
Concurrency Control In
Distributed Main Memory

Database Systems

Justin A. DeBrabant

debrabant@cs.brown.edu

Concurrency control

• Goal:

– maintain consistent state of data

– ensure query results are correct

•  The Gold Standard: ACID Properties

– atomicity – “all or nothing”

– consistency – no constraints violated

– isolation – transactions don’t interfere

– durability – persist through crashes

Concurrency Control
 2

Why?

•  Let’s just keep it simple...

– serial execution of all transactions

– e.g. T1, T2, T3

– simple, but boring and slow

•  The Real World:

– interleave transactions to improve throughput

• …crazy stuff starts to happen

Concurrency Control
 3

Traditional Techniques

•  Locking

–  lock data before reads/writes

–  provides isolation and consistency

–  2-phase locking

•  phase 1: acquire all necessary locks

•  phase 2: release locks (no new locks acquired)

•  locks: shared and exclusive

•  Logging

–  used for recovery

–  provides atomicity and durability

–  write-ahead logging

•  all modifications are written to a log before they are applied

Concurrency Control
 4

How about in parallel?

•  many of the same concerns, but must also worry

about committing multi-node transactions

•  distributed locking and deadlock detection can be

expensive (network costs are high)

•  2-phase commit

–  single coordinator, several workers

–  phase 1: voting

•  each worker votes “yes” or “no”

–  phase 2: commit or abort

•  consider all votes, notify workers of result

Concurrency Control
 5

The Issue

•  these techniques are very general purpose

– “one size fits all”

– databases are moving away from this

•  By making assumptions about the system/
workload, can we do better?

– YES!

– keeps things interesting (and us employed)

Concurrency Control
 6

Paper 1

•  Low Overhead Concurrency Control for
Partitioned Main Memory Databases

– Evan Jones, Daniel Abadi, Sam Madden

– SIGMOD ‘10

Concurrency Control
 7

Overview

•  Contribution:

– several concurrency control schemes for
distributed main-memory databases

•  Strategy

– Take advantage of network stalls resulting from

multi-partition transaction coordination

– don’t want to (significantly) hurt performance

of single-partition transactions

• probably the majority

Concurrency Control
 8

System Model

•  based on H-Store

•  partition data to multiple machines

– all data is kept in memory

– single execution thread per partition

•  central coordinator that coordinates

– assumed to be single coordinator in this paper

• multi-coordinator version more difficult

Concurrency Control
 9

System Model (cont’d)

Concurrency Control
 10

Clients

H-Store

Central
Coordinator

Multi
Partition

Node 1

Data
Partition 1

Data
Partition 2

Node 2

Data
Partition 3

Data
Partition 4

Node 3

Data
Partition 1

Data
Partition 4

Node 4

Data
Partition 3

Data
Partition 2

Single
Partition Fragment

Fragment

Client Library Client Library Client Library

Replication Messages

PrimaryPrimary PrimaryPrimary

BackupBackup BackupBackup

Figure 1: System Architecture

Each transaction is divided into fragments. A fragment is
a unit of work that can be executed at exactly one partition.
It can be some mixture of user code and database operations.
A single partition transaction, for example, is composed of
one fragment containing the entire transaction. A multi-
partition transaction is composed of multiple fragments with
data dependencies between them.

3.2 Single Partition Transactions
When a client determines that a request is a single par-

tition transaction, it forwards it to the primary partition
responsible for the data. The primary uses a typical pri-
mary/backup replication protocol to ensure durability. In
the failure free case, the primary reads the request from the
network and sends a copy to the backups. While waiting
for acknowledgments, the primary executes the transaction.
Since it is a single partition transaction, it does not block.
When all acknowledgments from the backups are received,
the result of the transaction is sent to the client. This pro-
tocol ensures the transaction is durable, as long as at least
one replica survives a failure.

No concurrency control is needed to execute single parti-
tion transactions. In most cases, the system executes these
transactions without recording undo information, resulting
in very low overhead. This is possible because transactions
are annotated to indicate if a user abort may occur. For
transactions that have no possibility of a user abort, con-
currency control schemes that guarantee that deadlock will
not occur (see below) do not keep an undo log. Otherwise,
the system maintains an in-memory undo buffer that is dis-
carded when the transaction commits.

3.3 Multi-Partition Transactions
In general, multi-partition transaction can have arbitrary

data dependencies between transaction fragments. For ex-
ample, a transaction may need to read a value stored at
partition P1, in order to update a value at partition P2.

To ensure multi-partition transactions execute in a seri-
alizable order without deadlocks, we forward them through
the central coordinator, which assigns them a global order.
Although this is a straightforward approach, the central co-
ordinator limits the rate of multi-partition transactions. To

handle more multi-partition transactions, multiple coordi-
nators must be used. Previous work has investigated how
to globally order transactions with multiple coordinators,
for example by using loosely synchronized clocks [2]. We
leave selecting the best alternative to future work, and only
evaluate a single coordinator system in this paper.

The central coordinator divides the transaction into frag-
ments and sends them to the partitions. When responses are
received, the coordinator executes application code to de-
termine how to continue the transaction, which may require
sending more fragments. Each partition executes fragments
for a given transaction sequentially.

Multi-partition transactions are executed using an undo
buffer, and use two-phase commit (2PC) to decide the out-
come. This allows each partition of the database to fail inde-
pendently. If the transaction causes one partition to crash or
the network splits during execution, other participants are
able to recover and continue processing transactions that
do not depend on the failed partition. Without undo infor-
mation, the system would need to block until the failure is
repaired.

The coordinator piggybacks the 2PC “prepare” message
with the last fragment of a transaction. When the primary
receives the final fragment, it sends all the fragments of the
transaction to the backups and waits for acknowledgments
before sending the final results to the coordinator. This is
equivalent to forcing the participant’s 2PC vote to disk. Fi-
nally, when the coordinator has all the votes from the partic-
ipants, it completes the transaction by sending a “commit”
message to the partitions and returning the final result to
the application.

