Overflow Persitence

Can use disk

Contains
Operates In o SOLFire Partitions
T and Replicates
SQLonFire Data
Licensed Executes 25 a - E
Across ' o
Partitions

Recovers

Owned By

Alternatively
Partitioned

VMware vFabric SQLFire
- Main Memory .
- Distributed (cloud, commodity) _ _/
- Partitioning |
- (A)synchronous Replication
- Stored Procedures ' /

- Closed Source
Familiar, SQL-like
implementation
of a distributed
database system

“

SQL on Fire

Unless otherwise noted, info and examples are from VMware's documentation.

@:Prezi

VMware vFabric SQLFire

» Main Memory f >
- Distributed {cloud, commodity} _)
= Partitioning 1
« {Alsynchronous Replication 4)
+ Stored Procedures £ N J
<

+ Closed Source

SQLFire

Familiar, SQL-like
implementation
of a distributed
database system

Operates In

SQL on Fire

Uniess cererwice rated, (1l el 3y s e P, MUAE X, dOCUT N R

VMware vFabric

¢
¢
¢

s

- VMware's suite of software for cloud
application development

+ SQLFire = GemFire (at right) e
» Newer, Standard SQL, Optimized —_—— s
Do op mark s Frazuctizn Gurrien In-Mimcry Dats Management Dynasie Sene
\] 4‘I ‘¢. > !
: y | . Ur L AL A
S = S5 - - Xecutes
e SR
[ro—

= r ¥ 9 ACross

VMware vFabric

- VMware's suite of software for cloud - a———
application development
- SQLFire = GemFire (at right)
- Newer, Standard SQL, Optimized

Development QA Production GemFire In-Memory Data Management Dynamic Scale

¥

Traditional
Datacen t

(Apac h HTTP)
Appicatic Se

Web Server ‘Web Server
(Apache HTTP) (Apache HTTP)

Application Server Application Server
(Apache Tomcat) (Apache Tomcat)

a—
N

Cloud

(Apache HTTP)

(Apache Tomcat)
(AMQP)

File Systems Databases Mainframes/other

W:Prez

Licensed

VMWare

Focuses:

« Virtualization

- Distributed applications
Location: Palo Alto, CA
Sales: $3.767096 bil

MNuafides &0 7N LD

vFabric Licensing: per VM, average

Cloud Application Requirement vFabric Approach

Deploy applications on pools of virtual infrastructure rather

than physical servers Per-VM pricing for hardware independence

License based on average, not peak usage.
Accommodate workload spikes from business cycles coupled
with large user base Usage tracked but not limited, in order to accommodate
workload spikes.

Re-use licenses across different application tiers: web tier,

Reduce time-to-market by initially releasing applications in a app servers, data caches, databases, and message servers.
“good enough” configuration that is later optimized as For instance, you can initially deploy 10 vFabric Advanced
performance data is collected VVMs as application servers, then later re-deploy them as 10

database servers.

vFabric Edition Price with (USD) Price with (USD)

vFabric Standard $1,200/VM + 25% annual SnS $1,200/VM + 21% annual SnS

vFabric Advanced $1,800/VM + 25% annual SnS $1,800/VM + 21% annual SnS

=1 1DCWU

a —
V -—
File Systems Databases Mainframes/other

VMWare

VB 10714 1 1.7
e

Jo—=

ations
A

W Owned By

VMWare

Focuses:

- Virtualization

- Distributed applications
Location: Palo Alto, CA
Sales: $3.767096 bil
Profits: $0.723936 bil
Assets: $8.680808 bil
Employees: 11,000 e e B

VMW 107.11 1 1.79 (1.64%) o=

nge
nge 74.04 - 111.43 Mkt Cap 13.6228 EPS NiA

i .
Q, Zoom |_1d| &d [im[dm] G ty | 2y | Sy [10y [l

http://finapps.forbes.com/finapps/jsp/finance/compinfo/CIAtAGlance.jsp?tkr=VMW

{PRQN

Overflow Persitence

Can use disk

Contains
Operates In ~ . SGLFire Partitions
T and Replicates
SQLonFire Data
Licensed Executes =5 g : E
Across ' o
Partitions

