
Database Design

Wenfeng Xu
Hanxiang Zhao



Automated Partitioning Design 
in Parallel Database Systems

• MPP system:
• A distributed computer system which 
• consists of many individual nodes, 

each of
• which is essentially an independent 
• computer in itself.



• Bottelneck: Excessive data transfers
• How to cope?
• Originally partitioned in an adequate 

way



• Two categories:
• 1) Optimizer-independent
• 2) Shallowly-intergrated
• Two problems:
• 1) recommedations suffer from the tuning 
• tools not being in-sync with optimizer's 
• decisions
• 2)performance of the tuning tool is likely to 
• dimish due to narrow APIs between the tool 
• and the DBMS



• Advisor:
• Deeply-integrated
• Parallel query optimizer.



• PDW: appliance



• Plan Generation 
and Execution



• Query plan->parallel execution plan(DSQL)
• DSQL:
• 1) SQL operations
• an SQL statement to be executed against 
• the underlying compute node’s DBMS 
• instance
• 2) Data movement operations
• transfer data between DBMS instances on 
• different nodes





• MEMO: recursive data structure
• Groups and groupExpressions



• AUTOMATED PARTITIONING DESIGN 

• PROBLEM

• Given a database D, a query workload W, 

• and a storage boundB, find a partitioning 
strategy (or configuration) for D such that

• (i) the size of replicated tables fits in B, and 

• (ii) the overall cost of W is minimized.



TUNING WITH SHALLOW 
OPTIMIZER 

INTERGRATION



• the complex search space
• the search algorithm
• the evaluation mechanism



• shallowly-
integrated 
approach for 

• partitioning tuning 
design:

• 1)Rank-Based 
Algorithm

• 2)Generic 
Algorithm



• {nation, supplier, region, lineitem, 
orders, 

• partsupp,
• customer, part}  →
• {R,R,R,D1,D2,D1,D1,D1},



• Disadvantage of Shallowly-Integrated 
• Approaches
• 1)search space is likely to be 

extremely 
• large
• 2)each evaluation of a partitioning 
• configuration is expensive



• TUNING WITH DEEP 
OPTIMIZER 

• INTEGRATION
• MESA
• “workload memo”
• Figure 7:
• Interesting Columns
• 1)columns referenced 

in equality join 
• predicates
• 2)any subset of group-

by columns



• *-partitioning:

• “every” partition or replication option for a 

• base table is simultaneously available

• Branch and Bound Search

• Pruning:discards subtrees when a node or 

• any of its descendants will never be either 

• feasible or optimal



• Figure 8
• Node, Leaf, Bud, 

Bounding function, 
• Incumbent
• 1)Node selection policy
• 2)Table/column selection 

policy
• 3)Pruning strategy
• 4)Bud node promotion
• 5)Stopping condition



MESA Algorithm



• Experimental Evaluation
• Table 1,2,3
• We compare the quality of the 
• recommendations produced by each 
• technique







Impact of replication bound



• Performance of 
MESA

• Workload MEMO 
construction 
overhead



• Subsequent 
reoptimization calls



• EXTENSIONS
• Updates
• Multi-Column Partitioning
• Range Partitioning
• Interaction With Other Physical 

Design 
• Structures



•  CONCLUSION
• techniques for finding the best partitioning 
• configuration in distributed environments
• deep integration with the parallel query 
• optimizer
• Using its internal MEMO data structure for 
• faster evaluation of partitioning 
• configurations and to provide lower bounds 
• during a branch and bound search strategy



Schism: a Workload-Driven 
Approach to Database 

Replication and Partitioning



Background
• Problem: 
    distributed transactions are expensive in 

OLTP settings. 
    why: two-phase commit 

• Solution:
    minimize the number of distributed 

transactions, while producing balanced 
partitions.

• Introduce:
    Schism
    H-store



Schism

• Five steps:

• Data pre-procession
• Creating the graph
• Partitioning the graph
• Explaning the partition

• Final validation  



Graph Representation

• notion: node, edge, edge weights

• example: a bank database (from paper)
• workload: 4 transactions



Graph Representation
• an extension of the basic graph representation
• Graph replication:  “exploding” the node representing 

a single tuple into a star-shaped configuration of n + 1 
nodes. （ Figure 3 from paper)

 



Graph Partitioning
• split graph into k partitions→overall cost of the cut 

edges is minimized.
• result: a fine-grained partition
• lookup table: node--partition label 
• note: replicated tuple



Explanation Phase
• use decision tree to find a compact model that 

captures the (tuple, partition) mappings.
• (id = 1) → partitions = {0, 1}
• (2 ≤ id < 4) → partition = 0
• (id ≥ 4) → partition = 1



Final Validation

• compare solutions to select the final 
partitioning scheme.

• fine-grained per-tuple partitioning,range-
predicate partitioning, hash-partitioning 



Optimization

• graph partitioners scale well in terms of the 
number of partitions, but running time 
increases substantially with graph size.

• methods for reducing size of graph:

    transaction-level sampling

    tuple-level sampling

    tuple-coalescing



Experimental Evaluation



Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