When executing multi-partition transactions, network stalls
can occur while waiting for data from other partitions. This
idle time can introduce a performance bottleneck, even if
multi-partition transactions only comprise a small fraction
of the workload. On our experimental systems, described
in Section 5, the minimum network round-trip time be-
tween two machines connected to the same gigabit Ether-
net switch was measured using ping to be approximately 40
µs. The average CPU time for a TPC-C transaction in our
system is 26 µs. Thus, while waiting for a network acknowl-
edgment, the partition could execute at least two single-
partition transactions. Some form of concurrency control is
needed to permit the engine to do useful work while other-
wise idle. The challenge is to not reduce the efficiency of
simple single partition transactions. The next section de-
scribes two concurrency control schemes we have developed
to address this issue.

4. CONCURRENCY CONTROL SCHEMES

4.1 Blocking
The simplest scheme for handling multi-partition trans-

actions is to block until they complete. When the partition
receives the first fragment of a multi-partition transaction, it
is executed and the results are returned. All other transac-
tions are queued. When subsequent fragments of the active
transaction are received, they are processed in order. After
the transaction is committed or aborted, the queued trans-
actions are processed. In effect, this system assumes that
all transactions conflict, and thus can only execute one at
a time. Pseudocode describing this approach is shown in
Figure 2.

Transaction Types

•  Single Partition Transactions

–  client forwards request directly to primary partition

–  primary partition forwards request to backups

•  Multi-Partition Transactions

–  client forwards request to coordinator

–  transaction divided into fragments and forwards them to

the appropriate transactions

–  coordinator uses undo buffer and 2PC

–  network stalls can occur as a partition waits for other

partitions for data

•  network stalls twice as long as average transaction length

Concurrency Control
 11

Concurrency Control Schemes

•  Blocking

– queue all incoming transactions during network
stalls

– simple, safe, slow

•  Speculative Execution

– speculatively execute queued transactions during
network stalls

•  Locking

– acquire read/write locks on all data

Concurrency Control
 12

Blocking

•  for each multi-partitioned transaction, block

until it completes

•  other fragments in the blocking transaction

are processed in order

•  all other transactions are queued

– executed after the blocking transaction has
completed all fragments

Concurrency Control
 13

Speculative Execution

•  speculatively execute queued transactions during

network stalls

•  must keep undo logs to roll back speculatively

executed transaction if transaction causing stall
aborts

•  if transaction causing stall commits, speculatively
executed transaction immediately commit

•  two cases:

–  single partition transactions

– multi-partition transactions

Concurrency Control
 14

Speculating Single Partitions

• wait for last fragment of multi-partition
transaction to execute

•  begin executing transactions from
unexecuted queue and add to uncommitted
queue

•  results must be buffered and cannot be
exposed until they are known to be correct

Concurrency Control
 15

Speculating Multi-Partitions

•  assumes that 2 speculative transactions share

the same coordinator

– simple in the single coordinator case

•  single coordinator tracks dependencies and
manages all commits/aborts

– must cascade aborts if transaction failure

•  best for simple, single-fraction per partition
transactions

– e.g. distributed reads

Concurrency Control
 16

Locking

•  locks allow individual partitions to execute and

commit non-conflicting transactions during
network stalls

•  problem: overhead of obtaining locks

•  optimization: only require locks when a multi-

partition transaction is active

•  must do local/distributed deadlock

–  local: cycle detection

– distributed: timeouts

Concurrency Control
 17

Microbenchmark Evaluation

•  Simple key/value store

– keys/values arbitrary strings

•  simply for analysis of techniques, not
representative of real-world workload

Concurrency Control
 18

Microbenchmark Evaluation

Concurrency Control
 19

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Multi-Partition Transactions

Speculation

Locking

Blocking

F ig u r e 4: M ic r o b e n ch m a r k W i t h o u t C o n fl ic ts

invest iga t e t he impac t of conflic ts, we change t he pa t t ern
of keys t ha t clients access. W hen issuing single par t i t ion
t ransac t ions, t he first client only issues t ransac t ions to t he
first par t i t ion, and t he second client only issues t ransac t ions
to t he second par t i t ion, ra t her t han selec t ing t he dest ina-
t ion par t i t ion a t random . T his means t he first two clients’
keys on t heir resp ec t ive par t i t ions are nearly always b eing
wri t t en. To cause conflic ts, t he ot her clients wri t e one of
t hese “ conflic t ” keys wi t h probabili t y p, or wri t e t heir own
priva t e keys wi t h probabili t y 1 − p. Such t ransac t ions will
have a ver y high probabili t y of a t t emp t ing to up da t e t he
key a t a same t ime as t he first two clients. Increasing p re-
sul ts in more conflic ts. D eadlocks are not possible in t his
wor kload, allowing us to avoid t he p erformance impac t of
implement a t ion dep endent deadlock resolu t ion policies.

T he resul ts in F igure 5 show a single line for sp ecula t ion
and blocking, as t heir t hroughpu t does not change wi t h t he
conflic t probabili t y. T his is b ecause t hey assume t ha t all
t ransac t ions conflic t . T he p erformance of locking, on t he
ot her hand, degrades as conflic t ra t e increases. R a t her t han
t he nearly st raight line as b efore, wi t h conflic ts t he t hrough-
pu t falls off st eeply as t he p ercent age of mul t i-par t i t ion t rans-
ac t ions increases. T his is b ecause as t he conflic t ra t e in-
creases, locking b ehaves more like blocking. Locking st ill
ou t p erforms blocking when t here are many mul t i-par t i t ion
t ransac t ions b ecause in t his wor kload, each t ransac t ion only
conflic ts a t one of t he par t i t ions, so i t st ill p erforms some
wor k concurrent ly. H owever, t hese resul ts do suggest t ha t if
conflic ts b e tween t ransac t ions are common, t he ad vant age of
avoiding concurrency cont rol is larger. In t his ex p eriment ,
sp ecula t ion is up to 2.5 t imes fast er t han locking.