Recovers

Owned By

Alternatively
Partitioned

- Data Stores (i
- Host data
+ Execute log
« Single-hop
» Accessors

@
+ Do not hos
- Execute loc
+ Single-hop
- Locators

- Do not hos
+ Do not tou
« Discover m
« Clients que
load (other
+ Only wa

OLDSQL

CREATE TABLE AIRLINES
1y «

\
S

NOT MULL COMSTRAINT AIRLINES_PE

7
@:Prezi AR
| % a ® 5, @ AIRLINE FULL VARC

NS
=
3
=
=
&

RiZ4\

SQLFire members

- Data Stores (majority)
- Host data
- Execute local/distributed sqlf queries
- Single-hop access to any piece of data
- ACcessors
- Do not host data
- Execute local/distributed sqlf queries
- Single-hop access to any piece of data
- Locators
- Do not host data
- Do not touch any queries
- Discover members of cluster
- Clients query the locator for the server with the least amount of
load (other active client connections)
- Only way to balance server load from clients

@:Prezi

Partitions
and Replicates
Data

OLDSQL

CREATE TABLE AIRLINES

(
AIRLINE CHAR(2) NOT NULL CONSTRAINT AIRLINES_PK

PRIMARY KEY,
AIRLINE_FULL VARCHAR(24),
ECONOMY_SEATS INTEGER,
BUSINESS_SEATS INTEGER,
FIRSTCLASS_SEATS INTEGER

)

Our developers are comfortable with SQL.
Operating in the cloud, they now need to
easily and efficiently:
- Partition large datasets
- Replicate data to increase throughput
and guard against (isolated) node failures
- Remember, working in main memory

|||||||

CREATE TABLE FLIGHTS
(

FLIGHT_ID CHAR(6) NOT NULL ,

ORIG_AIRPORT CHAR(3),
DEPART_TIME TIME,
DEST_AIRPORT CHAR(3),
ARRIVE_TIME TIME,
MILES INTEGER,
AIRCRAFT VARCHAR(6),

CONSTRAINT FLIGHTS_PK PRIMARY KEY (FLIGHT_ID)

)

http://www.infog.com/news/2012/01/sglfire-1-0

@:Prezi

easily and efficiently:
- Partition large datasets
- Replicate data to increase throughput
and guard against (isolated) node failures
- Remember, working in main memory

—_— - - e

ARRIVE_TIME TIME,
MILES INTEGER,
AIRCRAFT VARCHAR(B),

CONSTRAINT FLIGHTS_PK PRIMARY KEY (FLIGHT_ID)

)

hittecidawia.infog.c ormdnews/201 2701 /s fire-1-0

SQLFire Partitioning and Replication: Ideal for Star Schemas

CREATE TABLE AIRLINES CREATE TABLE FLIGHTAVAILABILITY

((

AIRLINE CHAR(2) NOT NULL CONSTRAINT AIRLINES_PK PRIMARY KEY, FLIGHT_ID CHAR(6) NOT NULL,

AIRLINE_FULL VARCHAR(24), SEGMENT_NUMBER INTEGER NOT NULL,
ECONOMY_SEATS INTEGER, FLIGHT_DATE DATE NOT NULL,
BUSINESS_SEATS INTEGER, ECONOMY_SEATS_TAKEN INTEGER DEFAULT O,

FIRSTCLASS_SEATS INTEGER
) REPLICATE;

BUSINESS_SEATS_TAKEN INTEGER DEFAULT O,
FIRSTCLASS_SEATS_TAKEN INTEGER DEFAULT O,
CONSTRAINT FLIGHTAVAIL_PK PRIMARY KEY (

Replication handled FLIGHT_ID,

synchronously (blocking) EEE;:?NDTE?;MBER'

CREATE TABLE FLIGHTS CONSTRAINT FLIGHTS_FK2 Foreign Key (
FLIGHT_ID,

(

FLIGHT_ID CHAR(6) NOT NULL,
ORIG_AIRPORT CHAR(3),
DEPART_TIME TIME, FLIGHT_ID,
DEST_AIRPORT CHAR(3), >EGMENT_NUMBER)

ARRIVE_TIME TIME,)
MILES INTEGER, PARTITION BY COLUMN (FLIGHT_ID)

AIRCRAFT VARCHAR(6), COLOCATE WITH (FLIGHTS),

CONSTRAINT FLIGHTS_PK PRIMARY KEY (FLIGHT_ID)

)
PARTITION BY COLUMN (FLIGHT_ID);

SEGMENT_NUMBER)
REFERENCES FLIGHTS (

http://www.infog.com/news/2012/01/sqlfire-1-0
and documentation

@:Prez

CREATE TABLE COUNTRIES

(. . .
COUNTRY VARCHAR(26) NOT NULL, Pa rtltlo al ng/Repl |Cat0n

COUNTRY_ISO_CODE CHAR(2) NOT PRIMARY app“ed within server
KEY,

REGION VARCHAR(26), grou p
) SERVER GROUPS (OrdersDB,

OrdersReplicationGrp)

Multiple server groups for logical partitioning
Logically partition your data into
multiple schemas. Associate each
schema with a server group.

