REPLICATION

Nelson Onyibe and Genevieve Patterson
CS227
Monday March 5, 2012

A NEW APPROACH TO DEVELOPING
AND IMPLEMENTING EAGER
DATABASE REPLICATION PROTOCOLS

BETTINA KEMME AND GUSTAVO ALONSO

GOALS OF THIS PAPER

» Presents alternative to centralized approaches
» These eliminate some advantages of replication

» Authors approach uses group communication primitives and relaxes
Isolation guarantees

» Authors present a form of compromise between Eager and Lazy
replicaiton

COMPROMISE

» Desirable behaviors:
» Correctness (ideal solution: eager replication)
» Fault-tolerance (ideal solution: lazy replication)

» Authors wanted

» More flexible than ensuring serializability

» But with high correctness

» Proposed solution
» Different levels of isolation of grouped, concurrently executed reads/writes

» Claim: their approach maintains data consistency

OUTLINE OF THE AUTHORS
PROTOCOL

» Basic steps in the authors’ alternative implementation of eager
replication
» Perform transaction locally
» Batch write operations
» At transaction commit time deploy write sets to copies using TO multicast

» This is similar to the ‘push strategy’ for lazy replication + ensured serial write
operations

» At reception time copies (and local site) check for conflicts
» Because of TO multicast, conflict transactions are serialized

» No need for 2-phase-commit

» Major Contributions: use of group communication, different levels
of isolation, optimized fault-tolerance by use of TO broadcast

EXISTING TECHNOLOGY

(AT TIME OF PUBLICATION)

Table I. Classification of Replication Mechanisms

Sybase/IBM/Oracle
Placement Strat.

Early Solutions
in Ingres

Serialization-Graph based

ROWA/ROWAA

Quorum based

Update Oracle Advanced Repl.

Everywhere Weak Consistency Strat.

Oracle Synchr.Repl

» Where to update?

» Primary Copy — simplifies concurrency
but creates bottleneck

» Update Everywhere — copies must be
coordinated

» When to update?

» Eager — detect conflict before
propagation, ensures consistency

» Lazy — propagate changes after commit,
ensures maximum performance

EXISTING TECHNOLOGY
(AT TIME OF PUBLICATION) CONT'D

» Timeline of replication solutions:
» Primary copy, eager replication

» Update everywhere

>

>

Quorums (example of isolation)

Epidemic protocols

» Lazy replication

>

vV v Vv Vv

Favored commercially
Push strategy — updates propagated directly after transaction commit
Pull strategy — update occurs only on client request

Both strategies can be used with primary copy or update everywhere

Trade Off: update everywhere + lazy replication = reconciliation complexity

» How should the best solution be selected based on the demands
of the database? (not clearly discussed)

COMBINING EAGER AND LAZY
TECHNIQUES

» The authors reference a previous system that used
» Distributed locking
» Global serialization graphs
» Propagation after commit

» to combine advantages of Eager and Lazy protocols

» This previous attempt at combination used a primary copy
implementation, and was scalability-limited

IMPROVING EAGER REPLICATION

» Authors combine correctness of eager with performance of lazy
by using these techniques

» Reducing Message Overhead

» Bundle operations (i.e. ‘write sets’) as in optimistic schemes
» Eliminating Deadlocks

» Pre-order transactions — total-order broadcast
» Optimizations Using Different Levels of Isolation

» The more levels of isolation of operations, the closer this system gets to eager
replication

» More understandable by developers

» Optimizations Using Different Levels of Fault-Tolerance

» Correctness proportional to network reliability

COMPARISON OF DATABASE
REPLICATION TECHNIQUE BASED
ON TOTAL ORDER BROADCAST

MATTHIAS WIESMANN AND ANDRE SCHIPER

INTRO

» Techniques based on group communication typically rely on a
primitive called TOTAL ORDER BROADCAST

» Ensures that messages are delivered reliably and in the same order on all
replicas

» Carried out

» Eagerly
» Within the boundaries of a transaction
» Replicas are identical all the time
» Conflicts detection before commit
» Increased response time

» Lazily
» Delayed updates

» Conflicts could creep in

» There may exist inconsistencies among replicas

MODEL

vV v v v. Vv YV

A\ 4

Server,S ={S;, S,, ..., S;}

Each server S, contains a full database, D

One-copy serializability (All copies of D are kept synchronized at all times)
Server S, hosts a local transaction manager

