Database Desi

Wenfeng Xu
Hanxiang Zhao

 PDW: appliance

Compute
Maode 1

[

Control Node

Compute
Mode 3

s

Intermediate Intermediate
Results ; Results

Results

Overview of a 4 node appliance.

Plan Generation
and Execution

Hypothetical
Execution

Query Q —iﬁlﬂ
- MPP
Optimizer

@)

Parallel Execution {5)

L

Plan P
o (Serial)

Search Space

Figure 4: Parallel query optimization flow (all on the control
node).

(a'] Selact *
* From Customer C,
Orders O
Whera

Group 6: (1. Move(3))

Group 5 (1. Move(1)

Augmented (Parallel) Memo

Group 4: 1‘ Join(1,3) j
Group 3 1‘ Select(2))
Group 2: 1.Gat0)

Group 1: (Glgetc

Initial Memo

Figure 3: Parallel query optimization flow:

final DSQL plan.

P ——
Sorted Index Scan)

Final (Serial) Memo

r r1-l_'|-r-'\ o l:r-r

LI WL B T A L)

D 0.0_TOTALPRICE > 1000

Shuffle (o_custkey): Data
Select * From Orders O Movement
Where O.o_totalprice > 1000 Operation
TempTable: T1

saL
Operation
From Customer C.
Where C.c_custk

OPTIMIZER
INTERGRATION

(Database) ¥ (Workload)
il Sl

P

Partitioning (' MPP Engine

Advisor
y f

e e N /
Search™) Search |/ Simulation of Parallel C!uary

SpEDE Alg‘n rithm 3 '-.IIIIIIPEHI“ICIT'I G'CITHILQ D_ptln_l iZEr

Shell Appliance

_____,_.—-"-hn_.____‘__
~Partitioning Config.™,
i s
“~_Recommendation_-

—

Figure 5: Partitioning advisor architecture.

shallowly-
integrated
approach for
partitioning tuning
design: - -
1)Rank-Based B

8 Be
Al gorlthl I I : Sclut‘ijstH{S}
2)Generic

— — Yes

-
=l
E
B

g
@

- Figure 6: Flowchart for genetic algorithm.
Algorithm ; e

TUNING WITH DEEP

OPTIMIZER
INTEGRATION

MESA BTy 2
“workload memo”
Figure 7: i ks

Interesting Columﬁs oY

1)columns referenced
iIn equality join

Sharad laaf nodes (repressnting tables)

p re d I Ca te S Figure 7: Workload MEMO data structure.

2)any subset of group-
by columns

Partial Solutions

/2]
=
S
2
=1
]
L@
(&
L
o
£
S
o

@- root node
(- bud node

@ - leaf node (D+,Ds,D2,R,D3)

(D‘],DE”DE_.H,H,DE:'

Figure 8: Branch and bound enumeration tree for partitioning
configuration search problem.

MESA Algorithm

MESA (W:workload, B:storage bound)

01 wMemo = CreatelorkloadMemo (W, B)

02 incumbent = null

03 bbTree = CreateRoot (wMemo)

04 while (!stop_condition())

05 currConfig = SelectNode (bbTree) // DFS policy
06 newConfig = CreateChildConfig(currCenfig) // table/column selection policy
07 if (newConfig viclates B constraint)

08 prune (newConfig)

09 else

10 cost = ParallelPostProcess (wMemo, newConfig)
11 if (newConfig is leaf or can be promoted)

12 if {cost < incumbent.cost)

13 incumbent = newConfig

14 prune (newConfig)

ih else // partially defined configuration

16 if (incumbent.cost < cost)

17 prune (newConfig)

18 return incumbent

Figure 9: Memo-based search algorithm using branch and bound enumeration.

\;

xperlmental Evaluation
;Table 2.3
' We compare the quality of the

' recommendations produced by each
' technique |

hinl.
R4

p I
o

RTSSaIes mmGB)

Table 1: Experimental benchmarks

P

#of
generations
Population

Ver rate

tation rate

Selection rate

Tab

created (or selected) off-springs will be randomly
changed.
rcentage of the worst of the current popula-

tion that will be discarded (after re-generation)

le 2: GA parameters

Parameter

selection

Stop
condition

Value
DFS

replicate,
distribute

Table 3

the forward- : back-tracking policy in
the branch a
See Section 3.5 for details.

the number of iterations after which the search
terminates

: MESA parameters

40000000 = - R 150000
HRANK 100000

Figure 12: Quality over time: L'Oreal.

