table 4: Summarizes the visualization and interaction tech-
niques supported by each tool (O+D = Overview+Detail; DQ = 

Dynamic Queries). 
 

Tool Visual Representations Interactions
Cluster/ 
Treeview  

Heat-map, Clustered heat-map O+D 

Time-
Searcher 

Parallel coordinates, line graph Brushing, 
O+D, DQ 

HCE  Cluster dendrogram, parallel coor-
dinates, heat-map, scatterplot, 
histogram  

Brushing, 
Zooming, 
O+D, DQ 

Spotfire® 7.2  
Functional 
Genomics 
 

Parallel coordinates, heat-map, 
scatterplots (2D/3D), histogram, 
bar/pie chart, tree view, spread-
sheet view, Clustered parallel coor-
dinates 

Brushing, 
Zooming, 
O+D, DQ 

GeneSpring® 
5.0 
 

Parallel coordinate, heat-map, scat-
terplots (2D/3D), histogram, bar 
chart, block view, physical position 
view, array layout view, pathway 
view, spreadsheet view, compare 
gene to gene, Clusterested parallel 
coordinates 

Brushing, 
Zooming 
 

 

4.3 Participants 
30 test subjects volunteered from the university commu-
nity. We allotted six users per tool, with two per dataset per 
tool. We required all users to have earned at least a Bache-
lor’s degree in a biological field and be familiar with mi-
croarray concepts. To prevent undue advantage and also to 
measure learning time, we assigned users to a tool that they 
had never used before. Based on their profiles, the users fit 
into one of three categories summarized in Table 5. 

Table 5: Participant background and number for each category 

Category Participant Background N 
Domain 
Expert 

Senior researchers with extensive experi-
ence in microarray experiments and microar-
ray data analysis.  Possess a Ph.D. in a 
biological field. 

10 

Domain 
Novice 

Lab technicians or graduate student re-
search assistants, having an M.S. or B.S. in 
a biological field.  Some experience with 
microarray data analysis. 

11 

Software 
Developers 

Professionals who implement microarray 
software tools. Have an M.S. in a biological 
field and also M.S. in computer science. 

9 

4.4 Protocol and Measures 
To evaluate these tools in terms of their ability to generate 
insight, a new protocol and set of measures is used that 
combines elements of the controlled experiment and usabil-
ity testing methodologies. This approach seeks to identify 
individual insight occurrences as well as overall amount of 
learning while participants analyze data in an open-ended 
think-aloud format.  Also, we decided to focus on new us-
ers of the tools with only minimal tool training.  We have 
found that success in the initial usage period of a tool is 
critical for tool adoption by biologists. 

Each user was assigned one dataset and one tool.  Before 
starting their analysis, users were given a background de-
scription about the dataset. To reduce initial learning time, 
the users were given a 15-minute tutorial about the visuali-
zation and interaction techniques of the tool. Users then 
listed some analysis questions they would typically ask 
about such a dataset. Then, they were instructed to con-
tinue to examine the data with the tool until they felt that 
they would not gain any additional insight. The entire ses-
sion was videotaped for later analysis. Users were allowed 
to ask the administrator about using the tool if they could 
not understand a feature.  The training in this protocol was 
intended to simulate how biologists often learn to use new 
tools from their colleagues.  

While they were working, users were asked to comment 
on their observations, inferences and conclusions. Ap-
proximately every 10-15 minutes, users were asked to esti-
mate how much of the total potential insight they felt they 
had obtained so far about the data, on a scale of 0–100%. 
When they felt they were finished, users were asked to as-
sess their overall experience with the tool, including any 
difficulties or benefits.  

Later, we analyzed the videotapes to identify and codify 
all individual occurrences of insights, as described in the 
next subsection.  Table 6 summarizes the dependent vari-
ables. 

Table 6: Dependent measures 

1 User’s initial questions about the dataset 
2 Total time spent with the tool 
3 Amount learned (as a percentage), periodic and final  
4 List of insights and characteristics 
5 Visualization techniques used  
6 Usability issues  
7 Participant demographics 

5  RESULTS 
Results are presented in terms of users’ data questions, in-
sights, visualization usage, and user background. 

5.1 Initial Questions 
At the start of each session, users were requested to for-

mulate questions about the data that they expected the 
visualization to answer (Table 7). Almost all the users 
wanted to know how the gene expression changed and its 
statistical significance with each experimental condition, 
different expression patterns, and obtain pathway informa-
tion and known literature for the genes of interest. More 
biologically specific questions focused on location of genes 
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of interest on chromosomes and pathways. They said that it 
would be valuable to know what pathways show correla-
tions. 