5.3 Aborts
Sp ecula t ion assumes t ha t t ransac t ions will commi t . W hen

a t ransac t ion is abor t ed, t he sp ecula t ively execu t ed t ransac-
t ions must b e undone and re-execu t ed, wast ing C P U t ime.
To underst and t he effec ts of re-execu t ion, we selec t t rans-
ac t ions to b e abor t ed a t random wi t h probabili t y p. W hen
a mul t i-par t i t ion t ransac t ion is selec t ed, only one par t i t ion
will abor t locally. T he ot her par t i t ion will b e abor t ed dur-
ing two-phase commi t . A bor t ed t ransac t ions are somewha t
cheap er to execu t e t han normal t ransac t ions, since t he abor t

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Multi-Partition Transactions

Locking 0% conflict
Locking 20% conflict
Locking 60% conflict

Locking 100% conflict
Speculation

Blocking

F ig u r e 5: M ic r o b e n ch m a r k W i t h C o n fl ic ts

happ ens a t t he b eginning of execu t ion. T hey are ident ical
in all ot her resp ec ts, (e.g., ne twor k message lengt h).

T he resul ts for t his ex p eriment are shown in F igure 6.
T he cost of an abor t is variable, dep ending on how many
sp ecula t ively execu t ed t ransac t ions need to b e re-execu t ed.
T hus, t he 95% confidence int er vals are wider for t his ex p er-
iment , bu t t hey are st ill wi t hin 5%, so we omi t t hem for
clari t y. Since blocking and locking do not have cascading
abor ts, t he abor t ra t e does not have a significant impac t , so
we only show t he 10% abor t probabili t y resul ts. T his has
slight ly higher t hroughpu t t han t he 0% case, since abor t
t ransac t ions require less C P U t ime.

A s ex p ec t ed, abor ts decrease t he t hroughpu t of sp ecula-
t ive execu t ion, due to t he cost of re-execu t ing t ransac t ions.
T hey also increase t he numb er of messages t ha t t he cent ral
coordina tor handles, causing i t to sa t ura t e sooner. H owever,
sp ecula t ion st ill ou t p erforms locking for up to 5% abor ts,
ignoring t he limi ts of t he cent ral coordina tor. W i t h 10%
abor ts, sp ecula t ion is nearly as bad as blocking, since some
t ransac t ions are execu t ed many t imes. T hese resul ts sug-
gest t ha t if a t ransac t ion has a ver y high abor t probabili t y,
i t may b e b e t t er to limi t to t he amount of sp ecula t ion to
avoid wast ed wor k .

5.4 General Multi-Partition Transactions
W hen execu t ing a mul t i-par t i t ion t ransac t ion t ha t

involves mul t iple rounds of communica t ion, sp ecula t ion can
only b egin when t he t ransac t ion is k nown to have comple t ed
all i ts wor k a t a given par t i t ion. T his means t ha t t here
must b e a st all b e tween t he individual fragments of t rans-
ac t ion. To ex amine t he p erformance impac t of t hese mul t i-
round t ransac t ions, we changed our microb enchmar k to is-
sue a mul t i-par t i t ion t ransac t ion t ha t requires two rounds of
communica t ion, inst ead of t he simple mul t i-par t i t ion t rans-
ac t ion in t he original b enchmar k . T he first round of each
t ransac t ion p erforms t he reads and re t urns t he resul ts to
t he coordina tor, which t hen issues t he wri t es as a second
round. T his p erforms t he same amount of wor k as t he orig-
inal b enchmar k , bu t has twice as many messages.

T he resul ts are shown in F igure 7. T he blocking t hrough-
pu t follows t he same t rend as b efore, only lower b ecause t he
two round t ransac t ions t a ke nearly twice as much t ime as

Microbenchmark Evaluation

Concurrency Control
 20

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Multi-Partition Transactions

Speculation 0% aborts
Speculation 3% aborts
Speculation 5% aborts

Speculation 10% aborts
Blocking 10% aborts
Locking 10% aborts

Figure 6: Microbenchmark With Aborts

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Multi-Partition Transactions

Speculation
Blocking
Locking

Figure 7: General Transaction Microbenchmark

the multi-partition transactions in the original benchmark.
Speculation performs only slightly better, since it can only
speculate the first fragment of the next multi-partition trans-
action once the previous one has finished. Locking is rela-
tively una ected by the additional round of network com-
munication. Even though locking is generally superior for
this workload, speculation does still outperform locking as
long as fewer than 4% of the workload is composed of general
multi-partition transactions.

5.5 TPC-C
The TPC-C benchmark models the OLTP workload of

an order processing system. It is comprised of a mix of five
transactions with di erent properties. The data size is scaled
by adding warehouses, which adds a set of related records to
the other tables. We partition the TPC-C database by ware-
house, as described by Stonebraker et al. [26]. We replicate
the items table, which is read-only, to all partitions. We ver-
tically partition the stock table, and replicate the read-only
columns across all partitions, leaving the columns that are
updated in a single partition. This partitioning means 89%

of the transactions access a single partition, and the others
are simple multi-partition transactions.

Our implementation tries to be faithful to the specifica-
tion, but there are three di erences. First, we reorder the
operations in the new order transaction to avoid needing an
undo bu er to handle user aborts. Second, our clients have
no pause time. Instead, they generate another transaction
immediately after receiving the result from the previous one.
This permits us to generate a high transaction rate with a
small number of warehouses. Finally, we change how clients
generate requests. The TPC-C specification assigns clients
to a specific (warehouse, district) pair. Thus, as you add
more warehouses, you add more clients. We use a fixed
number of clients while changing the number of warehouses,
in order to change only one variable at a time. To accom-
modate this, our clients generate requests for an assigned
warehouse but a random district.

