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Roadmap

•  Paper 1: Data-Oriented Transaction 

Execution

•  Paper 2: OLTP Through the Looking Glass

•  Paper 3: Generic Database Cost Models for 

Hierarchical Memory Systems
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Storage Engine? 

•  the part of the database that actually stores 

and retrieves data

– responsible for db performance


• concurrency, consistency 

– separate from the database “front end”


• A single database can have several database 
engine options 

– e.g. MySQL supports InnoDB and MyISAM
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Paper 1


• Data Oriented Transaction Execution

– I. Pandis at al. (CMU/EPFL/Northwestern)

– VLDB ‘10
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Motivation

• Hardware has changed


– recently, we’ve run into “thermal wall”

• hard to fit more resistors per chip

• …must abide by Moore’s Law!


– add more cores per chip

–  rely on thread-level parallelism 


– most current architectures designed in the 80’s

• what assumptions were made about the hardware? 
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Thread-to-Transaction Model


•  in most database engines, each transaction 
assigned to its own thread

– more cores = more parallel threads

– each thread responsible for locking shared 

resources as needed

• works fine with a few threads, how about thousands 

executing concurrently on hundreds of hardware 
contexts?
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Data Access Pattern


•  Each thread only worries about its own 
transaction

– no coordination among transactions


•  i.e. uncoordinated data access 

– leads to high lock contention, especially at data 

“hot spots”
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Data Access Visualization
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exploited in order to improve both the I/O, as well as, the
microarchitectural behavior of the OLTP. 

In particular, the I/O executed during conventional OLTP
is random and low performing.1 The DORA executors can
buffer the I/O requests and issue them in batches since those
I/Os are expected to target pages that are physically close to
each other, improving the I/O behavior.

Furthermore, the main characteristic of the micro-
architectural behavior of conventional OLTP systems is the
very large volume of shared read-modify accesses by multiple
processing cores [A1]. Accesses which, unfortunately, are also
highly unpredictable [A6]. Due to the two aforementioned
reasons, emerging hardware technologies such as reactive
distributed on-chip caches (e.g., [A4][A1]) and/or the most
advanced hardware prefetchers (e.g., [A7]) fail to significantly
improve the performance of conventional OLTP. Since
DORA’s design is based on that the majority of the accesses to
a specific data region are coming by a specific thread, we
expect a “friendlier” behavior which can realize the full
potential of the latest hardware developments by providing
more private and predictable memory accesses. 

As future work, we plan to explore the potential of the
DORA design in those two fronts. 

A.4 Intra-transaction parallelism with aborts
DORA is designed around intra-transaction parallelism. The
low-latency and high-bandwidth inter-core communication in
modern multicores allows the execution of the DORA
transactions to flow from one thread to the other with minimal
overhead, as each transaction accesses different parts of the
database. One challenge with intra-transaction parallelism are
transactions with non-negligible abort rates. For example, the
TM1 benchmark is unusual in that a large fraction of
transactions (~25%) fail due to invalid inputs. In such
workloads, DORA may end up executing actions from already-
aborted transactions. 

There are two execution strategies DORA can follow for
such intra-parallel transactions with high abort rates. The first
execution strategy, is to continue to execute such transactions
in parallel and to check frequently for aborts. The second is to
serialize the execution. That is, even though there is

opportunity for actions from such transactions to proceed in
parallel, DORA can be pessimistic and execute them serially.
This execution strategy ensures that if an action aborts there is
no work wasted by the execution of any other parallel action.

Figure 11 compares the throughput of the Baseline system
and the two variations of DORA when an increasing number of
clients submit repeatedly UpdateSubscriberData transactions
from the TM1 benchmark. This transaction, whose parallel and
serial transaction flow graphs are depicted on the right side of
the figure, consists of two independent actions. One action
attempts to update a Subscriber and always succeeds. The
other action attempts to update a corresponding SpecialFacility
entry and it succeeds only 62.5% of the time, failing the rest of
the time due to wrong input. 

We plot the throughput of both two execution strategies
for DORA. The parallel execution is labeled DORA-P,
whereas the serial execution, which first attempts to update the
SpecialFacility and only if that succeeds it tries to update the
Subscriber, is labeled DORA-S. As we can see, the parallel
plan is a bad choice for this workload. DORA-P achieves less
performance than even the Baseline, whereas DORA-S scales
as expected. 

