Intro to Distributed Transactions

Alex Kalinin

Acknowledgements

* CSE515: Database Transaction Processing
Systems (most of the slides)

Distributed Transaction

e A distributed transaction accesses resource
managers distributed across a network

* When resource managers are DBMSs we refer
to the system as a distributed database system

Distributed Database Systems

* Each local DBMS might export:

— stored procedures or

— an SQL interface.

* Operations at each site are grouped together as
a subtransaction and the site is referred to as a
cohort of the distributed transaction

— Each subtransaction is treated as a transaction at its site

e Coordinator module (part of TP monitor) supports ACID
properties of distributed transaction

— Transaction manager acts as coordinator

ACID Properties
* Each local DBMS:

— Supports ACID locally for each subtransaction

 Just like any other transaction that executes there

— Eliminates local deadlocks.

e The additional issues are:

— Global atomicity: all cohorts must abort or all commit

— Global deadlocks: there must be no deadlocks involving
multiple sites

— Global serialization: distributed transaction must be globally
serializable

Global Atomicity

e All subtransactions of a distributed transaction
must commit or all must abort

* An atomic commit protocol, initiated by a
coordinator (e.g., the transaction manager),
ensures this.

— Coordinator polls cohorts to determine if they are all
willing to commit

* Protocol is supported in the XA interface between
a transaction manager and a resource manager

Atomic Commit Protocol

Transaction (3) xa_reg
Manager - Resource
(coordinator) Manager
(1) tx_begin (cohort)
(4) tx_commit (5) atomic
commit
protocol (3) x‘aﬁ\
- Resource
Application R Manager
program (cohort)
(2) acc
resources (3) xa_reg
Resource
Manager
(cohort)

Cohort Abort

* Why might a cohort abort?
— Deferred evaluation of integrity constraints
— Validation failure (optimistic control)
— Deadlock
— Crash of cohort site

— Failure prevents communication with cohort site

Atomic Commit Protocol

* Two-phase commit protocol: most
commonly used atomic commit protocol.

* Implemented as: an exchange of messages
between the coordinator and the cohorts.

* Guarantees global atomicity: of the
transaction even if failures should occur
while the protocol is executing.

Two-Phase Commit
(The Transaction Record)

* During the execution of the transaction, before
the two-phase commit protocol begins:

— When the application calls tx_begin to start the
transaction, the coordinator creates a transaction
record for the transaction in volatile memory

— Each time a resource manager calls xa_reg to join
the transaction as a cohort, the coordinator appends
the cohort’ s identity to the transaction record

Two-Phase Commit -- Phase 1

 When application invokes tx_commit, coordinator

e Sends prepare message (coordin. to all cohorts) :

— If cohort wants to abort at any time prior to or on receipt of the
message, it aborts and releases locks

— If cohort wants to commit, it moves all update records to mass store
by forcing a prepare record to its log

* Guarantees that cohort will be able to commit (despite
crashes) if coordinator decides commit (since update records
are durable)

e Cohort enters prepared state

— Cohort sends a vote message (“ready” or “aborting”). It
e cannot change its mind
* retains all locks if vote is “ready”

* enters uncertain period (it cannot foretell final outcome)

Two-Phase Commit -- Phase 1

Vote message (cohort to coordinator): Cohort indicates it is
“ready” to commit or is “aborting”

— Coordinator records vote in transaction record

— If any votes are “aborting”, coordinator decides abort and deletes
transaction record

— Ifall are “ready’, coordinator decides commit, forces commit record
(containing transaction record) to its log (end of phase 1)

* Transaction committed when commit record is durable

* Since all cohorts are in prepared state, transaction can be committed
despite any failures

— Coordinator sends commit or abort message to all cohorts

Two-Phase Commit -- Phase 2

« Commit or abort message (coordinator to cohort):

— If commit message
e cohort commits locally by forcing a commit record to its log

e cohort sends done message to coordinator
— |If abort message, it aborts

— In either case, locks are released and uncertain period ends

 Done message (cohort to coordinator):
— When coordinator receives a done message from each cohort,
* it writes a complete record to its log and

* deletes transaction record from volatile store

Two-Phase Commit (commit case)