We ran TPC-C with the warehouses divided evenly across
two partitions. In this workload, the fraction of
multi-partition transactions ranges from 5.7% with 20 ware-
houses to 10.7% with 2 warehouses. The throughput for
varying numbers of warehouses are shown in Figure 8. With
this workload, blocking and speculation have relatively con-
stant performance as the number of warehouses is increased.
The performance is lowest with 2 partitions because the
probability of a multi-partition transaction is highest (10.7%,
versus 7.2% for 4 warehouses, and 5.7% for 20 warehouses),
due to the way TPC-C new order transaction requests are
generated. After 4 warehouses, the performance for block-
ing and speculation decrease slightly. This is due to the
larger working set size and the corresponding increase in
CPU cache and TLB misses. The performance for locking
increases as the number of warehouses is increased because
the number of conflicting transactions decreases. This is
because there are fewer clients per TPC-C warehouse, and
nearly every transaction modifies the warehouse and district
records. This workload also has deadlocks, which leads to
overhead due to deadlock detection and distributed deadlock
timeouts, decreasing the performance for locking. Specu-
lation performs the best of the three schemes because the
workload’s fraction of multi-partition transactions is within
the region where it is the best choice. With 20 warehouses,
speculation provides 9.7% higher throughput than blocking,
and 63% higher throughput than locking.

5.6 TPC-C Multi-Partition Scaling
In order to examine the impact that multi-partition trans-

actions have on a more complex workload, we scale the frac-
tion of TPC-C transactions that span multiple partitions.
We execute a workload that is composed of 100% new order
transactions on 6 warehouses. We then adjust the probabil-
ity that an item in the order comes from a “remote” ware-
house, which is a multi-partition transaction. With TPC-C’s
default parameters, this probability is 0.01 (1%), which pro-
duces a multi-partition transaction 9.5% of the time. We
adjust this parameter and compute the probability that a
transaction is a multi-partition transaction. The through-
put with this workload is shown in Figure 9.

The results for blocking and speculation are very similar
to the results for the microbenchmark in Figure 4. In this ex-
periment, the performance for locking degrades very rapidly.
At 0% multi-partition transactions, it runs e ciently with-
out acquiring locks, but with multi-partition transactions it

TPC-C Evaluation

•  TPC-C

– common OLTP benchmark

– simulates creating/placing orders at warehouses

•  This benchmark is a modified version of
TPC-C

Concurrency Control
 21

TPC-C Evaluation

Concurrency Control
 22

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18 20

T
ra
n
s
a
c
ti
o
n
s
/s
e
c
o
n
d

Warehouses

Speculation
Blocking
Locking

Figure 8: TPC-C Throughput Varying Warehouses

Figure 9: TPC-C 100% New Order

must acquire locks. The locking overhead is higher for TPC-
C than our microbenchmark for three reasons: more locks
are acquired for each transaction, the lock manager is more
complex, and there are many conflicts. In particular, this
workload exhibits local and distributed deadlocks, hurting
throughput significantly. Again, this shows that conflicts
make traditional concurrency control more expensive, in-
creasing the benefits of simpler schemes.

Examining the output of a sampling profiler while run-
ning with a 10% multi-partition probability shows that 34%
of the execution time is spent in the lock implementation.
Approximately 12% of the time is spent managing the lock
table, 14% is spent acquiring locks, and 6% is spent releasing
locks. While our locking implementation certainly has room
for optimization, this is similar to what was previously mea-
sured for Shore, where 16% of the CPU instructions could
be attributed to locking [14].

5.7 Summary
Our results show that the properties of the workload de-

termine the best concurrency control mechanism. Specula-
tion performs substantially better than locking or blocking

Table 1: Summary of best concurrency control
scheme for different situations. Speculation is pre-
ferred when there are few multi-round (general)
transactions and few aborts.

for multi-partition transactions that require only a single
round of communication and when a low percentage of trans-
actions abort. Our low overhead locking technique is best
when there are many transactions with multiple rounds of
communication. Table 1 shows which scheme is best, de-
pending on the workload; we imagine that a query executor
might record statistics at runtime and use a model like that
presented in Section 6 below to make the best choice.

Optimistic concurrency control (OCC) is another “stan-
dard” concurrency control algorithm. It requires tracking
each item that is read and written, and aborts transactions
during a validation phase if there were conflicts. Intuitively,
we expect the performance for OCC to be similar to that
of locking. This is because, unlike traditional locking im-
plementations that need complex lock managers and careful
latching to avoid problems inherent in physical concurrency,
our locking scheme can be much lighter-weight, since each
partition runs single-threaded (i.e., we only have to worry
about the logical concurrency). Hence, our locking imple-
mentation involves little more than keeping track of the
read/write sets of a transaction — which OCC also must
do. Consequently, OCC’s primary advantage over locking is
eliminated. We have run some initial results that verify this
hypothesis, and plan to explore the trade-offs between OCC
and other concurrency control methods and our speculation
schemes as future work.

6. ANALYTICAL MODEL
To improve our understanding of the concurrency control

schemes, we analyze the expected performance for the multi-
partition scaling experiment from Section 5.1. This model
predicts the performance of the three schemes in terms of
just a few parameters (which would be useful in a query
planner, for example), and allows us to explore the sensitiv-
ity to workload characteristics (such as the CPU cost per
transaction or the network latency). To simplify the analy-
sis, we ignore replication.

Consider a database divided into two partitions, P1 and
P2. The workload consists of two transactions. The first is a
single partition transaction that accesses only P1 or P2, cho-
sen uniformly at random. The second is a multi-partition
transaction that accesses both partitions. There are no data
dependencies, and therefore only a single round of commu-
nication is required. In other words, the coordinator sim-
ply sends two fragments out, one to each partition, waits

TPC-C Evaluation (100% New Order)

Concurrency Control
 23

F igu re 8: T P C - C T hroughpu t Var y ing Warehouses

0

5000

10000

15000

20000

25000

30000

35000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Multi-Partition Transactions

Speculation
Blocking
Locking

F igu re 9: T P C - C 100% N ew O rder

must acquire locks. T he locking overhead is higher for T P C-
C than our microbenchmark for three reasons: more locks
are acquired for each transact ion, the lock manager is more
complex , and there are many conflic ts. In part icular, this
workload exhibi ts local and dist ributed deadlocks, hurt ing
throughput significant ly. Again, this shows that conflic ts
make t radi t ional concurrency control more expensive, in-
creasing the benefits of simpler schemes.