The DORA resource manager monitors the abort rates of
entire transactions and individual actions in each executor.
When the abort rates are high, DORA switches to serial
execution plans by inserting empty rendezvous points between
actions of the same phase. Still, it remains a challenge to apply
optimizations specific for DORA transactions.

1 As a proof, the performance of conventional OLTP systems
is significantly improved with the usage of Flash-based
storage technologies which exhibit high random access
bandwidth [A5]. 
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Figure 10a. Trace of the record accesses by the threads of a con-
ventional system; data accesses are uncoordinated and complex.

Figure 10b. Trace of the record accesses by the threads of a DORA
system; data accesses are coordinated and show regularity.
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action with high abort rate.
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Lock Contention As a Bottleneck 
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the machine utilization increases, the performance per CPU
utilization drops. When utilizing all 64 hardware contexts the
per hardware context performance drops by more than 80%.
Figure 1(b) shows the contention within the lock manager
quickly dominates. At 64 hardware contexts the system spends
more than 85% of its execution time on threads waiting to
execute critical sections inside the lock manager.

Based on the observation that uncoordinated accesses to
data lead to high levels of contention, we propose a data-
oriented architecture (DORA) to alleviate contention.   Rather
than coupling each thread with a transaction, DORA couples
each thread with a disjoint subset of the database. Transactions
flow from one thread to the other as they access different data,
a mechanism we call thread-to-data assignment. DORA
decomposes the transactions to smaller actions according to
the data they access, and routs them to the corresponding
threads for execution. In essence, instead of pulling data
(database records) to the computation (transaction), DORA
distributes the computation to wherever the data is mapped. 

A system adopting thread-to-data assignment can exploit
the regular pattern of data accesses, reducing the pressure on
contended components. In DORA, each thread coordinates
accesses to its subset of data using a private locking
mechanism. By limiting thread interactions with the
centralized lock manager, DORA eliminates the contention in
it (Figure 1(c)) and provides better scalability (Figure 1(a)). 

DORA exploits the low-latency, high-bandwidth inter-
core communication of multicore systems. Transactions flow
from one thread to the other with minimal overhead, as each
thread accesses different parts of the database. Figure 2
compares the time breakdown of a conventional transaction
processing system and a prototype DORA implementation
when all the 64 hardware contexts of a Sun Niagara II chip are
utilized, running Nokia’s TM1 benchmark [19] and TPC-C
Order-Status transactions [20]. The DORA prototype
eliminates the contention on the lock manager (Figure 2(a)).
Also, it substitutes the centralized lock management with much
lighter-weight thread-local locking mechanism (Figure 2(b)).

1.2 Contributions and document organization
This paper makes three contributions. 
• We demonstrate that the conventional thread-to-

transaction assignment results in contention at the lock
manager that severely limits the performance and
scalability of OLTP on multicores. 

• We propose a data-oriented architecture for OLTP that
exhibits predictable access patterns and allows to
substitute the heavyweight centralized lock manager with
a lightweight thread-local locking mechanism. The result

is a shared-everything system that scales to high core
counts without weakening the ACID properties. 

• We evaluate a prototype DORA transaction processing
engine and show that it attains up to 82% higher peak
throughput against a state-of-the-art storage manager.
Without admission control the performance benefits for
DORA can be up to 4.8x. Additionally, when unsaturated
DORA achieves up to 60% lower response times because
it exploits the intra-transaction parallelism inherent in
many transactions.
The rest of the document is organized as follows.

Section 2 discusses related work. Section 3 explains why a
conventional transaction processing system may suffer from
contention in its lock manager. Section 4 presents DORA, an
architecture based on the thread-to-data assignment. Section 5
evaluates the performance of a prototype DORA OLTP engine,
and Section 6 concludes.

2. RELATED WORK
Locking overhead is a known problem even for single-threaded
systems. Harizopoulos et al. [9] analyze the behavior of the
single-threaded SHORE storage manager [3] running two
transactions from the TPC-C benchmark. When executing the
Payment transaction, the system spends 25% of its time on
code related to logical locking, while with the NewOrder
transaction it spends 16%. We corroborate the results and
reveal the lurking problem of latch contention that makes the
lock manager the system bottleneck when increasing the
hardware parallelism.