Qualiy(Q) MESA Toral Time(T) MESA
Imp(Q) Imp(T)
G min 42 sec X "
4hrs 28 min Lizamn T

Approach

3 h 53 min
251 28 min
32 min 42 sec
45 min 25 sec
14 h 12 min
S min | sec
G 11 min

MSSales G . 27 h 39 min

MESA 1 h 50 min
Table 4: Comparison of techniques
Figure 11: Quality over time: TPC-DS. B MESA

Figure 13: Quality over time: MSSales.

Impact of replication bound

1950000

M Optimizer Cost
1940000
1920000

1900000

1880000

30GE

Figure 14: Quality of recommendations under various replica-
tion bounds.

« Performance of
MESA

« Workload MEMO
construction
overhead

Wworklaad

Memo Craation U gueria
W\What-If Opt.

Time

Figure 15: Time overhead of workload MEMO creation.

« Subsequent
reoptimization calls

B Optimization using Workload Memao

B \What-If Opt. Time 27 queries

50 gueries

g
v
£
@
E
]

L"Oreal MiSales

Figure 16: Speedup of subsequent optimizations
using workload MEMO.

~ Schism: a Workload-Driven
Approach to Database

» Replication and Partitioning

Background

* Problem:

distributed transactions are expensive in
OLTP settings.

why: two-phase commit

.+ Solution:

minimize the number of distributed
transactions, while producing balanced
partitions.

'« Introduce:
- Schism
H-store

Five steps:

Data pre-procession
Creating the graph
Partitioning the graph
Explaning the partition
Final validation

Schism

Graph Representation

notion: node, edge, edge weights
example: a bank database (from paper)
workload: 4 transactions

GRAPH REPRESENTATION

[transaction edges

BEGIM BEGIN
UPDATE account SET bal=60k| |UPDATE account SET bal=bal-1k WHERE name="carlo";
WHERE id=2; UPDATE account SET bal=bal+1k WHERE name="evan";
SELECT * FROM account COMMIT
WHERE id=5;
COMMIT T
SELECT * FROM account
account WHERE id IN {1,3}
id | name bal ABORT
1 |carlo 80k BEGIN
2 |evan 60K UPDATE SET bal=bal+1k
3 |sam 129k WHERE bal < 100k:
4 |eugene 29k COMMIT
S 1vang L= PARTITION O

PARTITION 1

Figure 2: The graph representation

Graph Representation

an extension of the basic graph representation

Graph replication: “exploding” the node representing

a single tuple into a star-shaped configuration of n + 1
nodes. (Figure 3 from paper)

1 replication edges
[/ transaction edges

tuple |partition
4 jd [labal |
1|

=1 =1|

2

24
a_|
:

Figure 3: Graph with replication

Graph Partitioning

split graph into k partitions—overall cost of the cut
edges is minimized.

result: a fine-grained partition
lookup table: node--partition label
note: replicated tuple

REPLICATION
- @5

1 replication edges
[transaction edges

tuple |partition
< id | label |
1 | H
3 .
21 0
"
5 1

Figure 3: Graph with replication

Explanation Phase

use decision tree to find a compact model that
captures the (tuple, partition) mappings.

(id = 1) — partitions = {0, 1}
(2 <id < 4) — partition =0
(id = 4) — partition = 1

REPLICATION
- @5

1 replication edges
1 transaction edges

tuple parlitiun'
< id | label
1 | B
2 0
3 0
4 1
5 L

Figure 3: Graph with replication

Final Validation

* compare solutions to select the final
partitioning scheme.

* fine-grained per-tuple partitioning,range-
predicate partitioning, hash-partitioning

Optimization

* graph partitioners scale well in terms of the
number of partitions, but running time
Increases substantially with graph size.

* methods for reducing size of graph:
. transaction-level sampling
tuple-level sampling
tuple-coalescing

Experimental Evaluation

BSCHISM O MANUAL BREPLICATION O HASHING
100% a4 g% 100%54, 1% 100%99.9% 100%
_ 85.9% S0530% | 5 0%
— "
- E 62.1%
= -
50%
=5 50% - 2
i
2 ¥
é 25K : 15 12.1%12.1 12.7%12.7 10.8%0.8 12.1% T" E%E'it'l 8 B
= . 4.5% 5.1%0.5%
0 0% 05l 0% E-.E'H{I.ilE'Eh w0 |
gataset: ¥C5E-A YC58-E TPCC-2W TPCC-2W TRCC-50W TRC-E EPINICNS EPINICNS RANDOM
partitians: any 100 z b 10 z z 10 10
any 1% 503 0.5% 1% % 15% 15% any
SCHISM: nashing range-predicstes | rangs-pradicates | rangs-predicates | range-predicates | renge-predicates | look-up table oak-up t2ble niashing

(" Figure 4: Schism database partitioning performance.

) /;\r.'

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