E xamining the output of a sampling profiler while run-
ning with a 10% mult i-part i t ion probabili ty shows that 34%
of the execution t ime is spent in the lock implementat ion.
A pproximately 12% of the t ime is spent managing the lock
table, 14% is spent acquiring locks, and 6% is spent releasing
locks. W hile our locking implementat ion cer tainly has room
for opt imizat ion, this is similar to what was previously mea-
sured for Shore, where 16% of the C P U inst ruc t ions could
be at tributed to locking [14].

5.7 Summary
O ur results show that the proper t ies of the workload de-

termine the best concurrency control mechanism . Specula-
t ion performs substant ially be t ter than locking or blocking

Table 1: Su m mar y of best concur rency cont rol
scheme for di erent si t ua t ions. Specula t ion is pre-
fer red when t here are few mul t i-round (general)
t ransac t ions and few abor ts.

for mult i-part i t ion transact ions that require only a single
round of communicat ion and when a low percentage of t rans-
ac t ions abort . O ur low overhead locking technique is best
when there are many transac t ions with mult iple rounds of
communicat ion. Table 1 shows which scheme is best , de-
pending on the workload; we imagine that a query executor
might record stat ist ics at runt ime and use a model like that
presented in Sec t ion 6 below to make the best choice.

O ptimist ic concurrency control (O C C) is another “stan-
dard” concurrency control algori thm . I t requires t racking
each item that is read and writ ten, and aborts t ransac t ions
during a validat ion phase if there were conflic ts. Intui t ively,
we expec t the performance for O C C to be similar to that
of locking. T his is because, unlike t radi t ional locking im-
plementat ions that need complex lock managers and careful
latching to avoid problems inherent in physical concurrency,
our locking scheme can be much lighter-weight , since each
part i t ion runs single-threaded (i.e., we only have to worry
about the logical concurrency). Hence, our locking imple-
mentat ion involves li t t le more than keeping track of the
read / wri te se ts of a transac t ion — which O C C also must
do. Consequently, O C C ’s primary advantage over locking is
eliminated. We have run some ini t ial results that verify this
hypothesis, and plan to explore the t rade-o s be tween O C C
and other concurrency control me thods and our speculat ion
schemes as future work .

6. ANA LYTICA L M ODE L
To improve our understanding of the concurrency control

schemes, we analyze the expec ted performance for the mult i-
part i t ion scaling experiment from Sec t ion 5.1. T his model
predic ts the performance of the three schemes in terms of
just a few parame ters (which would be useful in a query
planner, for example), and allows us to explore the sensi t iv-
i ty to workload charac terist ics (such as the C P U cost per
transac t ion or the ne twork latency). To simplify the analy-
sis, we ignore replicat ion.

Consider a database divided into two part i t ions, P 1 and
P 2 . T he workload consists of two transac t ions. T he first is a
single part i t ion transac t ion that accesses only P 1 or P 2 , cho-
sen uniformly at random . T he second is a mult i-part i t ion
transac t ion that accesses both part i t ions. T here are no data
dependencies, and therefore only a single round of commu-
nicat ion is required. In other words, the coordinator sim-
ply sends two fragments out , one to each part i t ion, waits

Evaluation Summary

Concurrency Control
 24

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18 20

T
ra
n
s
a
c
ti
o
n
s
/s
e
c
o
n
d

Warehouses

Speculation
Blocking
Locking

Figure 8: TPC-C Throughput Varying Warehouses

0

5000

10000

15000

20000

25000

30000

35000

0% 20% 40% 60% 80% 100%

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Multi-Partition Transactions

Speculation
Blocking
Locking

Figure 9: TPC-C 100% New Order

must acquire locks. The locking overhead is higher for TPC-
C than our microbenchmark for three reasons: more locks
are acquired for each transaction, the lock manager is more
complex, and there are many conflicts. In particular, this
workload exhibits local and distributed deadlocks, hurting
throughput significantly. Again, this shows that conflicts
make traditional concurrency control more expensive, in-
creasing the benefits of simpler schemes.

Examining the output of a sampling profiler while run-
ning with a 10% multi-partition probability shows that 34%
of the execution time is spent in the lock implementation.
Approximately 12% of the time is spent managing the lock
table, 14% is spent acquiring locks, and 6% is spent releasing
locks. While our locking implementation certainly has room
for optimization, this is similar to what was previously mea-
sured for Shore, where 16% of the CPU instructions could
be attributed to locking [14].

5.7 Summary
Our results show that the properties of the workload de-

termine the best concurrency control mechanism. Specula-
tion performs substantially better than locking or blocking

Few
Conflicts

Many
Conflicts

Few Conflicts
Many
Conflicts

Many multi-
partition
xactions

Speculation Speculation Locking
Locking or
Speculation

Few multi-
partition
xactions

Speculation Speculation
Blocking or
Locking

Blocking

Many multi-
round
xactions

Locking Locking Locking Locking

Few multi-
round
xactions

Few Aborts Many Aborts

Table 1: Summary of best concurrency control
scheme for different situations. Speculation is pre-
ferred when there are few multi-round (general)
transactions and few aborts.

for multi-partition transactions that require only a single
round of communication and when a low percentage of trans-
actions abort. Our low overhead locking technique is best
when there are many transactions with multiple rounds of
communication. Table 1 shows which scheme is best, de-
pending on the workload; we imagine that a query executor
might record statistics at runtime and use a model like that
presented in Section 6 below to make the best choice.

