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Partial Solutions
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Figure 8: Branch and bound enumeration tree for partitioning
configuration search problem.




MESA Algorithm

MESA (W:workload, B:storage bound)

01 wMemo = CreatelorkloadMemo (W, B)

02 incumbent = null

03 bbTree = CreateRoot (wMemo)

04 while (!stop_condition())

05 currConfig = SelectNode (bbTree) // DFS policy
06 newConfig = CreateChildConfig(currCenfig) // table/column selection policy
07 if (newConfig viclates B constraint)

08 prune (newConfig)

09 else

10 cost = ParallelPostProcess (wMemo, newConfig)
11 if (newConfig is leaf or can be promoted)

12 if {cost < incumbent.cost)

13 incumbent = newConfig

14 prune (newConfig)

ih else // partially defined configuration

16 if (incumbent.cost < cost)

17 prune (newConfig)

18 return incumbent

Figure 9: Memo-based search algorithm using branch and bound enumeration.
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Table 1: Experimental benchmarks
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Population

Ver rate

tation rate

Selection rate

Tab

created (or selected) off-springs will be randomly
changed.
rcentage of the worst of the current popula-

tion that will be discarded (after re-generation)

le 2: GA parameters

Parameter

selection

Stop
condition

Value
DFS

replicate,
distribute

Table 3

the forward- : back-tracking policy in
the branch a
See Section 3.5 for details.

the number of iterations after which the search
terminates

: MESA parameters
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Figure 12: Quality over time: L'Oreal.
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Table 4: Comparison of techniques
Figure 11: Quality over time: TPC-DS. B MESA

Figure 13: Quality over time: MSSales.




Impact of replication bound

1950000

M Optimizer Cost
1940000
1920000

1900000

1880000

30GE

Figure 14: Quality of recommendations under various replica-
tion bounds.
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Figure 15: Time overhead of workload MEMO creation.
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Figure 16: Speedup of subsequent optimizations
using workload MEMO.










~ Schism: a Workload-Driven
Approach to Database

» Replication and Partitioning




Background

* Problem:

distributed transactions are expensive in
OLTP settings.

why: two-phase commit

.+ Solution:

minimize the number of distributed
transactions, while producing balanced
partitions.

'« Introduce:
- Schism
H-store




Five steps:

Data pre-procession
Creating the graph
Partitioning the graph
Explaning the partition
Final validation

Schism



Graph Representation

notion: node, edge, edge weights
example: a bank database (from paper)
workload: 4 transactions

GRAPH REPRESENTATION

[ transaction edges

BEGIM BEGIN
UPDATE account SET bal=60k| |UPDATE account SET bal=bal-1k WHERE name="carlo";
WHERE id=2; UPDATE account SET bal=bal+1k WHERE name="evan";
SELECT * FROM account COMMIT
WHERE id=5;
COMMIT T
SELECT * FROM account
account WHERE id IN {1,3}
id | name bal ABORT
1 |carlo 80k BEGIN
2 |evan 60K UPDATE SET bal=bal+1k
3 |sam 129k WHERE bal < 100k:
4 |eugene 29k COMMIT
S 1vang L= PARTITION O

PARTITION 1

Figure 2: The graph representation




Graph Representation

an extension of the basic graph representation

Graph replication: “exploding” the node representing

a single tuple into a star-shaped configuration of n + 1
nodes. ( Figure 3 from paper)
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Figure 3: Graph with replication



Graph Partitioning

split graph into k partitions—overall cost of the cut
edges is minimized.

result: a fine-grained partition
lookup table: node--partition label
note: replicated tuple
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Figure 3: Graph with replication




Explanation Phase

use decision tree to find a compact model that
captures the (tuple, partition) mappings.

(id = 1) — partitions = {0, 1}
(2 <id < 4) — partition =0
(id = 4) — partition = 1

REPLICATION
- @5

1 replication edges
1 transaction edges

tuple parlitiun'
< id | label
1 | B
2 0
3 0
4 1
5 L

Figure 3: Graph with replication



Final Validation

* compare solutions to select the final
partitioning scheme.

* fine-grained per-tuple partitioning,range-
predicate partitioning, hash-partitioning




Optimization

* graph partitioners scale well in terms of the
number of partitions, but running time
Increases substantially with graph size.

* methods for reducing size of graph:
. transaction-level sampling
tuple-level sampling
tuple-coalescing




Experimental Evaluation
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