Rdb/VMS [16] is a parallel database system design
optimized for the inter-node communication bottleneck. In
order to reduce the cost of nodes exchanging lock requests
over the network, Rdb/VMS keeps a logical lock at the node
which last used it until that node returns it to the owning node
or a request from another node arrives. Cache Fusion [17],
used by Oracle RAC, is designed to allow shared-disk clusters
to combine their buffer pools and reduce accesses to the shared
disk. Like DORA, Cache Fusion does not physically partition
the data but distributes the logical locks. However, neither
Rdb/VMS nor Cache Fusion handle the problem of contention.
A large number of threads may access the same resource at the
same time leading to poor scalability. DORA ensures that the
majority of resources are accessed by a single thread.

A conventional system could potentially achieve DORA’s
functionality if each transaction-executing thread holds an
exclusive lock on a region of records. The exclusive lock is
associated with the thread, rather than any transaction, and it is
held across multiple transactions. Locks on separator keys [8]
could be used to implement such behavior. 
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Figure 1. DORA compared to Baseline when the workload consists of TM1-GetSubscriberData transactions. (a) The throughput per CPU
utilization, as CPU utilization increases. (b) The time breakdown for the Baseline system. (c) The time breakdown for a DORA prototype.
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the machine utilization increases, the performance per CPU
utilization drops. When utilizing all 64 hardware contexts the
per hardware context performance drops by more than 80%.
Figure 1(b) shows the contention within the lock manager
quickly dominates. At 64 hardware contexts the system spends
more than 85% of its execution time on threads waiting to
execute critical sections inside the lock manager.

Based on the observation that uncoordinated accesses to
data lead to high levels of contention, we propose a data-
oriented architecture (DORA) to alleviate contention.   Rather
than coupling each thread with a transaction, DORA couples
each thread with a disjoint subset of the database. Transactions
flow from one thread to the other as they access different data,
a mechanism we call thread-to-data assignment. DORA
decomposes the transactions to smaller actions according to
the data they access, and routs them to the corresponding
threads for execution. In essence, instead of pulling data
(database records) to the computation (transaction), DORA
distributes the computation to wherever the data is mapped. 

A system adopting thread-to-data assignment can exploit
the regular pattern of data accesses, reducing the pressure on
contended components. In DORA, each thread coordinates
accesses to its subset of data using a private locking
mechanism. By limiting thread interactions with the
centralized lock manager, DORA eliminates the contention in
it (Figure 1(c)) and provides better scalability (Figure 1(a)). 

DORA exploits the low-latency, high-bandwidth inter-
core communication of multicore systems. Transactions flow
from one thread to the other with minimal overhead, as each
thread accesses different parts of the database. Figure 2
compares the time breakdown of a conventional transaction
processing system and a prototype DORA implementation
when all the 64 hardware contexts of a Sun Niagara II chip are
utilized, running Nokia’s TM1 benchmark [19] and TPC-C
Order-Status transactions [20]. The DORA prototype
eliminates the contention on the lock manager (Figure 2(a)).
Also, it substitutes the centralized lock management with much
lighter-weight thread-local locking mechanism (Figure 2(b)).

1.2 Contributions and document organization
This paper makes three contributions. 
• We demonstrate that the conventional thread-to-

transaction assignment results in contention at the lock
manager that severely limits the performance and
scalability of OLTP on multicores. 

• We propose a data-oriented architecture for OLTP that
exhibits predictable access patterns and allows to
substitute the heavyweight centralized lock manager with
a lightweight thread-local locking mechanism. The result

is a shared-everything system that scales to high core
counts without weakening the ACID properties. 

• We evaluate a prototype DORA transaction processing
engine and show that it attains up to 82% higher peak
throughput against a state-of-the-art storage manager.
Without admission control the performance benefits for
DORA can be up to 4.8x. Additionally, when unsaturated
DORA achieves up to 60% lower response times because
it exploits the intra-transaction parallelism inherent in
many transactions.
The rest of the document is organized as follows.

Section 2 discusses related work. Section 3 explains why a
conventional transaction processing system may suffer from
contention in its lock manager. Section 4 presents DORA, an
architecture based on the thread-to-data assignment. Section 5
evaluates the performance of a prototype DORA OLTP engine,
and Section 6 concludes.