Optimistic concurrency control (OCC) is another “stan-
dard” concurrency control algorithm. It requires tracking
each item that is read and written, and aborts transactions
during a validation phase if there were conflicts. Intuitively,
we expect the performance for OCC to be similar to that
of locking. This is because, unlike traditional locking im-
plementations that need complex lock managers and careful
latching to avoid problems inherent in physical concurrency,
our locking scheme can be much lighter-weight, since each
partition runs single-threaded (i.e., we only have to worry
about the logical concurrency). Hence, our locking imple-
mentation involves little more than keeping track of the
read/write sets of a transaction — which OCC also must
do. Consequently, OCC’s primary advantage over locking is
eliminated. We have run some initial results that verify this
hypothesis, and plan to explore the trade-offs between OCC
and other concurrency control methods and our speculation
schemes as future work.

6. ANALYTICAL MODEL
To improve our understanding of the concurrency control

schemes, we analyze the expected performance for the multi-
partition scaling experiment from Section 5.1. This model
predicts the performance of the three schemes in terms of
just a few parameters (which would be useful in a query
planner, for example), and allows us to explore the sensitiv-
ity to workload characteristics (such as the CPU cost per
transaction or the network latency). To simplify the analy-
sis, we ignore replication.

Consider a database divided into two partitions, P1 and
P2. The workload consists of two transactions. The first is a
single partition transaction that accesses only P1 or P2, cho-
sen uniformly at random. The second is a multi-partition
transaction that accesses both partitions. There are no data
dependencies, and therefore only a single round of commu-
nication is required. In other words, the coordinator sim-
ply sends two fragments out, one to each partition, waits

Paper 2

•  The Case for Determinism in Database
Systems

– Alexander Thompson, Daniel Abadi

– VLDB 2010

Concurrency Control
 25

Overview

•  Presents a deterministic database prototype

– argues that in the age of memory-based OLTP

systems (think H-Store), clogging due to disk
waits will be a minimum (or nonexistant)

– allows for easier maintenance of database
replicas

Concurrency Control
 26

Nondeterminism in DBMSs

•  transactions are executed in parallel

• most databases guarantee consistency for

some serial order of transaction execution

– which?...depends on a lot of factors

– key is that it is not necessarily the order in

which transactions arrive in the system

Concurrency Control
 27

Drawbacks to Nondeterminism

•  Replication

– 2 systems with same state and given same

queries could have different final states

• defeats the idea of “replica”

• Horizontal Scalability

– partitions have to perform costly distributed

commit protocols (2PC)

Concurrency Control
 28

Why Determinism?

•  nondeterminism is particularly useful for
systems with long delays (disk, network,
deadlocks, …)

– less likely in main memory OLTP systems

– at some point, the drawbacks of

nondeterminism outweigh the potential benefits

Concurrency Control
 29

How to make it deterministic?

•  all incoming queries are passed to a
preprocessor

– non-deterministic work is done in advance

•  results are passed as transaction arguments

– all transactions are ordered

– transaction requests are written to disk

– requests are sent to all database replicas

Concurrency Control
 30

A small issue…

• What about transactions with operations

that depend on results from a previous
operation?

– y  read(x), write(y)

• x is the records primary key

•  This transaction cannot request all of its
locks until it knows the value of y

– …probably a bad idea to lock y’s entire table

Concurrency Control
 31

Dealing with “difficult” transactions

• Decompose the transaction into multiple

transactions

– all but the last are simply to discover the full

read/write set of the original transaction

– each transaction is dependent on the previous

ones

•  Execute the decomposed transactions 1 at a

time, waiting for results of previous

Concurrency Control
 32

System Architecture

Concurrency Control
 33

• Taking advantage of consistent, current repli-
cation. Instantaneous failover mechanisms in actively
replicated database systems can drastically reduce the
impact of hardware failures within replicas. Highly
replicated systems can also help hide performance dips
that affect only a subset of replicas.

• Distributed read-only queries. Read-only queries
need only be sent to a single replica. Alternatively,
a longer read-only query can often be split up across
replicas to reduce latency, balance load, and reduce the
clogging effect that it might cause if run in its entirety
on a single replica. Of course, long read-only queries
are increasingly avoided by today’s transactional ap-
plication designers—instead they are often sent to data
warehouses.

4.1 System architecture
Our deterministic database prototype consists of an in-

coming transaction preprocessor, coupled with arbitrarily
many database replicas.

Figure 2: Architecture of a deterministic DBMS.

The preprocessor is the boundary of the system’s internal
deterministic universe. It accepts transaction requests, or-
ders them, and performs in advance any necessary nondeter-
ministic work (such as calls to sys.random() or time.now()
in the transaction code), passing on its results as transac-
tion arguments. The transaction requests are then batched
and synchronously recorded to disk, guaranteeing durability.
This is the pivotal moment at which the system is committed
to completing the recorded transactions and after which all
execution must be consistent with the chosen order. Finally,
the batched transaction requests are broadcast to all replicas
using a reliable, totally-ordered communication layer.

Each database replica may consist of a single machine or
partition data across multiple machines. In either case, it
must implement an execution model which guarantees both
deadlock freedom and equivalence to the preprocessor’s uni-
versal transaction ordering. The partitioned case will be
discussed further in Section 5.

Upon the failure of a replica, recovery in our system is per-
formed by copying database state from a non-faulty replica.
Alternative schemes are possible (such as replaying the trans-
actions from the durable list of transactions at the prepro-
cessor), as long as the recovery scheme adheres to the sys-
tem’s determinism invariant.

4.2 Difficult transaction classes
It isn’t necessarily possible for every transaction to request

locks on every record it accesses immediately upon entering
the system. Consider the transaction

U(x) :
y ←read(x)
write(y)

where x is a record’s primary key, y is a local variable, and
write(y) updates the record whose primary key is y.