The local transaction manager ensures ACID properties of local transactions

The local transaction manager TMi executes transactions that updates
Database, Di

Client,C={C,,C,, ..., C}

The server that a client Ci contacts to execute a transaction, t is a delegate
server for t

In primary copy replication, only one server can act as a delegate server

REPLICATION TECHNIQUES

» Group Communication Based Replication
» Active Replication
» Certification Based Replication
» Weak Voting Replication
» Non Group Communication Based Replication (Just for
Comparisons)
» Lazy Replication

» Primary Copy Replication

ACTIVE REPLICATION

» Client, C contacts server, S, to execute transaction, t

> Server, S, puts transaction, t into a messages, m
» Server, Sybroadcasts m atomically to all servers
» On receiving m, server, S, serializes t

» Server, S, processes t

» If any server, S;aborts, all servers abort

e

| 5Im“mtlve repI|cat|glnlrb]“§(:hemeﬁ RS

tusk. Forward
I Exevwled by server s, |
whe recelve { from chent ¢
'|'|::l-]‘lrl.|;||]|,';|~1,l;|:.',.", Agj) &
end when
1l

tnsk IT'I'l'q.'l,"-.'niII.L' Any. server, S
|J': veriiad |lil TN :1,.|

when TO:deliver [t 7,5y
process(t}
reply — (ry-comi (]
il &4 = #; then
1 JI|I!',':I I &

end If

enil when
el

CERTIFICATION BASED REPLICATION

Clint

oo I—ML'
)

» Client, C sends a transaction, t to server, o
E,,:Mi—*

» S, executes t but delays write operations 1§ & conmon |77

» When commit time Is reached, the delayed write set in t is put into
a Message, m and broadcasted to all servers using total order

» Upon delivering m, each server, S; executes a deterministic
certification phase that decides if t can be committed or not

task Certification
{Execured by server s} Any Server SI
when TO-deliver {reads |f.l writeqety, ©,83)
status — centify(readSety, writeSety) e —— De|egate Server,
il stefus = cormemitl then . :
| Execnted by del@pple server 54)

il 53 # a5; then _) :
ENECLlE 1.-.--,.:,..|";|J.J,--..,.J_,|.|_I.”,.. when receive rams. T from client &

cnd if excouie frans. t

comemiti £ il abortedit) then

if 5y = &; then semd| alvrrfed) o e
sendi commifted) o o clse
end if TO-broadeasi{ readSely, writeSete, o, s41)
else o 5
abor(t) end il
il 53 = &; then end when
send{ ahoried) o o end
e if
end if

end when
enid

L

WEAK VOTING REPLICATION

Client, C sends a transaction, t to server, S,
S, executes t but delays write operations

When commit time is reached, the delayed write set in t is put into a Message, m
and broadcasted to all servers using total order

Upon delivering m, the delegate server, S, determines if the transaction, t can be
committed or not

Based on the determination, S, sends a second broadcast with Abort or commit
decision

= elegate Server, . - .
task Processing 9 _ task Execution Any Server, Si
{f‘. ||1"'|:'|HH'I'.|I Ira'"l' |'.|I|:'|r|:"ll,‘r1'l|' [l L o .';il.j I‘ I_ Ir'-l ol 'l|'r1"'|:.|r J!.|'|' LT o el i JI . . .
i T ‘ tazk Termimation
when receive fransaction ¢ from when {F" RS 100 T i
liani ~ [P Y P S | SIECHIeD DY Server S
client ¢ _ (wrileSety, ¢, 8¢} when R-deliverfstais:)
execute transaction if 5y = 5; then TO-deliver S i "fl'
if abortedif) then sty — vole(t) ir Sialisg _r commit then
§ - L i
sendl aborted) o ¢ R-broadeast(starust } to S -L: it}
else send(sraruse) 0 ¢ - “‘] _
TO-broadeast((wirileSels, o, 51) o 5 s ‘11 1‘}”*‘”
. ene

end if execule wrileOperations, end when
end when end il : '