 The users working with time series data had questions 
that focused more on time related changes in gene expres-
sion. Most expert users were interested in finding a set of 
genes that responded earlier to a treatment and was later 
followed by other genes. Rather than analyzing information 
for individual patients, the Lupus dataset users were more 
interested in comparing the overall expression between 
control and lupus groups. Most novice users wanted to 
start by taking averages of both the groups to see what 
genes changed the most from one group to another.  

 
Table 7: Lists all the data questions asked by the participants. The 

number of participants who asked a particular question is also listed. 

 Information participants wanted from the data Num. 
Questions for Time series dataset 
1 Change in overall expression with time 10/10 
2 Different patterns of expression 10/10 
3 Genes that responded early to a treatment and 

were later followed by other genes 
5/10 

4 Functional details of genes showing high change  2/10 
5 Genes showing similar expression pattern to a 

specific gene of interest 
1/10 

6 Relate change in gene expressions to physiologi-
cal changes in the cells 

1/10 

7 Pathway information for genes having similar 
expression patterns  

2/10 

8 Relate gene expressions to their position on 
chromosomes  

1/10 

9 Retrieve known information for selected genes 10/10 
Questions for Viral dataset 
10 Difference in overall expression for three viruses 10/10 
11 Genes that show similar/different behavior to the 

experimental hypothesis 
3/10 

12 Expression patterns different from the hypothesis 3/10 
13 Genes having high or low expression for each 

viral strain 
10/10 

14 Different patterns of gene expression 10/10 
15 Pathway information for genes showing a particu-

lar expression pattern 
3/10 

16 Correlations between different pathways 3/10 
17 Chromosomal location of genes that show similar 

change 
3/10 

18 Functional information of selected genes 1/10 
19 Statistical significance in overall changes between 

different viral strains 
1/10 

Questions for Lupus dataset 
20 Difference in expression between 2 groups 10/10 
21 Statistical significance of difference between 2 

groups 
3/10 

22 Different patterns of gene expression 10/10 
23 Relate expressions to severity of disease 1/10 
24 The range of gene expression for each group 1/10 
25 Statistical significance of variability of expression 

for genes in each group 
4/10 

26 In case of variability, if this is based on patients’ 
age, sex, race, etc. 

1/10 

27 Analyses such as list all genes that show more 
than 50% increase from control to lupus patients 

1/10 

28 A list of housekeeping genes to evaluate experi-
ment results 

1/10 

29 Patient characteristics such as those who used 
some drug vs. those who did not use any drug, 
males vs. females etc. 

1/10 

30 Behavior of Immune pathway genes  2/10 
31 Calculate average expression for each group 6/10 

 
There were collectively 31 distinct questions for all the 
datasets. It was not possible to answer some of the ques-
tions during the experiment, due to insufficient data. 
GeneSpring® (31/31) and Spotfire® (27/31) can potentially 
address most of the questions posed by the participants. 
Clusterview (11/31), TimeSearcher (14/31), and HCE 
(15/31) answer more specific questions. 

5.2 Evaluation on Insight Characteristics 
We list here measures for each characteristic of the insight 
described earlier. Since this evaluation method is more 
qualitative and subjective than quantitative, and the num-
ber of participants is limited, general comparison of ten-
dencies in the results is most appropriate (Figure 6 and Ta-
ble 6).  However, we include some statistical analysis that 
provides useful indicators. 

 
Facts: We counted the total number of facts i.e. distinct 

insights about the data for each participant. As shown in 
figure 6, the count of insights was highest for Spotfire® and 
lowest for HCE.   

Time: The following two temporal characteristics sum-
marize the time to acquire insights: 

Average Time to First Insight: The average time into 
the session, in minutes, of the first insight occurrence of 
each participant.  Lower times suggest that users are able to 
get immersed in the data more quickly, and thus may indi-
cate a faster tool learning time. The participants using Clus-
terview took a very short time to reach first insight. Time-
Searcher and Spotfire® were also fairly quick to first in-
sight, while HCE and GeneSpring® took twice as long on 
average.  Clusterview users took significantly less time 
(p<0.01) to reach the first insight than the other users, while 
GeneSpring® took significantly longer (p<0.01).  

Average Total Time: The average total time each 
user spent using the tool until they felt they could gain no 
more insight.  Lower times indicate a more efficient tool, or 
possibly that users gave up on the tool due to lack of fur-
ther insight. In general, Clusterview users finished quickly 
while GeneSpring® users took twice as long. 