2. RELATED WORK
Locking overhead is a known problem even for single-threaded
systems. Harizopoulos et al. [9] analyze the behavior of the
single-threaded SHORE storage manager [3] running two
transactions from the TPC-C benchmark. When executing the
Payment transaction, the system spends 25% of its time on
code related to logical locking, while with the NewOrder
transaction it spends 16%. We corroborate the results and
reveal the lurking problem of latch contention that makes the
lock manager the system bottleneck when increasing the
hardware parallelism.

Rdb/VMS [16] is a parallel database system design
optimized for the inter-node communication bottleneck. In
order to reduce the cost of nodes exchanging lock requests
over the network, Rdb/VMS keeps a logical lock at the node
which last used it until that node returns it to the owning node
or a request from another node arrives. Cache Fusion [17],
used by Oracle RAC, is designed to allow shared-disk clusters
to combine their buffer pools and reduce accesses to the shared
disk. Like DORA, Cache Fusion does not physically partition
the data but distributes the logical locks. However, neither
Rdb/VMS nor Cache Fusion handle the problem of contention.
A large number of threads may access the same resource at the
same time leading to poor scalability. DORA ensures that the
majority of resources are accessed by a single thread.

A conventional system could potentially achieve DORA’s
functionality if each transaction-executing thread holds an
exclusive lock on a region of records. The exclusive lock is
associated with the thread, rather than any transaction, and it is
held across multiple transactions. Locks on separator keys [8]
could be used to implement such behavior. 
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Figure 1. DORA compared to Baseline when the workload consists of TM1-GetSubscriberData transactions. (a) The throughput per CPU
utilization, as CPU utilization increases. (b) The time breakdown for the Baseline system. (c) The time breakdown for a DORA prototype.
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The future looks bleak…


• Not quite!

•  Idea: “Coordinate” data access patterns


– rather than having threads contending for locks, 
have transactions contending for threads 


– distribute the transactions to the data, not data 
to the transactions
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Thread-to-Data Model


•  each thread is coupled with a disjoint subset 
of the database


•  threads coordinate access to their own data 
using a private locking mechanism
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“Coordinated” Data Access
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exploited in order to improve both the I/O, as well as, the
microarchitectural behavior of the OLTP. 

In particular, the I/O executed during conventional OLTP
is random and low performing.1 The DORA executors can
buffer the I/O requests and issue them in batches since those
I/Os are expected to target pages that are physically close to
each other, improving the I/O behavior.

Furthermore, the main characteristic of the micro-
architectural behavior of conventional OLTP systems is the
very large volume of shared read-modify accesses by multiple
processing cores [A1]. Accesses which, unfortunately, are also
highly unpredictable [A6]. Due to the two aforementioned
reasons, emerging hardware technologies such as reactive
distributed on-chip caches (e.g., [A4][A1]) and/or the most
advanced hardware prefetchers (e.g., [A7]) fail to significantly
improve the performance of conventional OLTP. Since
DORA’s design is based on that the majority of the accesses to
a specific data region are coming by a specific thread, we
expect a “friendlier” behavior which can realize the full
potential of the latest hardware developments by providing
more private and predictable memory accesses. 

As future work, we plan to explore the potential of the
DORA design in those two fronts. 

A.4 Intra-transaction parallelism with aborts
DORA is designed around intra-transaction parallelism. The
low-latency and high-bandwidth inter-core communication in
modern multicores allows the execution of the DORA
transactions to flow from one thread to the other with minimal
overhead, as each transaction accesses different parts of the
database. One challenge with intra-transaction parallelism are
transactions with non-negligible abort rates. For example, the
TM1 benchmark is unusual in that a large fraction of
transactions (~25%) fail due to invalid inputs. In such
workloads, DORA may end up executing actions from already-
aborted transactions. 

There are two execution strategies DORA can follow for
such intra-parallel transactions with high abort rates. The first
execution strategy, is to continue to execute such transactions
in parallel and to check frequently for aborts. The second is to
serialize the execution. That is, even though there is

opportunity for actions from such transactions to proceed in
parallel, DORA can be pessimistic and execute them serially.
This execution strategy ensures that if an action aborts there is
no work wasted by the execution of any other parallel action.