Immediately upon entering the system, it is clearly im-
possible for a transaction of type U to request all of its
locks (without locking y’s entire table), since the execution
engine has no way of determining y’s value without perform-
ing a read of record x. We term such transactions dependent
transactions. Our scheme addresses the problem of depen-
dent transactions by decomposing them into multiple trans-
actions, all of which but the last work towards discovering
the full read/write set so that the final one can begin exe-
cution knowing everything it has to access. For example, U
can be decomposed into the transactions:

U1(x) :
y ←read(x)
newtxnrequest(U2(x, y))

and

U2(x, y) :
y′ ←read(x)
if (y′ "= y)

newtxnrequest(U2(x, y′))
abort()

else
write(y)

U2 is not included in the ordered transaction batches that
are dispatched from the preprocessor to the replicas until
the result of U1 is returned to the preprocessor (any number
of transactions can be run in the meantime). U2 has some
information about what it probably has to lock and imme-
diately locks these items. It then checks if it locked the
correct items (i.e., none of the transactions that ran in the
meantime changed the dependency). If this check passes,
then U2 can proceed; however, if it fails, then U2 must be be
aborted (and its locks released). The preprocessor is noti-
fied of the abort and includes U2 again in the next batch of
transactions that are dispatched to the replicas. Note that
all abort-and-retry actions are deterministic (the transac-
tions that ran between U1 and U2 will be the same across
all replicas, and since the rescheduling of U2 upon an abort is
performed by the preprocessor, all future abort-and-retries
are also deterministic).

Since U ’s decomposition requires only one additional trans-
action to calculate the full read/write set, we call U a first-
order dependent transaction. First-order dependent trans-
actions are often seen in OLTP workloads in the form of
index lookups followed by record accesses. Higher-order de-
pendent transactions such as the second-order transaction

V (x) :
y ←read(x)
z ←read(y)
write(z)

appear much less frequently in real-world workloads, but

Evaluation

Concurrency Control
 34

t he same decomposi t ion t echnique handles arbi t rar y higher-
order t ransac t ions.

T his me t hod wor ks on a principle similar to t ha t of op t i-
mist ic concurrency cont rol, and as in O C C , decomposed de-
p endent t ransac t ions run t he risk of st ar va t ion should t heir
dep endencies oft en b e up da t ed b e tween execu t ions of t he
decomposed par ts.

To b e t t er underst and t he applicabili t y and costs of t his de-
composi t ion t echnique, we p erform a series of ex p eriments
and suppor t t hem wi t h an analy t ical model. Full de t ails
of t he ex p eriments and model are included in t he app endix .
We obser ved t ha t p erformance under wor k loads rich in first-
order dep endent t ransac t ions is inversely correla t ed wi t h
t he ra t e a t which t he decomposed t ransac t ions’ dep enden-
cies are up da t ed . For ex ample, in a wor k load consist ing
of T P C - C Pay ment t ransac t ions (where a customer name
is oft en supplied in lieu a primar y key, necessi t a t ing a sec-
ondar y index look up), t hroughpu t will su er not iceably only
if ever y single customer name is up da t ed ex t remely oft en—
hundreds to t housands of t imes p er second . T he overhead
of adding t he addi t ional read t ransac t ion to learn t he de-
p endency is almost negligible. Since real-life O L T P wor k-
loads seldom involve dep endencies on frequent ly up da t ed
da t a (secondar y indexes, for ex ample, are not usually cre-
a t ed on top of vola t ile da t a), we conclude t ha t wor k loads
t ha t have many dep endencies do not generally const i t u t e a
reason to avoid de t erminist ic concurrency cont rol.

T his scheme also fi ts nicely into da t abase syst em env iron-
ments t ha t allow users to ad just t he isola t ion level of t heir
t ransac t ion in order to improve p erformance. T his is b e-
cause t here is a st raight forward op t imiza t ion t ha t can b e
p erformed for dep endent reads t ha t are b eing run a t t he
read-commi t t ed isola t ion level (inst ead of t he fully serializ-
able isola t ion level). T he t ransac t ion is st ill decomposed into
two t ransac t ions as b efore, bu t t he second no longer has to
check to see if t he prev iously read da t a is st ill accura t e. T his
check (and pot ent ial abor t) are t herefore elimina t ed . N ot e
t ha t da t abase syst ems implement ing t radi t ional two-phase
lock ing also st ruggle wi t h high cont ent ion ra t es inherent to
wor k loads rich in long read-only queries, and t ha t many such
syst ems alread y suppor t execu t ion a t reduced isola t ion lev-
els3 . We env ision t he pot ent ial for some back-and-for t h b e-
tween t he de t erminist ic da t abase syst em and t he applica t ion
designer, where t he applica t ion designer is aler t ed upon t he
submission of a t ransac t ion wi t h a dep endent read t ha t p er-
formance might b e improved if t his t ransac t ion was execu t ed
a t a lower isola t ion level.

5. TPC-C & PARTITIONED DATA

To ex amine t he p erformance charac t erist ics of our de t er-
minist ic execu t ion protocol in a dist ribu t ed , par t i t ioned sys-
t em , we implement a subse t of t he T P C - C b enchmar k con-
sist ing of 100% N ew O rder t ransac t ions (t he back bone of
t he T P C - C b enchmar k). T he N ew O rder t ransac t ion sim-
ula t es a customer placing an e-commerce order, inser t ing
several records and up da t ing stock levels for 5-15 i t ems (out
of 100000 possible i t ems in each warehouse).

F igure 3 shows t hroughpu t for de t erminist ic and t radi-
t ional execu t ion of t he T P C - C N ew O rder wor k load , var y-
3 M ul t iversion and snapshot syst ems do not find read-only
queries problema t ic, bu t t hese syst ems are or t hogonal t he
approach describ ed here, since t here is room for mul t iversion
implement a t ions of de t erminist ic da t abase syst ems.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

tr
a

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

% multipartition transactions

2 warehouse traditional
2 warehouse deterministic

10 warehouse traditional
10 warehouse deterministic

F ig u r e 3: D e t e r m i n ist ic vs. t r a d i t io n a l t h r o u g h p u t
of T P C - C (100 % N e w O r d e r) wo r k loa d , va r y i n g f r e-
q u e n c y of m u l t i p a r t i t io n t r a nsac t io ns.

ing frequency of mul t ipar t i t ion t ransac t ions (in which part
of t he customer’s order must b e filled by a warehouse on
a remot e node). I n t hese ex p eriments, da t a is par t i t ioned
across two par t i t ions. We include measurements for 2 ware-
houses and 10 warehouses (1 p er par t i t ion and 5 p er par t i-
t ion , resp ec t ively). See t he app endix for fur t her discussion
of ex p eriment al se t up .