Total Domain Value:  the sum of the domain value of 
all the insight occurrences. Insight value was highest for 
Spotfire®. Participants using Spotfire® gained significantly 
more insight value than with GeneSpring® (p<0.05).  
Though, numeric value was lowest for HCE, there were no 
significant differences between Spotfire® or other tools and 
HCE due to high variance in the performance of HCE users, 
explained later. 

Hypotheses:  Only a few insights led users to new bio-
logical hypotheses. These insights are most vital because 
they suggest future areas of research and result in real sci-
entific contributions. For example, one user commented 
that parts of the time series data showed a regular cyclic 
behavior. He searched for genes that showed similar behav-
ior at earlier time points, but could not find any. He offered 
several alternative explanations for this behavior related to 
immune system regulation, and said that it would compel 
him to perform follow-up experiments to attempt to isolate 
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this interesting periodicity in the data. For viral dataset two 
users commented that there were two patterns of gene ex-
pression that showed negative correlation. They inquired 
whether this means that the transcription factors of these 
genes have inhibitory or stimulatory effects on each other. 
They said that they wanted more information about the 
functions and pathways these genes belong to and relate all 
this biology to the data. Spotfire® resulted in one hypothe-
sis for each dataset, thus a total of three.  Clusterview also 
led users to a hypothesis for the Viral and Lupus datasets. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Count of insights, average time to first insight, aver-
age total time for each tool, and total insight value, /  indi-
cates significantly better/worse performance differences. Y-axis 
arrows indicate direction of better performance. 

 

Breadth vs. Depth: Though we had initially thought this 
to be an interesting criterion, on data analysis we found 
that most user comments were of the type ‘breadth’. 

Directed vs. Unexpected Insights: The participants us-
ing HCE with the Viral dataset noticed several facts about 
the data that were completely unrelated to their initial list 
of questions. Clusterview provided a few unexpected in-
sights from the Lupus dataset. TimeSearcher provided un-
expected insights about the time series data, whereas Spot-
fire® had one each for time series and Lupus 

Incorrect Insights (Correctness):  HCE proved very 
helpful to users working with the viral dataset. However, 
users working with the time series or Lupus datasets did 
not gain much insight from the data. When prompted to 
report their data findings, they stated some observations 
about the data that were incorrect.  None of the other tools 
resulted in incorrect findings. 

Table 6: shows the total number of unexpected insights, hy-
potheses generated, and incorrect insights from the insight 

occurrences for each tool 

      Cluster        Time-                   Gene- 
       View        Searcher         HCE       Spotfire®     Spring® Visualization 

Tool 
Unexpected 

Insights 
Hypotheses 
Generated 

Incorrect 
Insights 

Clusterview 3 2 0 
TimeSearcher 3 1 0 
HCE 5 1 2 
Spotfire® 2 3 0 
GeneSpring® 0 0 0 
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Together, higher total value and count indicate a more 

effective tool for providing useful insight. Lower time to 
first insight indicates a faster learning curve for a tool. Ide-
ally a visualization tool should provide maximum amount 
of information in shortest possible time.  

Overall, Spotfire® resulted in the best general perform-
ance, with higher insight levels and rapid insight pace.  
Clusterview and TimeSearcher appear to specialize in rapid 
insight generation, but to a limit.  Using GeneSpring®, us-
ers could infer the overall behavior of the data and the pat-
terns of gene expressions. However because the users 
found the tool complicated to use, most of them were 
overly consumed with learning the tool rather than analyz-
ing the data.  They had difficulty getting beyond simple 
insights. HCE’s strengths will become clear in the next two 
sections. 

5.3 Insight per Dataset 
Now we compare the tools within each dataset. 

Time series data:  In general, Spotfire® and Time-
Searcher performed the best of the 5 tools in this dataset.  
Participants using Spotfire® and TimeSearcher felt they 
learned significantly more (p<0.05) from time series data 
than the other tools.  Participants using Spotfire® felt they 
learned more from the data (73%) compared to Time-
Searcher (53%). Both Spotfire® and TimeSearcher had 
nearly equivalent performance in terms of value and num-
ber of insights. Time to first insight was slightly lower for 
TimeSearcher (4 min) as compared to Spotfire® (6 min). At 
the bottom, participants using HCE took significantly 
longer (p<0.01) to reach the first insight than the other 
tools. Participants using GeneSpring® took significantly 
longer (p<0.05) than TimeSearcher and Clusterview.  