Figure 11 compares the throughput of the Baseline system
and the two variations of DORA when an increasing number of
clients submit repeatedly UpdateSubscriberData transactions
from the TM1 benchmark. This transaction, whose parallel and
serial transaction flow graphs are depicted on the right side of
the figure, consists of two independent actions. One action
attempts to update a Subscriber and always succeeds. The
other action attempts to update a corresponding SpecialFacility
entry and it succeeds only 62.5% of the time, failing the rest of
the time due to wrong input. 

We plot the throughput of both two execution strategies
for DORA. The parallel execution is labeled DORA-P,
whereas the serial execution, which first attempts to update the
SpecialFacility and only if that succeeds it tries to update the
Subscriber, is labeled DORA-S. As we can see, the parallel
plan is a bad choice for this workload. DORA-P achieves less
performance than even the Baseline, whereas DORA-S scales
as expected. 

The DORA resource manager monitors the abort rates of
entire transactions and individual actions in each executor.
When the abort rates are high, DORA switches to serial
execution plans by inserting empty rendezvous points between
actions of the same phase. Still, it remains a challenge to apply
optimizations specific for DORA transactions.

1 As a proof, the performance of conventional OLTP systems
is significantly improved with the usage of Flash-based
storage technologies which exhibit high random access
bandwidth [A5]. 
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Figure 10a. Trace of the record accesses by the threads of a con-
ventional system; data accesses are uncoordinated and complex.

Figure 10b. Trace of the record accesses by the threads of a DORA
system; data accesses are coordinated and show regularity.
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action with high abort rate.
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A Data Oriented Architecture (DORA)


•  a shared-everything architecture designed to 
scale to very high core counts


•  retains ACID properties

•  data (i.e. relations) are divided into disjoint 

datasets

– 1 executer (thread) per dataset 
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Routing

• How to map datasets? 


– use a routing rule

•  Routing rules use a subset of columns from 

a table, called routing fields, to map rows to 
datasets

– in practice, columns from primary or candidate 

keys are used

– can be dynamically updated to balance load
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Transaction Flow Graphs

•  used to map incoming transaction to 

executers 

•  actions are the data access parts of the query

•  identifiers describe which columns an action 

uses

• What about actions that don’t match routing 

fields? 

– called secondary actions, more difficult 
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Secondary Actions


• which executer is responsible?

– for indexes that don’t index the routing fields, 

store the routing fields in the leaf nodes


• added space overhead?

• expensive to update indexes if routing fields are 

changed?    
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Rendezvous Points


•  often, data dependencies exist between 
actions

– insert rendezvous points between actions with 

data dependencies

•  logically separates execution into different phases

•  system cannot concurrently execute actions from 

different phases 


Storage Engines
 17




Executing an Action


•  3 structures: 

– incoming action queue


• processed in order received 

– completed action queue

– thread-local lock table


• use action identifiers to “lock” data to avoid 
conflicts
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Inserts and Deletes


•  Still need to acquire row-level locks through 
centralized locking manager

– why? 


• T1 deletes a record

• T2 inserts a record into the slot vacated by the 

record deleted by T1

• T1 aborts but can’t roll back, slot is taken


– row-level locks often not a source of contention 
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Experimental Setup


•  3 benchmarks used, all OLTP

– TM-1


• 7 transactions, 4 with updates

– TPC-C


• 150 warehouses (approx. 20 GB)

– TPC-B


• 100 branches (approx. 2 GB)
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Lock Contention
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multiple times, and the measured relative standard deviation is
less than 5%. We use the highest level of optimization options
using the Sun CC v5.10 compiler. For measurements that
needed profiling, we used tools from Sun Studio 12 suite. The
profiling tools impose a certain overhead (~15%) but the
relative behavior between the two systems remains the same.

5.2 Eliminating the lock manager contention
First, we examine the impact of contention on the lock
manager for the Baseline system and DORA as they utilize an
increasing number of hardware resources. The workload for
this experiment consists of clients repeatedly submitting
GetSubscriberData transactions of the TM1 benchmark. 

The results are shown in Figure 1. The left graph on the y-
axis shows the throughput per CPU utilization of the two
systems as the CPU utilization increases. The other two graphs
show the time breakdown for each of the two systems. We can
see that the contention in lock manager becomes the bottleneck
for the Baseline system, growing to more than 85% of the total
execution. In contrast, for DORA the contention on the lock
manager is eliminated. We can also observe that the overhead
of the DORA mechanism is small. Much smaller than the
centralized lock manager operations it eliminates even when
those are uncontended. It is worth mentioning that the
GetSubscriberData is a read-only transaction. Yet the Baseline
system suffers from contention in the lock manager. That is
because the threads will contend even if they want to acquire
the same lock in compatible mode.