end end when end

end

PRIMARY COPY REPLICATION

» All transactions from any Client, ¢ are sent to one server, S,

» No other server accepts transactions from any client

» All other servers serve as backups

> The serialization order and abort or commit decisions are made by S,

» The transaction is processed at S, and updates are sent to all other
servers using a reliable broadcast

sk Processing —— Primary Server, Sp
{ Execured by primary } BaCkup Server’ |
if primary(s) them
when receive tmsnction £ from client ¢ task Update
[RGoEss lransaction { Executed by backug}
slafis — I|'_'.--.'1:l||:'|:'|liI:II:] Ir - |-||i|t-|;,_-|-_||.|:-.:| then
if sraviis; = committed then when R-deliver spdare,
dpdare, — updates done by o proscessigdate, |
R-broadeast{ppdaie, b e 55 e whien
ena il end il

sl staries) 1o @ e
end whin
enid if
enud

LAZY REPLICATION (FOR cOMPARISONS ONLY)

» A Client, C sends a transaction, t to a server, S

» S, executes t and send updates are broadcasted to others
servers

I:HLF:-.LJH:L uJ]j.l)r.elsgate Server, Sd

pars
ransaclion ¢ (rom client ¢

process Iransacto & task Updane
1

shatnesy = IFy-CommanL) {Execaied by all servers)

il staiuse = commitied then when H-deliver ralnui.-'.'rp'r
lipwlate, «— updates done by { processi iipdaie,)
R-broadeastiupdare,) to & 5 enid when

end if end

sl trameidy) 0 ¢

end when All other servers
e

800
1400 —&— Certification
—m—Lazy
. e T E—
700 —a— Weak Vating
1200
600
[]
_ E 1000
E o0 2
£ 5
400 8
§ oo
300
400
200
200 o888 — = o w a
100
0 0 !
10 1 12 13 14 15 16 17 18 19 20 20 25 30 35 40
Load [transactions /sec] Load [transactions /sec]
(a)
800
1600
700 —+—Certification
1400 W tay
—e—Weak Voting
600 o Distributed Locking
1200
Eso _
2 £ 1000
E 100 2
; 800
300 E
§ 600
"ol
400
100
° 2g—= =88 = 8 8 =5 88 8 8 8
10 1 12 13 14 15 16 17 18 19 20
Load [transactions /sec] 0 i
20 25 30 as 40
(b) Load [transactions /sec]
Fig. 11. Overall performance medium-load (a) slow network and (b) fast network. (b)

Fig. 13. Overall performance high-load (a) slow network and (b) fast network.

—— e

EXPERIMENTS CONT'D

—s—Centification
—5—Distributed Locking
—a—Weak Voting .

— Cartification Technique Abort Rate
=== Weak Voting Technique Abort Rate
—a— Servers Numbar (f(x)=x)

-8 —9— o &

28 a0 a2 34 36 38 40
Load [transaction / second]

Fig. 14. Abort rate with high-load, fast network.

Fig. 16. Abort rates as a function of (a) the number of servers and (b) the load of the system.

EXPERIMENTS - SCALABILITY

1250

[1 M

Distributed
Locking

| Weak Voting |

Certification

g
g

Distributed
Locking

g

Response Time [ms]
g 8

Weak Voting

Response Time [ms]

n

3
n
)

Certification

Lazy

4 12 18 36

Number of Servers Numgor of Sarvers

(a) (b)
Fig. 15. Scalability with (a) a query rate of 50 percent and (b) a query rate of 80 percent.
400 ——

Query Proportion -
Fig. 18. Performance with changing query rate at (a) 10 transactions per

(a) second, (b) 20 transactions per second. I

ZOOKEEPER: WAIT-FREE
COORDINATION FOR INTERNET-
SCALE SYSTEMS

HUNT, KONAR, JUNQUEIRA, AND REED

INTRO

» Provides coordination framework for large-scale
distributed applications

» Manipulation of data objects that are organized
hierarchically resembling a file system structure

» Guarantees FIFO ordering for all operations
» Leader based atomic protocol ;Zab
» Writes are linearizable

» Allows local data caches that are managed by clients

» Utilizes a watch mechanism; A client watches for an
update to a given data object and receives notification
e

/OOKEEPER SERVICE

» Znodes; Abstraction of a set of data nodes organized according to
hierarchically namespace

» Znodes

» Regular
» Explicit deletion

» Ephemeral [j O

» Explicit of automatically fapplip_1 feppifp 2 lappiip 3

o

el by the SyStem Figure 1: IMNustration of ZooKeeper hicrarchical name
» Can be created by setting a sequential flag space.