Virus data:  HCE proved to be the best tool for this data-
set. Participants using HCE had better performance in 
terms of insight value as compared to other users. How-
ever, there were no significant differences between the 
other users. HCE provided 5 unexpected insights that were 
different than the initial information users were searching 
for in this dataset. 
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Lupus data: Participants using Clusterview and Spot-
fire® had more insight value as compared to the other tools 
(p<0.05) in this data 

5.4 Tools vs. Datasets 
This section examines individual tools across the three 
datasets.  TimeSearcher and HCE had interesting differ-
ences among the datasets (Figure 7), while the other tools 
were well rounded. 

TimeSearcher: Participants using TimeSearcher per-
formed comparatively best with the time series data as 
compared to the other two datasets. With time series data, 
they had over double the value and number of insights 
than the participants using Viral and Lupus datasets. 

HCE: In contrast, participants using HCE did best on the 
Viral dataset.  On Viral dataset, they had a significant better 
performance advantage on insight value (p<0.01), number 
of insights (p<0.05) and time to first insight (p<0.05) as 
compared to the other datasets. They also felt they learned 
much more from the data. Participants using Lupus data 
spent significantly less overall time with the tool (p<0.05) as 
they felt they could not learn much from the data using 
HCE. 
 

 
 

 

 

 

 

 

 

 

Figure 7: TimeSearcher and HCE specialize in the Time series 
and Viral datasets respectively. 

5.5 Insight Categories 
Though a wide variety of insights were made, most could 
be categorized into a few basic groups. Table 7 summarizes 
the number of each type of insight by tool. 

Overall Gene Expression: These described and com-
pared overall expression distributions for a particular ex-
perimental condition.  For example, a user analyzing time 
series data reported that “at time points 4 and 8 a lot of 
genes are up regulated, but at time point 6 a lot are down 
regulated”. Several users analyzing the virus dataset com-
mented that more genes showed a higher expression level 
for delNS1 virus as compared to wt virus, and the gene 
expression seems to be increasing with the deletion. Most 
users working with the Lupus dataset reported that gene 
expression for SLE patients appeared higher than the con-

trol group.  
Expression Patterns: Most users considered the ability 

to search for patterns of gene expressions very valuable. 
Most started by using different clustering algorithms (e.g., 
K-Means, SOMS, Hierarchical Clustering) provided by the 
tools to extract the primary patterns of expression. They 
compared genes showing different patterns.  For example, 
some users noted that while most genes showed higher 
expression value for Lupus group as compared to Control 
group, there were other genes that were less expressed for 
the Lupus group. They thought it would be interesting to 
obtain more information about these genes in terms of their 
functions and the pathways they belong to. 

Grouping:  Some users, mainly those working with 
Spotfire® and GeneSpring®, grouped genes based on some 
criteria.  For example, a user working with Spotfire® 
wanted to know all genes expressed similarly to the gene 
HSP70. Users working with GeneSpring® used gene ontol-
ogy categories to group genes. GeneSpring® provides dif-
ferent ways in which users can group their data. They 
found this functionality very helpful. Also most of the users 
were very pleased to learn that they could link the biologi-
cal information, such as gene functions, with the groups. 

Detail Information: A few users wanted detailed infor-
mation about particular genes that were familiar to them. 
For Time series data, a user noticed about 5% of genes high 
at 1.5 hr were also high at 12 hr and followed a regular cy-
cle. He looked up the annotations for a few of these genes 
and tried to obtain more information about them to see if 
they could be responsible for the cyclic nature of the data. 
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Table 7: Total number of insights in each category 
HCE users

0

Tool Overview Patterns Groups Detail 
Clusterview 9 10 0 2 
TimeSearcher 10 8 0 3 
HCE 6 5 0 1 
Spotfire® 13 10 1 1 
GeneSpring® 5 8 4 1 

 

5.6 Learning Curves 
During the course of the experiment, users were asked 
every 10-15 minutes after they began data analysis about 
how much they felt they learned about the data using the 
tool. The amount learned is a percentage of total potential 
insight, as perceived by users. In contrast to other parame-
ters reported earlier, this metric gauges users’ belief about 
insight gained, and about how much the tool is or is not 
enabling them to discover. Figure 8 presents the average 
learning curves for all the three datasets for each tool. 