For instance, for a financial trading
application, all trades, positions and
SQLFire || SQLFire SQLFire SQLFire SQLFire pricing data could be managed in
Server Server Server Server || Serer Group1, and all reference data can
be managed in Group 2.

Group 1 ' Group 2

You can add or remove capacity to
any group as needed.

@:Prez

Executes
ACross
Partitions

Parallel Execution of Stored Procedures

CallableStatement callableStmt = connection.prepareCall("{CALL order_credit_check(?) ");
callableStmt.setArray(1, <list of customer IDs>);

// SQLFire data-aware procedure invocation
CallableStatement callableStmt = connection.prepareCall("{CALL order_credit_check() "
+ "ON TABLE Orders WHERE customerlID IN (?)}");
callableStmt.setArray(1, <list of customer IDs>);

// order_credit_check will be executed in parallel on all members where the orders
// corresponding to the customerIDs are managed

{PRQN

CWCULCO

\CrOsSS
rtitions

| Execution of Stored Procedures

= connection. prepareCall{"{CALL order_credit_check(?) ");
customer 1Ds>);

re invocation

tmt = connection,prepareCall{("{CALL arder_credit_check() "
RE customeriD IN {7)}");

t of customer |Ds=);

.ecuted in parallel on all members where the orders
1erlDs are managed

@:Prezi

PR LI i,

MILES INTEGER.

AIRCRAFT VARCH ARIE),

CONSTRAINT FLIGHTS_PK PRIMARY KEY (FLIGHT_ID)

i
PARTITION BY COLUMN (FLIGHT_ID)

CREATE TABLE COUNTRIES

{

COUNTRY VARCHAR(26) MOT MULL,
COUNTRY_ISO_CODE CHAR(2) NOT PRIMARY
KEY,

PARTITIC

Partitioning/Replicaton
applied within server

REGICIN VARCHAR(26), grDUp

) SERVER GROUPS (OrdersDB,
OrdersReplicationGrp)

Multiple server groups for logical partitioning

S0 Fire SaLFre
Gerver Server

Group 1 Group 2

Ifern

Logically partition your data into
multiple schemas, Associate each
schema with a server group
Forinstance, for a financial trading
application. all trades. positions and
SOLFim pricing data could be managed in
Serwn Group1, and all reference data can
be managed in Group 2.

You can add or remove capacity to
any group as needed.

afive

Alternatively
Partitioned

Partitioning Schemes Supported

CREATE TA

Orders

Orderld INT MOT MULL,
Iternid INT,

Mumitems [MT,

omerName WARCHAR(10
derDate DATE,

‘ K10) INT, C
II//-.—:-\\\'_I p Qo7] TRAINT Pk_Crders ¥ KE oy SHIU.:‘C.,.IA;!-“EE' . AR KEY oot RAINT Pk_Orders PRIMARY KEY
\’{Eﬁ' marhame) F_UNJJIH UM Orc IMARY KEY (Orderid) e -E{ Priority)

P ARTITIORE A T ¢ e

|||||||

Partitioning Schemes Supported

CREATE TABLE Orders

(

Orderld INT NOT NULL,

Itemid INT,

Numitems INT,

CustomerName VARCHAR(100),

OrderDate DATE,

Priority INT,

Status CHAR(10),

CONSTRAINT Pk_Orders PRIMARY KEY (Orderld)

)
PARTITION BY COLUMN (CustomerName)

SERVER GROUPS (OrdersDBServers);

CREATE TABLE Orders

(

Orderld INT NOT NULL,

Itemid INT,

Numltems INT,

CustomerName VARCHAR(100),

OrderDate DATE,

Priority INT,

Status CHAR(10),

CONSTRAINT Pk_Orders PRIMARY KEY (Orderld)

)
PARTITION BY (MONTH(OrderDate));

CREATE TABLE Orders

(

Orderld INT NOT NULL,

I[temid INT,

Numltems INT,
CustomerName VARCHAR(100),
OrderDate DATE,

Priority INT,

Status CHAR(10),

CONSTRAINT Pk_Orders PRIMARY KEY (Orderld)
)