Next, we quantify how effectively DORA reduces the
interaction with the centralized lock manager and the impact in
performance. We measure the number of locks acquired by the
Baseline and DORA. We instrument the code to report the
number and the type of the acquired locks. Figure 5 shows the
number of locks acquired per 100 transactions when the two
systems execute transactions from the TM1 and TPC-B
benchmarks, as well as, TPC-C OrderStatus transactions. The
locks are categorized in three types. The row-level locks, the
locks of the centralized lock manager that are not row-level
(labeled higher level), and the DORA local locks. 

In typical OLTP workloads the contention for the row-
level locks is limited, because there is a very large number of
randomly accessed records. But, as we go up in the hierarchy
of locks, we expect the contention to increase. For example,
every transaction needs to acquire intention locks on the tables.
Figure 5 shows that DORA has only minimal interaction with
the centralized lock manager. The non record-level lock
acquired by DORA at TPC-B is due to space management
(allocation of a new extend of pages).

Figure 5 gives an idea on how those three workloads
behave. TM1 consists of extremely short running transactions.
For their execution the conventional system acquires as many
higher-level locks as row-level. In TPC-B, the ratio between
the row-level to higher-level locks acquired is 2:1.
Consequently, we expect the contention on the lock manager
of the conventional system to be smaller when it executes the
TPC-B benchmark than TM1. The conventional system is
expected to scale even better when it executes TPC-C
OrderStatus transactions, which they have even larger ratio of
row-level to higher-level locks. 

Figure 6 confirms our expectations. We plot the
performance of both systems in the three workloads. The x-
axis is the offered CPU load. We calculate the offered CPU
load by adding to the measured CPU utilization, the time the
threads spend in the runnable queue waiting for a processor to
run. We see that the Baseline system experiences scalability
problems, more profound in the case of TM1. DORA, on the
other hand, scales its performance as much as the hardware
resources allow. 

When the offered CPU load exceeds 100%, the
performance of the conventional system in all three workloads
collapses. This happens because the operating system needs to
preempt threads, and in some cases it happens to preempt
threads that are in the middle of contended critical sections.
The performance of DORA, on the other hand, remains high;
another proof that DORA reduces the number of contended
critical sections. 

Figure 2 shows the detailed time breakdown for the two
systems at 100% CPU utilization for the TM1 and the TPC-C
OrderStatus workloads. DORA outperforms the Baseline
system in OLTP workloads independently of whether the lock
manager of the Baseline system is contended or not. 

5.3 Intra-transaction parallelism
DORA exploits intra-transaction not only as a mechanism for
reducing the pressure to the contended centralized lock
manager, but also for improving response times when the
workload does not saturate the available hardware. For
example, in applications that exhibit limited concurrency due
to heavy contention for logical locks, or for organizations that
simply do not utilize their available processing power, intra-
transaction parallelism is useful. 

In the experiment shown in Figure 7 we compare the
average response time per request the Baseline system and
DORA achieve when a single client submits intra-parallel
transactions from the three workloads and the log resides in a
in-memory file system. DORA exploits the available intra-
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Figure 6. Performance of Baseline and DORA as the load in the system increases, exe-
cuting transactions from the TM1 and TPC-B benchmarks, and TPC-C OrderStatus.

934



Throughput


Storage Engines
 22

multiple times, and the measured relative standard deviation is
less than 5%. We use the highest level of optimization options
using the Sun CC v5.10 compiler. For measurements that
needed profiling, we used tools from Sun Studio 12 suite. The
profiling tools impose a certain overhead (~15%) but the
relative behavior between the two systems remains the same.

5.2 Eliminating the lock manager contention
First, we examine the impact of contention on the lock
manager for the Baseline system and DORA as they utilize an
increasing number of hardware resources. The workload for
this experiment consists of clients repeatedly submitting
GetSubscriberData transactions of the TM1 benchmark. 

