
REPLICATION

Nelson Onyibe and Genevieve Patterson

CS227

Monday March 5, 2012

A NEW APPROACH TO DEVELOPING

AND IMPLEMENTING EAGER

DATABASE REPLICATION PROTOCOLS

BETTINA KEMME AND GUSTAVO ALONSO

GOALS OF THIS PAPER

 Presents alternative to centralized approaches

 These eliminate some advantages of replication

 Authors approach uses group communication primitives and relaxes

isolation guarantees

 Authors present a form of compromise between Eager and Lazy

replicaiton

COMPROMISE

 Desirable behaviors:

 Correctness (ideal solution: eager replication)

 Fault-tolerance (ideal solution: lazy replication)

 Authors wanted

 More flexible than ensuring serializability

 But with high correctness

 Proposed solution

 Different levels of isolation of grouped, concurrently executed reads/writes

 Claim: their approach maintains data consistency

OUTLINE OF THE AUTHORS’

PROTOCOL

 Basic steps in the authors’ alternative implementation of eager

replication

 Perform transaction locally

 Batch write operations

 At transaction commit time deploy write sets to copies using TO multicast

 This is similar to the ‘push strategy’ for lazy replication + ensured serial write

operations

 At reception time copies (and local site) check for conflicts

 Because of TO multicast, conflict transactions are serialized

 No need for 2-phase-commit

 Major Contributions: use of group communication, different levels

of isolation, optimized fault-tolerance by use of TO broadcast

EXISTING TECHNOLOGY
(AT TIME OF PUBLICATION)

 Where to update?

 Primary Copy – simplifies concurrency

but creates bottleneck

 Update Everywhere – copies must be

coordinated

 When to update?

 Eager – detect conflict before

propagation, ensures consistency

 Lazy – propagate changes after commit,

ensures maximum performance

EXISTING TECHNOLOGY
(AT TIME OF PUBLICATION) CONT’D

 Timeline of replication solutions:

 Primary copy, eager replication

 Update everywhere

 Quorums (example of isolation)

 Epidemic protocols

 Lazy replication

 Favored commercially

 Push strategy – updates propagated directly after transaction commit

 Pull strategy – update occurs only on client request

 Both strategies can be used with primary copy or update everywhere

 Trade Off: update everywhere + lazy replication = reconciliation complexity

 How should the best solution be selected based on the demands

of the database? (not clearly discussed)

COMBINING EAGER AND LAZY

TECHNIQUES

 The authors reference a previous system that used

 Distributed locking

 Global serialization graphs

 Propagation after commit

 to combine advantages of Eager and Lazy protocols

 This previous attempt at combination used a primary copy

implementation, and was scalability-limited

IMPROVING EAGER REPLICATION

 Authors combine correctness of eager with performance of lazy

by using these techniques

 Reducing Message Overhead

 Bundle operations (i.e. ‘write sets’) as in optimistic schemes

 Eliminating Deadlocks

 Pre-order transactions – total-order broadcast

 Optimizations Using Different Levels of Isolation

 The more levels of isolation of operations, the closer this system gets to eager

replication

 More understandable by developers

 Optimizations Using Different Levels of Fault-Tolerance

 Correctness proportional to network reliability

COMPARISON OF DATABASE

REPLICATION TECHNIQUE BASED

ON TOTAL ORDER BROADCAST

MATTHIAS WIESMANN AND ANDRE SCHIPER

INTRO
 Techniques based on group communication typically rely on a

primitive called TOTAL ORDER BROADCAST

 Ensures that messages are delivered reliably and in the same order on all

replicas

 Carried out

 Eagerly

 Within the boundaries of a transaction

 Replicas are identical all the time

 Conflicts detection before commit

 Increased response time

 Lazily

 Delayed updates

 Conflicts could creep in

 There may exist inconsistencies among replicas

MODEL
 Server , S = {S1, S2, …, Sn}

 Each server Si contains a full database, D

 One-copy serializability (All copies of D are kept synchronized at all times)

 Server Si hosts a local transaction manager

 The local transaction manager ensures ACID properties of local transactions

 The local transaction manager TMi executes transactions that updates
Database, Di

 Client , C = {C1, C2, …, Cm}

 The server that a client Ci contacts to execute a transaction, t is a delegate
server for t

 In primary copy replication, only one server can act as a delegate server

 Database Replication Model

REPLICATION TECHNIQUES

Group Communication Based Replication

 Active Replication

 Certification Based Replication

 Weak Voting Replication

Non Group Communication Based Replication (Just for

Comparisons)

 Lazy Replication

 Primary Copy Replication

ACTIVE REPLICATION

 Client, C contacts server, Sd to execute transaction, t

 Server, Sd puts transaction, t into a messages, m

 Server, Sd broadcasts m atomically to all servers

 On receiving m, server, Sr serializes t

 Server, Sr processes t

 If any server, Si aborts, all servers abort

 Del

egate server, Sd

Any server, Si Active replication scheme

CERTIFICATION BASED REPLICATION

 Client, C sends a transaction, t to server, Sd

 Sd executes t but delays write operations

 When commit time is reached, the delayed write set in t is put into

a Message, m and broadcasted to all servers using total order

 Upon delivering m, each server, Si executes a deterministic

certification phase that decides if t can be committed or not

Any Server Si

Delegate Server,

Sd

WEAK VOTING REPLICATION
 Client, C sends a transaction, t to server, Sd

 Sd executes t but delays write operations

 When commit time is reached, the delayed write set in t is put into a Message, m

and broadcasted to all servers using total order

 Upon delivering m, the delegate server, Sd determines if the transaction, t can be

committed or not

 Based on the determination, Sd sends a second broadcast with Abort or commit

decision

 Delegate Server, Sd
Any Server, Si

PRIMARY COPY REPLICATION
 All transactions from any Client, c are sent to one server, Sp

