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Roadmap

e Paper 1: Data-Oriented Transaction
Execution

e Paper 2: OLTP Through the Looking Glass

e Paper 3: Generic Database Cost Models for
Hierarchical Memory Systems
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Storage Engine?
 the part of the database that actually stores
and retrieves data

— responsible for db performance

e concurrency, consistency

— separate from the database “front end”

* A single database can have several database
engine options
_—e.g. MySQL supports InnoDB and MyISAM
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Paper 1

e Data Oriented Transaction Execution
— I. Pandis at al. (CMU/EPFL/Northwestern)
— VLDB ‘10
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Motivation

 Hardware has changed

— recently, we’ve run 1nto “thermal wall”

* hard to fit more resistors per chip
e ...must abide by Moore’s Law!

— add more cores per chip

— rely on thread-level parallelism

— most current architectures designed 1n the 80’s

* what assumptions were made about the hardware?
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Thread-to-Transaction Model

* 1n most database engines, each transaction
assigned to 1ts own thread

— more cores = more parallel threads

— each thread responsible for locking shared
resources as needed

e works fine with a few threads, how about thousands
executing concurrently on hundreds of hardware
contexts?
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Data Access Pattern

* Each thread only worries about its own
transaction

— no coordination among transactions

e 1.e. uncoordinated data access

— leads to high lock contention, especially at data
“hot spots”
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Data Access Visualization

Thread-to-transaction (Conventional)
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[.ock Contention As a Bottleneck
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The future looks bleak...

e Not quite!
e Idea: “Coordinate” data access patterns

— rather than having threads contending for locks,
have transactions contending for threads

— distribute the transactions to the data, not data
to the transactions
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Thread-to-Data Model

» cach thread 1s coupled with a disjoint subset
of the database

e threads coordinate access to their own data
using a private locking mechanism
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A Data Oriented Architecture (DORA)

* a shared-everything architecture designed to
scale to very high core counts

e retains ACID properties

e data (i.e. relations) are divided into disjoint
datasets

— 1 executer (thread) per dataset

BROWN

Storage Engines




Routing

 How to map datasets?

— use a routing rule

* Routing rules use a subset of columns from
a table, called routing fields, to map rows to
datasets

— 1n practice, columns from primary or candidate
keys are used

_ — can be dynamically updated to balance load
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Transaction Flow Graphs

used to map incoming transaction to
executers

actions are the data access parts of the query

identifiers describe which columns an action
uses

What about actions that don’t match routing
fields?

. — Called secondary actions, more difficult
RENOAVAN
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Secondary Actions

e which executer 1s responsible?

— for indexes that don’t index the routing fields,
store the routing fields 1n the leaf nodes
* added space overhead?

e expensive to update indexes if routing fields are
changed?
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Rendezvous Points

e often, data dependencies exist between
actions

— 1nsert rendezvous points between actions with
data dependencies
* logically separates execution into different phases

e system cannot concurrently execute actions from
different phases

BROWN

Storage Engines




Executing an Action

e 3 structures:
— Incoming action queue
e processed in order received
— completed action queue
— thread-local lock table

e use action identifiers to “lock” data to avoid
conflicts
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Inserts and Deletes

e Still need to acquire row-level locks through
centralized locking manager
— why?
e T1 deletes a record

e T2 inserts a record into the slot vacated by the
record deleted by T1

e T1 aborts but can’t roll back, slot 1s taken

__ —row-level locks often not a source of contention
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Experimental Setup

e 3 benchmarks used, all OLTP
— TM-1
e '/ transactions, 4 with updates
— TPC-C
e 150 warehouses (approx. 20 GB)
— TPC-B
e 100 branches (approx. 2 GB)
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[.ock Contention

O Thread-Local
O Row-level
B Higher-level
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Throughput

TPC-C OrderStatus

(0¢]
o

IS
o

/o —4a— DORA —a— DORA / —&— DORA

A Baseline Baseline o & Baseline

(7]
Q.
=
X
5
a 60
i -
oT0]
=
(]
S
i o
|—

N
o O

0O 25 50 75 100 0O 25 50 75 100 0O 25 50 75 100
CPU Load (%) CPU Load (%) CPU Load (%)

Storage Engines




Response Times
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Conclusions

e Traditional database engines not made for
the amount of thread-level parallelism seen
in machines today

— lock contention a major part of that

* A thread-to-data approach can significantly
reduce lock contention
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Paper 2

 OLTP Through the Looking Glass, and
What we Found There

— Stavros Harizopoulos et al.
— SIGMOD 08
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Motivation

 Hardware has changed

— db systems were designed when memory was
sparse

— many OLTP databases can fit entirely in
memory

* Even in memory, there are other bottlenecks

— logging, latching, locking, buffer management
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Alternative Architectures

e logless
— removing logging
e single transaction

— remove locking/latching

* main memory resident

— remove transaction bookkeeping

BROWN

Storage Engines




Goals

e Remove each of the “unnecessary’ parts,
one by one, and evaluate performance

— Determine relative performance gains by
removing each feature
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Instruction Count Breakdown
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Instruction Count Breakdown
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Conclusions

* Antiquated disk-based features can cause
significant overhead in a main memory
system

 Each component of a system should be
carefully evaluated
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Paper 3

* Generic Database Cost Models for
Hierarchical Memory Systems

— S. Manegold et al.
— VLDB ‘02
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Motivation

e Cost models are a key part of query
optimization
— traditional cost models based on disk accesses
 What about 1n a main memory system?

— memory hierarchy
e L1,L2, L3, main memory, (solid-state?)
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Goals

* An accurate cost model should weight each
memory hierarchy differently

— overall “cost” of an operator should be the sum
of the cost at all memory hierarchies

— each level has different access cost

» weight each access by that level’s cost

Storage Engines




Data Access Patterns

e different operators exhibit different data
access patterns

— pattern dictates both cost and number of caches
misses

 How to accurately model access patterns?

— basic access patterns

* single/repetitive sequential traversal, single/
repetitive random traversal, random

e compound access patterns

BROWN

Storage Engines




Cost Models

* For each basic access pattern, derive custom
cost model (not shown)

 Combine basic access pattern cost models to
derive compound access pattern cost models

* For each database operator (1.e. sort), map
to a cost model
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Experimental Analysis
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Conclusions

* Basic cost models presented can model the
costs 1n main memory systems

* These memory-based cost models could
also be used to enhance current disk-based
cost models
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Questions’?
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