» When a new node is created with this flag, a monotonically increasing counter is
appended to the node’s name

» The IQumber attached to the name is never higher than a preexisting sibling’s
number

» A watch flag can be set during a read operation

» Whenitis set
» Aclient receives a one time notification about a change of that data object

» Data Model

» Anon general purpose file system with simplified API
» Full data reads/writes

» Sessions

» Initiated by connecting to Zookeeper

» Terminated
» When Zookeeper does not receive word for more a set time (timeout)
» Aclient explicitly closing a session
» Aclient is deleted because it is faulty

» Enables clients to persists across servers

SOME IMPORTANT CLIENT API

»create(path, data, flags)
» Creates a znode with path name path, stores data][] in it
» returns the name of the new znode

» flags enables a client to select the type of znode: regular, ephemeral, and set the
sequential flag;

»delete(path, version):
» Deletes the znode with the path if that znode is at the expected version
»exists(path, watch)

» Returns true if the znode with path name path exists, and returns false otherwise. The
watch flag enables a client to set a watch on the znode

»getData(path, watch)
» Returns the data and meta-data, such as version information, associated with the znode.

» The watch flag works in the same way as it does for exists(), except that ZooKeeper does
not set the watch if the znode does not exist;

»sync(path)

» Waits for all updates pending at the start of the operation to propagate to the server that
the client is connected to.

» All methods have both asynchronous and synchronous versions

PRIMITIVES

» Configuration Management
» Rendezvous
» Group Membership

» Simple Locks

» Simple Locks without Herd Effect
» Read/Write Locks

» Double Barrier

Configuration Management (dynamic configuration)

» Imagine a regular non distributed application

» Imagine the application have an updatable ‘config file that the
app reads from at some time in the life of that app

» Now, imagine implementing this with Zookeeper
» System configuration is stored at znode Zc
» Each process starts by knowing the path to Zc

» Each starting process obtains its configuration by reading Zc and setting the
watch flag

» When Zc changes, the processes are notified

» They reread Zc and set the watch flag again

Rendezvous

» When a final system configuration cannot be determined at the
beginning of a system but unavailable information about a subset
of the system has to be passed to some subset of the system,
Zookeeper can utilizes its watch feature to solve this problem.

» For example, a client may want to start a master process and several worker
processes, but the starting processes is done by a scheduler, so the client
does not know ahead of time information such as addresses and ports that it
can give the worker processes to connect to the master.

» Let Zd be designated znode.

» At the start of the system, the processes interested in the
information {pi} are given the path to Zd

» {pi} read Zd and set a watch flag
» When the information is known, Zd is updated and {pi} is notified.
» {pi} rereads Zd and set watch flag again and cycles continues

Group Membership

» Recall that ephemeral znodes are just like normal znode but can
be removed automatically when the node fails

» Group membership can be implemented using Zookeeper
» Let Zg be a designated znode that represents a group, g
» Any znode created as child node to Zg is in group, g

» Finding out information about group, g is as simple as reading the children of
g

» In order to have unique children of Zg, unigue names can be given or the
sequential flag can be set when creating an ephemeral znode

» Any process, pi that wishes to monitor changes in group, g, can set a watch
flag to Zg and be notified when ever there is a change in that group

» Picanthenread Zg and set the watch flag to true and repeat

» Since ephemeral znodes are sort self maintaining, when a child znodes to Zg
dies, group membership is automatically modified to reflect the new state

SYSTEM PERFORMANCE

Throughput of saturated system Throughput of saturated system (all requests to leader)

Iy . . . 3 servers
3 servers yos
5 servers A
7 servers
9 servers & 4 3
13 servers i 13 servers

Operations per second

Operations per second

Percentage of read requests
Percentage of read requests

Figure 5: The throughput performance of a saturated sys-
tem as the ratio of reads to writes vary.

Figure 6: Throughput of a saturated system, varying the
ratio of reads to writes when all clients connect to the
leader.