Application Coordinator Cohort

tx_commit ., -send prepare msg to

B cohorts in trans. rec. —— -force prepare
rec. to cohort log
phase 1 - record vote in trans. rec. - send vote msg
- if all vote ready, force «—
commit rec. to coord. log H S §
- send commit msg - force commit S 3
rec. to cohort jog = £
— > -release locks
- when all done msgs rec’ d, - send done msg
| write complete rec. to log
phase 2 - delete trans. rec.
resume ! - return status «—

' xa interface

14

Two-Phase Commit (abort case)

Application Coordinator
tx_commit —» -send prepare msg to
B cohorts in trans. rec.
phasel - record vote in trans.rec.
- if any vote abort,
delete transaction rec.
- send abort msg
resume | - return status
v
4—

Cohort

— > -force prepare
rec. to cohort log
- send vote msg
4_

4 <
! "% S
| o
- local abort | 3 0
: o S
-releaselocks v Q. g
S-

xa interface

15

Distributing the Coordinator

* A transaction manager controls resource
managers in its domain

e When a cohort in domain A invokes a resource
manager RMy in domain B:

— The local transaction manager TM, and remote
transaction manager TM; are notified

— TMj is a cohort of TM, and a coordinator of RM,

* A coordinator/cohort tree results

Coordinator/Cohort Tree

Domain A

Domain C

Domain B

invocations
protocol msgs ——

Distributing the Coordinator
 The two-phase commit protocol progresses
down and up the tree in each phase

— When TM;, gets a prepare msg from TM, it sends a
prepare msg to each child and waits

— If each child votes ready, TM; sends a ready msg
to TM,

* if not it sends an abort msg

Failures and Two-Phase Commit

* A participant recognizes two failure situations.

— Timeout : No response to a message. Execute a
timeout protocol

— Crash : On recovery, execute a restart protocol

* |f a cohort cannot complete the protocol until
some failure is repaired, it is said to be blocked

— Blocking can impact performance at the cohort site
since locks cannot be released

Timeout Protocol

* Cohort times out waiting for prepare message

— Abort the subtransaction

 Since the (distributed) transaction cannot commit unless
cohort votes to commit, atomicity is preserved

* Coordinator times out waiting for vote message

— Abort the transaction

* Since coordinator controls decision, it can force all cohorts to
abort, preserving atomicity

Timeout Protocol

e Cohort (in prepared state) times out waiting for commit/abort
message

— Cohort is blocked since it does not know coordinator’ s decision
e Coordinator might have decided commit or abort

e Cohort cannot unilaterally decide since its decision might be contrary
to coordinator’ s decision, violating atomicity

* Locks cannot be released

— Cohort requests status from coordinator; remains blocked

* Coordinator times out waiting for done message

— Requests done message from delinquent cohort

Restart Protocol - Cohort

* On restart cohort finds in its log:

— begin_transaction record, but no prepare record:
* Abort (transaction cannot have committed because cohort
has not voted)
— prepare record, but no commit record (cohort crashed
in its uncertain period)
* Does not know if transaction committed or aborted

* Locks items mentioned in update records before restarting
system

* Requests status from coordinator and blocks until it receives
an answer

— commit record
e Recover transaction to committed state using log

Restart Protocol - Coordinator

* On restart:

— Search log and restore to volatile memory the
transaction record of each transaction for which
there is a commit record, but no complete record

e Commit record contains transaction record

* On receiving a request from a cohort for
transaction status:

— If transaction record exists in volatile memory, reply
based on information in transaction record

— If no transaction record exists in volatile memory,
reply abort

* Referred to as presumed abort property

Presumed Abort Property

* |f when a cohort asks for the status of a
transaction there is no transaction record in
coordinator’ s volatile storage, either

— The coordinator had aborted the transaction and
deleted the transaction record

— The coordinator had crashed and restarted and did
not find the commit record in its log because

* |t was in Phase 1 of the protocol and had not yet made a
decision, or

* |t had previously aborted the transaction

Presumed Abort Property

* Oor

— The coordinator had crashed and restarted and found a
complete record for the transaction in its log

— The coordinator had committed the transaction,
received done messages from all cohorts and hence
deleted the transaction record from volatile memory

* The last two possibilities cannot occur

— In both cases, the cohort has sent a done message and
hence would not request status

 Therefore, coordinator can respond abort

Presumed Commit

Acknowledge aborts, not commits
Force-write abort records, not commits
Coordinator force-writes a collecting record

No information? Assume commit
Useful when many subordinates update

Heuristic Commit

* What does a cohort do when in the blocked state
and the coordinator does not respond to a request
for status?