The findings reported earlier are further strengthened by 
the graphs in Figure 8.  As shown, participants using the 
Lupus dataset felt they learned more using Clusterview as 
compared to the other participants, though they spent al-
most the same amount of time in the study. Participants 
using the timeseries dataset felt they learned more as com-
pared to the others with TimeSearcher, participants using 
the Viral dataset felt they learned the most using HCE.  
Also, these users spent more time in the study analyzing 
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data as compared to the participants who worked with 
other datasets. Participants using Lupus dataset spent less 
time on average in the study for both HCE and Time-
Searcher.  On average, participants did not report much 
learning difference across the datasets for Spotfire®. 
Though, participants analyzing timeseries dataset spent 
more time in the study as compared to the others.  Partici-
pants using Virus dataset felt they learned most using 
GeneSpring®, whereas participants using Lupus dataset 
felt they learned the least. Also, the participants analyzing 
time series data spent the least amount of time in the study. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: The average learning curves for each dataset for the 
tools, showing users’ estimated insight percentage over time. 
 

Average Final Amount Learned:  Figure 9 shows the 
average of the participants’ final stated amount learned for 
all the datasets for each tool.   

         Cluster         Time-                                       Gene- 
           View         Searcher        HCE       Spotfire®     Spring® 
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Figure 9: Average final amount learned for each tool. /  
indicate significantly better/worse differences. Y-axis arrow  
indicate direction of better performance 

5.7 Visual Representations and Interaction 
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Spotfire® users preferred the heat-map visual representa-
tion, whereas GeneSpring® users preferred the parallel 
coordinate view. This is despite the fact that both of these 
tools offer both representations.  Most of these users per-
formed the same analyses, but using different views.  

Though there were no particular preferences of visualiza-
tions for particular the datasets, we noticed that for the Lu-
pus dataset Spotfire® and Clusterview users preferred the 
heat-map visualization. The heat-map allowed them to 
group Control and Lupus data neatly into two distinct 
groups and they could easily infer patterns within and 
across both groups. Participants using these tools showed a 
higher performance on these datasets using these visualiza-
tions. This finding is strengthened by the fact that both 
TimeSearcher and GeneSpring® users showed average per-
formance on this data set. Users of these tools used parallel 
coordinate visualizations to analyze the datasets. 

HCE
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We noticed that even though tools like Spotfire® and 
GeneSpring® provides a wide range of visualizations to 
users, only a few of these were used significantly during 
the study. Most users preferred visualizations showing 
outputs of clustering algorithms, such as provided by Clus-
terview, Spotfire®, and GeneSpring®. These enabled the 
users to easily see different patterns in the data. However, 
many said that it would be more helpful to them if the in-
teraction capabilities of this representation were increased, 
e.g. to better enable comparison of the groups, subdividing, 
etc. 
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HCE’s primary overview presents the data in a dendo-
gram heat-map that is re-ordered based on the results of 
hierarchical clustering algorithms. Columns and samples 
with the most similar expression values are placed together. 
Thus, for both the Time series and Lupus datasets, where a 
particular column arrangement is useful to recognize 
changes across the experimental conditions, HCE showed 
poorer performance.  Users focused primarily on the clus-
tering, and apparently did not consider the potential bene-
fits of turning off that feature. 
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5.8 Participant Comments on Visualization Tools 
At the end of each experiment, users were requested to 
summarize their experience with the tool they used. The 
following sections summarize users’ comments. 

Clusterview: Users felt that the tool was extremely sim-
ple to use. Some users (3/6) required a brief explanation of 
the heat-map view of the data.  The users felt that the in-
formation provided by Clusterview is very basic, and they 
will need to perform additional analysis with other meth-
ods to get further information from the data. The users who 
worked with timeseries data commented that heat map was 
not a very efficient way to represent data and they pre-
ferred visualizations similar to parallel-coordinates. 

TimeSearcher: Feedback on TimeSearcher varied for 
different datasets. The users found the parallel-coordinate 
visualization provided by TimeSearcher easy to under-
stand. Users working with the timeseries data found the 
tool very helpful. They were able to easily identify trends 
and patterns in the data. Users working with Lupus dataset 
said that it was very difficult for them to see all the 90 data 
points clearly.  Some participants found a few features of 
TimeSearcher such as ‘Angular Queries’ and ‘Variable 
Time-Boxes’ difficult to interpret. As TimeSearcher does not 
provide any clustering capabilities, users have to manually 
search for every pattern in the data using ‘timeboxes’ as 
shown in Figure 10, which can prove tedious in a large 
dataset. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10: In TimeSearcher, users search for individual patterns of 
expression using time-boxes. 
 