PARTITION BY LIST (Status)

(

VALUES ('pending’, 'returned'),
VALUES ('shipped', 'received'),
VALUES ('hold")

)

CREATE TABLE Orders

(

Orderld INT NOT NULL,

Iltemlid INT,

Numltems INT,

CustomerName VARCHAR(100),
OrderDate DATE,

Priority INT,

Status CHAR(10),

CONSTRAINT Pk_Orders PRIMARY KEY (Orderld)
)

PARTITION BY RANGE (Priority)
(

VALUES BETWEEN 1 AND 11,
VALUES BETWEEN 11 AND 31,
VALUES BETWEEN 31 AND 50);

CREATE TABLE COUNTRIES

(

COUNTRY VARCHAR(26) NOT NULL,
COUNTRY_ISO_CODE CHAR(2) NOT PRIMARY
KEY,

REGION VARCHAR(26),

)
REDUNDANCY 1

Recovers

Recovery from Replicas

SQLFire Member (M2) |
e Any peer or server
T { o _C;)MJ detects problem;
{m l) issues suspect alert
@ jim) to membership
<»Et “““““ manager. After
e { - } timeout, manager
k | | Y —— | propogates revised
#® O | membership list.

{PRQN

Overflow Persitence

Can use disk

Contains
Operates In ~ . SGLFire Partitions
T and Replicates
SQLonFire Data
Licensed Executes =5 g : E
Across ' o
Partitions

Recovers

Owned By

Alternatively
Partitioned

-

!_OW | DESTROY }]) REPLICATE PERSISTENT;
=TOLIVE value} - uses default diskstore

SYNCHRONOUS]

Overflow Persitence

Can use disk

Disk Overflow as a Data Eviction Protocol

CREATE TABLE table-name {
({ column-definition | table-constraint }
[, { column-definition | table-constraint}]*)

[(column-name [, column-name] *)]
AS gquery-expression
WITH NO DATA

[partitioning_clause | REPLICATE]

[SERVER GROUPS (server_group_name [, server_group_name]*)]

[HUB ('hub-name' | ALL)]

[ASYNCEVENTLISTENER (async-listener-id)]

[EVICTION BY {eviction_criterion} EVICTACTION { OVERFLOW | DESTROQOY }]

[EXPIRE { TABLE | ENTRY } WITH { IDLETIME value | TIMETOLIVE value}
ACTION { DESTROY | INVALIDATE }]*

[PERSISTENT] ['disk-store-name'] [ASYNCHRONOUS | SYNCHRONOUS]

{PRQN

-

!_OW | DESTROY }]) REPLICATE PERSISTENT;
=TOLIVE value} - uses default diskstore

SYNCHRONOUS]

Overflow Persitence

Can use disk

Persistence

CREATE TABLE COUNTRIES CREATE DISKSTORE STORET
(MAXLOGSIZE 1024

COUNTRY VARCHAR(26) NOT NULL CONSTRAINT it’fg@ngPCp‘E?OTSSECTION e
COUNTRIES_UNQ_NM Unique,

COMPACTIONTHRESHOLD 80
COUNTRY_ISO_CODE CHAR(2) NOT NULL TIMEINTERVAL 223344
CONSTRAINT COUNTRIES_PK PRIMARY WRITEBUFFERSIZE 19292393
KEY, QUEUESIZE 17374
REGION VARCHAR(26), 'dir1'(456)

CONSTRAINT COUNTRIES _UC
CHECK (country_ISO_code =

upper(country_ISO_code))
) REPLICATE PERSISTENT; CREATE TABLE Orders(Orderld INT NOT NULL,ItemId INT)

-- uses default diskstore persistent 'OrdersDiskStore' asynchronous

{PRQN

Overflow Persitence

Can use disk

Contains
Operates In ~ . SGLFire Partitions
T and Replicates
SQLonFire Data
Licensed Executes =5 g : E
Across ' o
Partitions

Recovers

Owned By

Alternatively
Partitioned

VMware vFabric SQLFire
- Main Memory .
- Distributed (cloud, commodity) _ _/
- Partitioning |
- (A)synchronous Replication
- Stored Procedures) /

- Closed Source
Familiar, SQL-like
implementation
of a distributed
database system

“

SQL on Fire

Unless otherwise noted, info and examples are from VMware's documentation.

@:Prezi