The results are shown in Figure 1. The left graph on the y-
axis shows the throughput per CPU utilization of the two
systems as the CPU utilization increases. The other two graphs
show the time breakdown for each of the two systems. We can
see that the contention in lock manager becomes the bottleneck
for the Baseline system, growing to more than 85% of the total
execution. In contrast, for DORA the contention on the lock
manager is eliminated. We can also observe that the overhead
of the DORA mechanism is small. Much smaller than the
centralized lock manager operations it eliminates even when
those are uncontended. It is worth mentioning that the
GetSubscriberData is a read-only transaction. Yet the Baseline
system suffers from contention in the lock manager. That is
because the threads will contend even if they want to acquire
the same lock in compatible mode.

Next, we quantify how effectively DORA reduces the
interaction with the centralized lock manager and the impact in
performance. We measure the number of locks acquired by the
Baseline and DORA. We instrument the code to report the
number and the type of the acquired locks. Figure 5 shows the
number of locks acquired per 100 transactions when the two
systems execute transactions from the TM1 and TPC-B
benchmarks, as well as, TPC-C OrderStatus transactions. The
locks are categorized in three types. The row-level locks, the
locks of the centralized lock manager that are not row-level
(labeled higher level), and the DORA local locks. 

In typical OLTP workloads the contention for the row-
level locks is limited, because there is a very large number of
randomly accessed records. But, as we go up in the hierarchy
of locks, we expect the contention to increase. For example,
every transaction needs to acquire intention locks on the tables.
Figure 5 shows that DORA has only minimal interaction with
the centralized lock manager. The non record-level lock
acquired by DORA at TPC-B is due to space management
(allocation of a new extend of pages).

Figure 5 gives an idea on how those three workloads
behave. TM1 consists of extremely short running transactions.
For their execution the conventional system acquires as many
higher-level locks as row-level. In TPC-B, the ratio between
the row-level to higher-level locks acquired is 2:1.
Consequently, we expect the contention on the lock manager
of the conventional system to be smaller when it executes the
TPC-B benchmark than TM1. The conventional system is
expected to scale even better when it executes TPC-C
OrderStatus transactions, which they have even larger ratio of
row-level to higher-level locks. 

Figure 6 confirms our expectations. We plot the
performance of both systems in the three workloads. The x-
axis is the offered CPU load. We calculate the offered CPU
load by adding to the measured CPU utilization, the time the
threads spend in the runnable queue waiting for a processor to
run. We see that the Baseline system experiences scalability
problems, more profound in the case of TM1. DORA, on the
other hand, scales its performance as much as the hardware
resources allow. 

When the offered CPU load exceeds 100%, the
performance of the conventional system in all three workloads
collapses. This happens because the operating system needs to
preempt threads, and in some cases it happens to preempt
threads that are in the middle of contended critical sections.
The performance of DORA, on the other hand, remains high;
another proof that DORA reduces the number of contended
critical sections. 

Figure 2 shows the detailed time breakdown for the two
systems at 100% CPU utilization for the TM1 and the TPC-C
OrderStatus workloads. DORA outperforms the Baseline
system in OLTP workloads independently of whether the lock
manager of the Baseline system is contended or not. 

5.3 Intra-transaction parallelism
DORA exploits intra-transaction not only as a mechanism for
reducing the pressure to the contended centralized lock
manager, but also for improving response times when the
workload does not saturate the available hardware. For
example, in applications that exhibit limited concurrency due
to heavy contention for logical locks, or for organizations that
simply do not utilize their available processing power, intra-
transaction parallelism is useful. 

In the experiment shown in Figure 7 we compare the
average response time per request the Baseline system and
DORA achieve when a single client submits intra-parallel
transactions from the three workloads and the log resides in a
in-memory file system. DORA exploits the available intra-
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transaction parallelism of the transactions and achieves lower
response times. For example TPC-C NewOrder transactions
are executed 60% faster under DORA.

5.4 Maximum throughput

Admission control can limit the number of outstanding
transactions, and in turn, limit contention within the lock
manager of the system. Properly tuned, admission control
allows the system to achieve the highest possible throughput,
even if it means leaving the machine underutilized. In Figure 8
we compare the maximum throughput of Baseline and DORA
achieve, if the systems were employing perfect admission
control. For each system and workload we report the CPU
utilization, when this peak throughput was achieved. DORA
achieves higher peak throughput in all the transactions we
study, and this peak is achieved closer to the hardware limits. 