HCE: Most users were impressed with HCE. The tool 
provides a wide variety of features for data analysis. HCE 
was more helpful to participants working with viral data-
set. The users working with Lupus dataset gave up data 
analysis within 20 minutes, complaining that it was very 
difficult for them to analyze data using HCE.  

Spotfire®: Users working with Spotfire® were im-
pressed with it. They did not require any special assistance 
to understand the tool. They said that most visualization 
were easy to understand. Most users preferred the heat-
map visualization of the Spotfire over its parallel coordi-
nate or Profile chart display (Figure 11). Though, the user 
found the visualization displaying different clusters in the 
data helpful, they said that it should be easier to interact 
with. They found it annoying that they could not select and 
focus on a particular cluster of interest. 

 
  
 
 
 
   
 
 
 
 
 
 
Figure 11: The Heat-map and Parallel Coordinate visualizations in 
Spotfire [7]. 
 

GeneSpring®: Users felt that they will have to spend a 
long time learning GeneSpring®. A few users (2/6), spent 
an initial 45 minutes just trying to get familiar with 
GeneSpring® after which they gave up the data analysis 
saying that it will take them too long to comprehend what 
the tool does. A few users commented that it will be great 
to have some sort of automation that would show them 
which visualization to begin the data analysis and how to 
change the visualization properties. One user said that the 
basic things should be easy, and visualizing an already 
normalized dataset should not be so difficult. None of the 
users could change different properties of visualization 
such as color, scale, amount of data to be visualized with-
out help. Users were pleased to know that GeneSpring® 
provided features to make lists of genes based on different 
criteria. The users commented that such features could 
prove to be very helpful. Also, features that allow users to 
add pathway information to gene lists were considered 
very useful. 

5.9 Participants’ Background 
One might conjecture that users with more domain experi-
ence or software development experience would gain more 
insight from the data.  Yet, we found that the insight value 
and total number of insights did not appear to depend on 
participant background.  Averages were similar, and no 
significant difference between user categories was detected.  
However, software developers on average felt that they 
learned less from the data as compared to others, whereas 
domain novices felt they learned more from the data.  Nov-
ices also spent comparatively more time in the study as 
compared to others. A noticeable difference was in the us-
ers’ behavior during the experiment. Novice users needed 
more prompting to make comments about the datasets. 
They were less confident to report their findings. 

6 DISCUSSION OF RESULTS 
Commercial vs. Free: Both Spotfire® and Clusterview 

users resulted in equivalent insight from the Lupus dataset. 
However, participants using Spotfire® felt they learned 
much more from the data as compared to Clusterview. 
Analyzing data in multiple visual representations gave 
Spotfire® users more confidence that they did not miss any 
information. Whereas, Clusterview users were more skepti-
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cal about their progress, believing that they must be miss-
ing something.  A simple visualization tool used on an ap-
propriate dataset can have performance comparable to 
more comprehensive software containing many different 
visualizations and features.  

Free research software like TimeSearcher and HCE tend 
to address a smaller set of closely related tasks.  Hence, 
they provide excellent insight on certain datasets.  Also, 
since they are focused on specific tasks, they have simpler 
user interfaces that emphasize a certain interaction model.  
This reduces the learning time and enables users to gener-
ate insights quickly.  Spotfire®, despite having a large fea-
ture set, has a learning time almost equivalent to the simple 
tools, which is commendable.  This is likely due to Spot-
fire’s® unified interaction model.  The brushing and dy-
namic query concepts were quickly learned by users, and 
resulted in early rapid insight generation.  

Domain Relevance: A serious shortcoming of the tools 
is that they did do not adequately link the data to biological 
meaning.  The fact that domain experts performed on par 
with domain novices, and the small numbers of hypotheses 
generated, indicates that the tools did not leverage the do-
main expertise well. Before we conducted the study, we 
believed that users with more expertise in biology would 
gain more from visualizations than a beginner. We were 
also curious about whether software development experi-
ence would lead to better usage of the tools. However, 
these background differences did not reveal themselves in 
the actual insights generated.   The difference was only in 
the users’ believed insight, in which novices were overcon-
fident and developers were skeptical. 

If the tools could provide a more information-rich envi-
ronment, such as linking data directly to public gene data-
bases or literature sources, expert biologists could better 
exploit their domain knowledge to construct higher level, 
biologically relevant hypotheses. In this experiment, the 
tools helped users identify patterns in the data, but did not 
enable them to connect these numerical patterns to the un-
derlying biological phenomena.  A critical need is for 
highly integrated visualization environments that excel at 
domain relevance and inference.  In this case, understand-
ing gene expression patterns must lead to inference of un-
derlying pathways that model the interactions of the genes 
(Figure 12).  Visualization must support this level of infer-
ence. 

