
Zephyr: Live Migration In Shared Nothing Databases 
For Elastic Cloud Platforms

"Cut Me Some Slack": Latency-Aware Live 
Migration For Databases

Yang Zou
yang@cs.brown.edu

CSCI 2270:
Advanced Topics in Database 

Management

1

http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
mailto:yang@cs.brown.edu
mailto:yang@cs.brown.edu
http://www.cs.brown.edu/courses/cs227/home.html
http://www.cs.brown.edu/courses/cs227/home.html
http://www.cs.brown.edu/courses/cs227/home.html
http://www.cs.brown.edu/courses/cs227/home.html
http://www.cs.brown.edu/courses/cs227/home.html
http://www.cs.brown.edu/courses/cs227/home.html


BACKGROUND

• Infrastructures for large cloud platforms is challenged by applications 
that has small data footprint and unpredictable load 
patterns 

• System’s operating cost becomes critical if it’s built on a 
pay-per-use infrastructure 

• We want to minimize cost and guarantee service at the same time

• Elastic load balancing is wanted: 1)scale up and down based on the 
load 2) low cost to migrate data between hosts

• How can we achieve this ?

2



LIVE MIGRATION

• Why Live Migration? 

• (Against Stop & Copy)

3



WHAT IS ZEPHYR

• Implemented in an open 
source RDBMS

• First complete end-to-end 
solution for live migration in 
a shared nothing database 
architecture

• Very light-weighted 

4



HOW ZEPHYR WORKS 

• Normal Mode

• Init Mode

• Dual Mode

• Finish Mode

5



KEY IDEAS

• Init Mode

• Dual Mode

• Finish Mode

- Source node bootstraps destination node by sending 
wireframe (schema, data definitions, etc.) 
- Source node is still the unique owner of Dm

- Destination node notifies the source node about the 
completion of initialization
- Source node tells the query router to direct all new txns to 
destination node
- Both Source node and Destination node are the owner of Dm
- Pages are transferred to destination node on-demand
- Source node give up the ownership of Dm and destination 
owns Dm itself

- Source node transfers the remaining pages of Dm to the 
destination node 
- Source node initiates the termination of migration
- Source node and destination node work on normal mode

6



EXPERIMENTAL RESULTS

7



ANY QUESTIONS?

8



"Cut Me Some Slack": Latency-Aware Live 
Migration For Databases

• “Shared something database”

• Migrating data elegantly

• Can be implemented outside 
of a database product

• Used several existing tools, like 
XtraBackup, pv

9

http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf
http://www.cs.brown.edu/courses/cs227/papers/migration/slacker.pdf


SLACKER KEY IDEAS 

• Slacker Architecture 

• Each server runs an 
instance of Slacker

• Slackers migrates MySQL 
instances between servers 
that run Slacker

10



SLACKER KEY IDEAS

• Migration Slack & Setpoint Latency

• Resources can be used for migration

• The latency that maintains acceptable query performance

• Migration throttling: control the cost of each migration

• Need to adjust the cost on-the-fly (based on workloads)

11



SLACKER KEY IDEAS

• Adaptive Dynamic Throttling

• Determine the speed of migration according 
to the slack

• Adjust the speed of migration according to the 
slack in real time

• Speed of migration is controlled by PID

• Control the migration speed to make 
the transaction latency as close as the 
setpoint latency

12



EXPERIMENTAL RESULTS

13



CONCLUSION

• Zephyr: how to do migration

• Slacker : how to migrate data as fast as possible

• Zephyr + Slacker = Live Migration in H-Store (Hopefully...)

14



ANY QUESTIONS?

15



THANKS!

16