— Wait until the coordinator is restarted

— Give up, make a unilateral decision, and attach a fancy
name to the situation.
* Always abort
e Always commit
* Always commit certain types of transactions and always abort
others
— Resolve the potential loss of atomicity outside the
system
e Call on the phone or send email

Optimizations

* Optimize for:

— Number of messages between the coordinator
and cohorts

— Number of writes to the log

Read-Only Optimization

* Read-only participants do not care about the
outcome — no second phase.
* Send the READ vote

* Hierarchical case —send the READ only when
you and your children send the READ

Last Agent

* Single remote partner (“last agent”) — high
latency

e Collect votes from others, decide and send the
result to the “last agent”

Unsolicited vote

Ready to commit?
Force-write the “prepare” record, send YES

Reduces the number of messages at the first
stage

Useful when the network delays are high

Sharing the log

' RM and TM share the log
_ess records are forced-written

RM writes “prepared” record
TM force-writes commit record

Single log guarantees ordering of records

Group Commits

e \WWant to combine several force-writes

* Two choices:
— Wait for a predefined number of transactions
— Timeout occurs

Long Locks

ACKs are send at commits
Delay an ACK until the next transaction starts
Coordinator waits longer to release the locks

Reduces network traffic
Useful when a density of transactions is big

Commit Acknowledgement

Early: report commit as soon as the record is
logged.

Propagation is not finished!

Late: report commit after getting all ACKs

Better guarantees with heuristic decisions

Voting Reliable

* When sending YES, say if you are reliable

 |f all YESs are reliable — early
acknowledgement

* |f not — late acknowledgement

Wait for Outcome

Coordinator waits for subordinates
Recovery is in progress? Huge delays
Can report with “outcome pending”
Application-dependent

Global Deadlock

e With distributed transaction:

— A deadlock might not be detectable at any one site

* Subtrans T,, of T, at site A might wait for subtrans T,, of
T,, while at site B, T,; waits for T,

— Since concurrent execution within a transaction is
possible, a transaction might progress at some site
even though deadlocked

* T,, and T, can continue to execute for a period of time

Global Deadlock

* Global deadlock cannot always be resolved
by:

— Aborting and restarting a single subtransaction,
since data might have been communicated
between cohorts

—T,, s computation might depend on data
received from T,;. Restarting T,; without
restarting T,, will not in general work.

Global Deadlock Detection

* Global deadlock detection is generally a simple
extension of local deadlock detection

— Check for a cycle when a cohort waits

* If a cohort of T, is waiting for a cohort of T,, coordinator of T, sends
probe message to coordinator of T,

* If a cohort of T, is waiting for a cohort of T;, coordinator of T, relays
the probe to coordinator of T,

* If probe returns to coordinator of T, a deadlock exists

— Abort a distributed transaction if the wait time of
one of its cohorts exceeds some threshold

Global Deadlock Prevention

* Global deadlock prevention - use timestamps

— For example an older transaction never waits for
a younger one. The younger one is aborted.

Global Isolation

* |f subtransactions at different sites run at different
isolation levels, the isolation between concurrent
distributed transactions cannot easily be
characterized.

e Suppose all subtransactions run at SERIALIZABLE. Are
distributed transactions as a whole serializable?

— Not necessarily
* T,,and T,, might conflict at site A, with T,, preceding T,,

* T,z and T,; might conflict at site B, with T, preceding T,;.

Two-Phase Locking & Two-Phase Commit

* Theorem: If
— All sites use a strict two-phase locking protocol,

— Trans Manager uses a two-phase commit protocol,

Then

— Trans are globally serializable in commit order.

Two-Phase Locking & Two-Phase Commit
(Argument)

® Suppose previous situation occurred:

- At site A
* T2A cannot commit until T1A releases locks (2® locking)
* T1A does not release locks until T1 commits (2 commit)

Hence (if both commit) T1 commits before T2

- At site B

* Similarly (if both commit) T2 commits before T1,

® Contradiction (transactions deadlock in this case)

44

When Global Atomicity Cannot
Always be Guaranteed

A site might refuse to participate
— Concerned about blocking

— Charges for its services

A site might not be able to participate

— Does not support prepared state

Middleware used by client might not support two-phase
commit

— For example, ODBC

Heuristic commit