 
 
 
 
 
 
 
 
 
 
 

Figure 12:  Visualizations must support domain-relevant inference, 
from microarray dataset to pathway models describing interactions 
within a cell [37]. 

 
 

Interaction Design: The design of interaction mecha-
nisms in visualization is critically important.  Usability can 
outweigh the choice of visual representation. Spotfire® us-
ers mainly focused on the heat-map representation, while 
GeneSpring® users focused on the parallel coordinates, 
even though both tools support both representations.  The 
primary reason for this, based on comments from users, 
was that users preferred parallel coordinates but Spot-
fire®’s parallel coordinates view employs a poorly de-
signed selection mechanism.  Selected lines in its parallel 
coordinates results in unusual and occluding visual high-
light feedback that made it very difficult for users to deter-
mine which genes were selected and what other genes were 
nearby. 
 The ability to select and group genes was the most com-
mon interaction that users performed.  The grouping of 
genes into semantic groups is a fundamental need in bioin-
formatics visualization tools.  GeneSpring® provided use-
ful grouping features that enabled more insights in the 
‘groups’ category.  More tools need better support for 
grouping items, based on interactive selections as well as 
computational clustering, and managing groups.   

GeneSpring® is the most feature-rich tool of the five, 
and therefore perhaps the most difficult to learn.  However, 
even though users tended to focus on a small number of 
basic visualization features, usability issues (such as the 
higher quantity of clicks required to accomplish tasks) re-
duced their overall insight performance. 

User Preferences: Certain visualizations, such as the 
clustering vsualizations for both Spotfire® and 
GeneSpring® were the most widely used in the study. The 
users commented that it would be very helpful if the inter-
action techniques for these were improved, so that they 
were better integrated into the overall interaction model. 
 
 
 
 
 
 
 
                                
     
 
Figure 13: Clustering visualizations were the most widely used in the 
study. GeneSpring® left, Spotfire® right. 

 
Clustering was a very useful feature throughout, but 

care should be taken to provide non-clustered overviews 
first.  As in HCE, clustering can potentially bias users into a 
particular line of thought too quickly.  In comparing Spot-
fire® and Clusterview, users were also more confident 
when they could confirm their findings between clustered 
and non-clustered views of Spotfire®. 

User Motivation: We noticed that an important factor in 
gaining insight is user motivation. Clearly, participants in 
our study did not analyze the data with as much care as 
they would if the data were from their own experiments.  
They mainly focused on discovering the overall effects in 
the data, but were not sufficiently motivated to extreme 

Accession_Name Ctrl1 Ctrl2 Ctrl3 Ctrl4 Ctrl5 Ctrl6 Ctrl7 Ctrl8 ctrl9
M13755 Interferon-stimulated protein -0.67 -0.59 -0.77 -0.6 0.66 -0.96 -0.67 -0.65 -0.78
M21624 T cell receptor delta locus -0.64 -0.55 -0.25 0.08 -0.29 -0.27 0.04 -2.96 -1.02
X54134 Protein tyrosine phosphatas 0.09 0.19 -0.08 0.59 0.17 0.27 -0.11 0.03 0.07
U22 rferon, alpha-inducible 970 Inte p 1.81 1.1 1.87 0.88 1.99 1.43 1.55 0.84 0.98
M260 rleukin 2 receptor, beta -0.7 -0.54 -0.52 0.53 -0.05 0.14 -0.11 -2.24 -0.09
M315 scription factor 3 (E2A 0.72 0.37 0.93 0.59 1.37 1.2 0.6 0.72 0.55
U88 RELATED RNA POLY -0.52 -2.3 0.01 -0.18 -1.4 -0.03 -0.6 -1.18 -2.14
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details. Most of the insights generated were classified as 
breadth rather than depth.  However, the visualizations 
were able to provide sizeable number of breadth insights in 
spite of low motivation levels. 

7 DISCUSSION OF METHODOLOGY 
This study takes as its major premise the belief that insight 
can be measured. We defined insight based on our observa-
tions of scientists doing visual data analysis. We recog-
nized, in their comments and actions, characteristics that 
revealed insight. This measurement process also enables 
recognition of qualitative aspects of user behavior.  
 The main purpose of visualization is to provide insight. 
This can be difficult to measure. Although our definition of 
insight is not comprehensive, it does provide an approxi-
mation of users’ learning. This, in turn, enabled us as 
evaluators to gain insight into the effectiveness of these 
visualization tools. The definition of insight and the meth-
odology presented are domain independent and can be 
applied for similar data analysis scenarios in other do-
mains.  The technique evaluates users’ findings from the 
data. More, valuable, faster, and deeper data findings cor-
respond to more effective visualizations as it suggests users 
can gain more insight from the data.  