 No other server accepts transactions from any client

 All other servers serve as backups

 The serialization order and abort or commit decisions are made by Sp

 The transaction is processed at Sp and updates are sent to all other

servers using a reliable broadcast

 Primary copy replication scheme

Primary Server, Sp
Backup Server, !Sp

 LAZY REPLICATION (FOR COMPARISONS ONLY)

 A Client, C sends a transaction, t to a server, Sd

 Sd executes t and send updates are broadcasted to others

servers

All other servers

Delegate Server, Sd

Lazy Replication Scheme

EXPERIMENTS

EXPERIMENTS CONT’D

EXPERIMENTS - SCALABILITY

ZOOKEEPER: WAIT-FREE

COORDINATION FOR INTERNET-

SCALE SYSTEMS

HUNT, KONAR, JUNQUEIRA, AND REED

INTRO
Provides coordination framework for large-scale

distributed applications

Manipulation of data objects that are organized

hierarchically resembling a file system structure

Guarantees FIFO ordering for all operations

Leader based atomic protocol ;Zab

Writes are linearizable

Allows local data caches that are managed by clients

Utilizes a watch mechanism; A client watches for an

update to a given data object and receives notification

upon change

ZOOKEEPER SERVICE
 Znodes; Abstraction of a set of data nodes organized according to

hierarchically namespace

 Znodes
 Regular

 Explicit deletion

 Ephemeral

 Explicit of automatically

deleted by the system

 Can be created by setting a sequential flag

 When a new node is created with this flag, a monotonically increasing counter is
appended to the node’s name

 The number attached to the name is never higher than a preexisting sibling’s
number

 A watch flag can be set during a read operation
 When it is set

 A client receives a one time notification about a change of that data object

 Data Model

 A non general purpose file system with simplified API

 Full data reads/writes

 Sessions

 Initiated by connecting to Zookeeper

 Terminated

 When Zookeeper does not receive word for more a set time (timeout)

 A client explicitly closing a session

 A client is deleted because it is faulty

 Enables clients to persists across servers

SOME IMPORTANT CLIENT API

create(path, data, flags)

 Creates a znode with path name path, stores data[] in it

 returns the name of the new znode

 flags enables a client to select the type of znode: regular, ephemeral, and set the
sequential flag;

delete(path, version):

 Deletes the znode with the path if that znode is at the expected version

exists(path, watch)

 Returns true if the znode with path name path exists, and returns false otherwise. The
watch flag enables a client to set a watch on the znode

getData(path, watch)

 Returns the data and meta-data, such as version information, associated with the znode.

 The watch flag works in the same way as it does for exists(), except that ZooKeeper does
not set the watch if the znode does not exist;

sync(path)

 Waits for all updates pending at the start of the operation to propagate to the server that
the client is connected to.

All methods have both asynchronous and synchronous versions

PRIMITIVES

 Configuration Management

 Rendezvous

 Group Membership

 Simple Locks

 Simple Locks without Herd Effect

 Read/Write Locks

 Double Barrier

Configuration Management (dynamic configuration)

 Imagine a regular non distributed application

 Imagine the application have an updatable ‘config ‘ file that the

app reads from at some time in the life of that app

 Now, imagine implementing this with Zookeeper

 System configuration is stored at znode Zc

 Each process starts by knowing the path to Zc

 Each starting process obtains its configuration by reading Zc and setting the

watch flag

 When Zc changes, the processes are notified

 They reread Zc and set the watch flag again

Rendezvous

 When a final system configuration cannot be determined at the

beginning of a system but unavailable information about a subset

of the system has to be passed to some subset of the system,

Zookeeper can utilizes its watch feature to solve this problem.

 For example, a client may want to start a master process and several worker

processes, but the starting processes is done by a scheduler, so the client

does not know ahead of time information such as addresses and ports that it

can give the worker processes to connect to the master.

 Let Zd be designated znode.

 At the start of the system, the processes interested in the

information {pi} are given the path to Zd

 {pi} read Zd and set a watch flag

 When the information is known, Zd is updated and {pi} is notified.

 {pi} rereads Zd and set watch flag again and cycles continues

Group Membership

  Recall that ephemeral znodes are just like normal znode but can

be removed automatically when the node fails

 Group membership can be implemented using Zookeeper

 Let Zg be a designated znode that represents a group, g

 Any znode created as child node to Zg is in group, g

 Finding out information about group, g is as simple as reading the children of

g

 In order to have unique children of Zg, unique names can be given or the

sequential flag can be set when creating an ephemeral znode

 Any process, pi that wishes to monitor changes in group, g, can set a watch

flag to Zg and be notified when ever there is a change in that group

 Pi can then read Zg and set the watch flag to true and repeat

 Since ephemeral znodes are sort self maintaining, when a child znodes to Zg

dies, group membership is automatically modified to reflect the new state

SYSTEM PERFORMANCE