W hen mul t ipar t i t ion t ransac t ions are infrequent , N ew O r-
der t ransac t ions st ay ex t remely shor t , and t he two execu-
t ion schemes y ield comparable t hroughpu t for a given da t a
se t size—just as we obser ved in t he ex p eriment in Sec t ion
3 when no anomalously slow t ransac t ions were present in
t he execu t ion env ironment . W i t h only 2 warehouses, bot h
schemes en joy b e t t er cache locali t y t han wi t h 10 warehouses,
y ielding a improved t hroughpu t absent mul t ipar t i t ion t rans-
ac t ions. T he fewer records t here are, however, t he more lock
conflic ts we see. T wo N ew O rder t ransac t ions conflic t wi t h
probabili t y approx ima t ely 0.05 wi t h 2 warehouses and ap-
prox ima t ely 0.01 wi t h 10 warehouses. U nder bot h syst ems,
t he overall decline in p erformance as a larger p ercent age of
t ransac t ions b ecome mul t ipar t i t ion is t herefore grea t er wi t h
2 warehouses t han wi t h 10 (since mul t ipar t i t ion t ransac t ions
increase t ransac t ion lengt h , ex acerba t ing t he e ec t of lock
conflic t).

W hen we compare t ransac t ional t hroughpu t under t he
two execu t ion models, one might ex p ec t t he clogging b ehav-
ior discussed in Sec t ion 3 to sin k t he de t erminist ic scheme’s
p erformance compared to t ha t of t radi t ional execu t ion when
ne twor k delays b egin to ent ail longer-held locks—esp ecially
in t he 2-warehouse case where lock cont ent ion is ver y high .
I n fac t , we see t he opposi t e: regardless of numb er of ware-
houses (and t herefore cont ent ion ra t e) t he de t erminist ic pro-
tocol’s p erformance declines more gracefully t han t ha t of
t radi t ional lock ing as mul t ipar t i t ion t ransac t ions are added .

T his e ec t can b e a t t ribu t ed to t he addi t ional t ime t ha t
locks are held during t he two-phase commi t protocol in t he
t radi t ional execu t ion model. I n t he t radi t ional case, all
locks are held for t he full dura t ion of two-phase commi t .
U nder de t erminist ic execu t ion , however, our preprocessor
dispa t ches each new t ransac t ion to ever y node involved in
processing i t . T he t ransac t ion fragment sent to each node
is annot a t ed wi t h informa t ion abou t wha t da t a (e.g. re-
mot e reads and whe t her condi t ional abor ts occur) is needed
from which ot her nodes b efore t he up da t es involved in t his
fragment can “commi t ” . O nce all necessar y da t a is received
from all ex p ec t ed nodes, t he node can safely release locks for

Evaluation Summary

•  In systems/workloads where stalls are
sparse, determinism can be desirable

• Determinism has huge performance costs in
systems with large stalls

•  bottom line: good in some systems, but not
everywhere

Concurrency Control
 35

Paper 3

•  An Almost-Serial Protocol for Transaction
Execution in Main-Memory Database
Systems

– Stephen Blott, Henry Korth

– VLDB 2002

Concurrency Control
 36

Overview

•  In main memory databases, there is a lot of

overhead in locking

•  naïve approaches that lock the entire

database suffer during stalls when logs are
written to disk

• main idea: maintain timestamps and allow
non-conflicting transaction to execute
during disk stalls

Concurrency Control
 37

Timestamp Protocol

•  Let transaction T1 be a write on x

•  Before T1 writes anything, issue new

timestamp TS(T1) s.t. TS(T1) is greater than
any other timestamp

• When x is written, WTS(d) is set to TS(T1)

• When any transaction T2 reads d, TS(T2) is

set to max(TS(T2), WTS(d))

Concurrency Control
 38

Transaction Result

•  If T is an update transaction:

– TS(T) is a new timestamp, higher than any other

•  If T is a read-only transaction:

– TS(T) is the timestamp of the most recent
transaction from which T reads

•  For data item x:

– WTS(x) is the timestamp of the most recent

transaction that wrote into x

Concurrency Control
 39

The Mutex Array

•  an “infinite” array of mutexes, 1 per timestamp

•  Commit Protocol:

– Update

•  T acquires database mutex, executes

• When T wants to commit, acquire A[TS(T)], prior to

releasing database mutex

•  T releases A[TS(T)] after receiving ACK that its commit

record has been written to disk

– Read-Only

•  release database mutex and acquire A[TS(T)]

•  immediately release A[TS(T)], commit

Concurrency Control
 40

Evaluation

Concurrency Control
 41

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t

Percentage of transactions which are update transactions

Multi-programming level = 1 [SP]
Multi-programming level = 1 [2PL]

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t

Percentage of transactions which are update transactions

Multi-programming level = 5 [SP]
Multi-programming level = 5 [2PL]

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t

Percentage of transactions which are update transactions

Multi-programming level = 15 [SP]
Multi-programming level = 15 [2PL]

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t

Percentage of transactions which are update transactions

Multi-programming level = 35 [SP]
Multi-programming level = 35 [2PL]

General Conclusions

• As we make assumptions about query
workload and/or database architecture, old
techniques need to be revisited

• No silver bullet for concurrency/
determinism questions

– tradeoffs will depend largely on what is

important to the user of the system

Concurrency Control
 42

Questions?

Concurrency Control
 43