The methodology succeeded in measuring open-ended 
insight generation, by not restricting users to a set of pre-
planned benchmark tasks. This approach closely matches 
the purpose of visualization – to discover unforeseen in-
sights, rather than to perform routine tasks.  This provided 
a good analysis of the insight capabilities of these visualiza-
tion tools.  However, this method does not replace the need 
for controlled experimentation, which is still useful for de-
tailed testing of specific targeted tasks. 

This new methodology has shown promise, but some 
difficulties remain to be overcome: 

• Labor intensive.  It is time consuming for the ex-
perimenters to capture and code insights. 

• Requires domain expert.  The available population of 
capable experts in the bioinformatics domain for cod-
ing the value of insights is not large. This coder must 
also be removed from the subject pool. 

• Requires motivated subjects.  Since benchmark tasks 
are not given, subjects must self motivate to accom-
plish anything. 

• Training and trial time:  Longer time periods would 
better reflect more realistic visualization usage. 

 The study reported here measures insight from short 
term usage, typically under 2 hours per user. In real world 
scenarios, users spend days, weeks and even months ana-
lyzing data. Moreover, the participants in the study were 
unfamiliar with the data. The only background knowledge 
they had was what we provided during the course of study. 
It is very difficult to appreciate the biological relevance of 
the microarray data they were analyzing. In this case, the 
hypotheses they reported were more speculative. Yet, they 
were not trivial. This suggests that the visualizations are 
provoking the users to think deeply about the data and also 
to apply the insight in their domain. Once a user is familiar-

ized with a visualization, the method in which it is used 
may change.  Furthermore, the long-term insight may be 
very different than short term insight.  Long term insight 
could be broader understanding that guides biologists 
through multiple cycles of microarray experiments. 
 We now recognize that it would be very valuable to con-
duct a longitudinal study that records each and every find-
ing of the users over a longer period of time to see how the 
visualization tools influence and adapt to their knowledge 
acquisition. These studies should be conducted with re-
searchers analyzing their own experimental results for the 
first time, and preferably through multiple experimental 
cycles. This could be done using long-term ethnographic 
methods or subjects’ self-reporting.  [21] and [22] present 
such longitudinal studies that included frequent user inter-
views, diary studies and ‘Eureka’ reports. Such studies can 
help to identify the broader information needs, and develop 
more meaningful tools that leverage users’ domain knowl-
edge and expertise.  

8 CONCLUSIONS 
This study suggests the following major conclusions for life 
scientists, visualization designers, and evaluators.   

Biologists: A visualization tool clearly influences the in-
terpretation of the data and insight gained. Hence, it is im-
perative that the appropriate tool be chosen for a given 
dataset. We sought to answer the question of which is the 
best tool to use. Some tools work more effectively with cer-
tain types of data. Both TimeSearcher and HCE performed 
better with the Time series and viral datasets respectively, 
for others they provided below average results. Thus, data-
set dictates which tool is best to use. Additionally, larger 
software packages like Spotfire® and GeneSpring® work 
consistently across different datasets. If a researcher needs 
to work with multiple kinds of data, software like Spotfire® 
and GeneSpring® would be better. But, if a researcher 
needs to work with just one kind of data, more focused 
tools can provide better results in a much faster time frame. 
Spotfire® proved to be an excellent tool all around for rapid 
insight generation. 

Visualization Designers: Interaction techniques play a 
key role in determining visualization effectiveness. Design-
ers should emphasize consistent usable interaction design 
models with clear visual feedback. Grouping and clustering 
is a must. It would be helpful to identify which visualiza-
tion technique in a given software package is used the most 
by users and improve it. It is imperative that users are able 
to access and link biological information to their data.  
Visualizations should strive to support higher-level domain 
relevant inference. 

Evaluators: The main purpose of visualization is to pro-
vide insight. This can be difficult to measure with con-
trolled experiments or other methods. Our insight defini-
tion allowed us to quantify insight generation using a vari-
ety of insight characteristics, which enabled us to gauge the 
open-ended insight capability of bioinformatics visualiza-
tion tools. This methodology can prove helpful for future 
studies for analyzing the effectiveness visualizations in 
many domains. 
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