For the TPC-C and TPC-B transactions, DORA achieves
relatively smaller improvements. This happens for two
reasons. First, those transactions do not expose the same
degree of contention within the lock manager, and leave little
room for improvement. Second, some of the transactions (like
TPC-C NewOrder and Payment, or TPC-B) impose great
pressure on the log manager that becomes the new bottleneck.

6. CONCLUSION

The thread-to-transaction assignment of work of conventional
transaction processing systems fail to realize the full potential
of the multicores. The resulting contention within the lock
manager becomes burden on scalability. This paper shows the
potential for thread-to-data assignment to eliminate this
bottleneck and improve both performance and scalability. As
multicore hardware continues to stress scalability within the
storage manager and as DORA matures, the gap with
conventional systems will only continue to widen.
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Conclusions


•  Traditional database engines not made for 
the amount of thread-level parallelism seen 
in machines today

– lock contention a major part of that
 


• A thread-to-data approach can significantly 
reduce lock contention
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Paper 2


• OLTP Through the Looking Glass, and 
What we Found There

– Stavros Harizopoulos et al. 

– SIGMOD ‘08
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Motivation 



• Hardware has changed

– db systems were designed when memory was 

sparse

– many OLTP databases can fit entirely in 

memory 

•  Even in memory, there are other bottlenecks


– logging, latching, locking, buffer management
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Alternative Architectures


•  logless

– removing logging


•  single transaction

– remove locking/latching


• main memory resident

– remove transaction bookkeeping
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Goals


•  Remove each of the “unnecessary” parts, 
one by one, and evaluate performance

– Determine relative performance gains by 

removing each feature
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Conclusions


• Antiquated disk-based features can cause 
significant overhead in a main memory 
system


•  Each component of a system should be 
carefully evaluated
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Paper 3


• Generic Database Cost Models for 
Hierarchical Memory Systems

– S. Manegold et al. 

– VLDB ‘02
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Motivation


•  Cost models are a key part of query 
optimization

– traditional cost models based on disk accesses


• What about in a main memory system? 

– memory hierarchy 


• L1, L2, L3, main memory, (solid-state?)
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Goals


• An accurate cost model should weight each 
memory hierarchy differently 

– overall “cost” of an operator should be the sum 

of the cost at all memory hierarchies 

– each level has different access cost


• weight each access by that level’s cost
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Data Access Patterns

•  different operators exhibit different data 

access patterns 

– pattern dictates both cost and number of caches 

misses

• How to accurately model access patterns? 


– basic access patterns

•  single/repetitive sequential traversal, single/

repetitive random traversal, random

• compound access patterns
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Cost Models


•  For each basic access pattern, derive custom 
cost model (not shown)


•  Combine basic access pattern cost models to 
derive compound access pattern cost models


•  For each database operator (i.e. sort), map 
to a cost model
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Experimental Analysis
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Figure 4: Measured (points) and Predicted (lines) Cache Misses and Execution Time

operands on the join attribute and then hash-join the match-

ing partitions [15, 7]. If each partition fits into the cache,
no additional cache misses will occur during hash-join.

Partitioning algorithms typically maintain a separate

output buffer for each result partition. The input is read se-
quentially, and each tuple is written to its output partition.

Data access within each output partition is also sequential.

We model partitioning using a sequential traversal for the
input and an interleaved multi-cursor access for the output:

The curves in Figure 4d demonstrate the effect we dis-

cussed in Section 4.6: The number of cache misses in-
creases significantly, once the number of output buffers

exceeds the number of cache blocks . Though they tend

to under estimate the costs for very high numbers of parti-
tions, our models accurately predict the crucial points.

PartitionedHash-Join. Once the inputs are partitioned,

we can join them by performing a hash-join on each pair of

matching partitions. We model the access pattern of parti-

tioned hash-join as

Figure 4e shows that the cachemiss rates and thus the to-

tal cost decrease significantly, once each partition (respec-

tively its hash-table) fits into the cache.

7 Conclusion

We presented a new generic approach to build generic

database cost models for hierarchical memory systems. We
extended the knowledge base on analytical cost-models

for query optimization with a strategy derived from our

experimentation with main-memory database technology.
The approach taken shows that we can achieve hardware-

independence by modeling hierarchical memory systems

as multiple level of caches. Each level is characterized by a



Conclusions


•  Basic cost models presented can model the 
costs in main memory systems


•  These memory-based cost models could 
also be used to enhance current disk-based 
cost models
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Questions?
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