Concurrency Control In
Distributed Main Memory
Database Systems

Justin A. DeBrabant

debrabant@cs.brown.edu

Concurrency control
e Goal:

— maintain consistent state of data
— ensure query results are correct

* The Gold Standard: ACID Properties

— atomicity — “all or nothing”

— consistency — no constraints violated

— 1solation — transactions don’t interfere
~ — durability — persist through crashes

BROWN

Concurrency Control

Why?

e Let’s just keep 1t simple...
— serial execution of all transactions
—-e.g.T1,T2,T3
— simple, but boring and slow

e The Real World:

— 1nterleave transactions to improve throughput

e ...crazy stuff starts to happen

BROWN

Concurrency Control

Traditional Techniques
* Locking

— lock data before reads/writes
— provides isolation and consistency
— 2-phase locking

e phase 1: acquire all necessary locks

e phase 2: release locks (no new locks acquired)
e Jocks: shared and exclusive

* Logging
— used for recovery
— provides atomicity and durability

— write-ahead logging
 all modifications are written to a log before they are applied

BROWN

Concurrency Control

How about 1n parallel?

* many of the same concerns, but must also worry
about committing multi-node transactions

distributed locking and deadlock detection can be
expensive (network costs are high)

2-phase commit
— single coordinator, several workers
— phase 1: voting

e cach worker votes “yes” or “no”

— phase 2: commit or abort

» consider all votes, notify workers of result

BROWN

Concurrency Control

The Issue

e these techniques are very general purpose
— “one size fits all”
— databases are moving away from this

By making assumptions about the system/
workload, can we do better?
— YES!

— keeps things interesting (and us employed)

BROWN

Concurrency Control

Paper 1

o Low Overhead Concurrency Control for
Partitioned Main Memory Databases
— Evan Jones, Daniel Abadi, Sam Madden
— SIGMOD ‘10

Concurrency Control

Overview

e Contribution:

— several concurrency control schemes for
distributed main-memory databases

o Strategy

— Take advantage of network stalls resulting from
multi-partition transaction coordination

— don’t want to (significantly) hurt performance
of single-partition transactions
e probably the majority

BROWN

Concurrency Control

System Model

* based on H-Store
e partition data to multiple machines

— all data 1s kept in memory
— single execution thread per partition
e central coordinator that coordinates

— assumed to be single coordinator in this paper

* multi-coordinator version more difficult

BROWN

Concurrency Control

System Model (cont’d)

| Clienttibrary = = 7 Clienttibrary = = T Clienttibrary |

H-Store

Single
Partition

Fragment

Multi
Partition

Central
Coordinator

Node 1

Data
Partition 1

Data
Partition 2

Primary Primary

Partition 1

Partition 4

Backup Backup

Replication Messages
N
\

I\
I
l
I
[
|

Node 2

Data

Data

Partition 3 Partition 4

Primary

Primary

v%cl‘e 4

Data

Data

Partition 3 Partition 2

Backup

Backup

Transaction Types

e Single Partition Transactions
— client forwards request directly to primary partition
— primary partition forwards request to backups

e Multi-Partition Transactions
— client forwards request to coordinator

— transaction divided into fragments and forwards them to
the appropriate transactions

— coordinator uses undo buffer and 2PC

— network stalls can occur as a partition waits for other
partitions for data
PPN * network stalls twice as long as average transaction length

[~
BROWN

N

Concurrency Control

Concurrency Control Schemes

e Blocking

— queue all incoming transactions during network
stalls

— simple, safe, slow
* Speculative Execution

— speculatively execute queued transactions during
network stalls

. Locking
— acquire read/write locks on all data
RINOAVAN

Concurrency Control

Blocking

e for each multi-partitioned transaction, block
until it completes

e other fragments 1n the blocking transaction
are processed in order
e all other transactions are queued

— executed after the blocking transaction has
completed all fragments

BROWN

Concurrency Control

Speculative Execution

speculatively execute queued transactions during
network stalls

must keep undo logs to roll back speculatively
executed transaction if transaction causing stall
aborts

if transaction causing stall commits, speculatively
executed transaction immediately commit
two cases:

— single partition transactions

— multi-partition transactions

BROWN

Concurrency Control

Speculating Single Partitions

wait for last fragment of multi-partition
transaction to execute

begin executing transactions from
unexecuted queue and add to uncommitted
queue

results must be buffered and cannot be
~exposed until they are known to be correct

BROWN

Concurrency Control

Speculating Multi-Partitions

e assumes that 2 speculative transactions share
the same coordinator

— simple 1n the single coordinator case

single coordinator tracks dependencies and
manages all commits/aborts
— must cascade aborts if transaction failure

best for simple, single-fraction per partition
transactions
— ¢.g. distributed reads

BROWN

Concurrency Control

Locking

locks allow individual partitions to execute and
commit non-conflicting transactions during
network stalls

problem: overhead of obtaining locks

optimization: only require locks when a multi-
partition transaction 1s active
must do local/distributed deadlock

— local: cycle detection
— distributed: timeouts

BROWN

Concurrency Control

Microbenchmark Evaluation

 Simple key/value store

— keys/values arbitrary strings

* simply for analysis of techniques, not
representative of real-world workload

Concurrency Control

Microbenchmark Evaluation

Speculation

©
C
(@)
O
(O]
(7))
S~
n
C
S
O
o
(7]
(e
©
p -
|_

20% 40% 60% 80% 100%
Multi-Partition Transactions

BROWN

Concurrency Control

Microbenchmark Evaluation

@
F

©
C
o
O
(]
»n
~
(%)
C
i
L e
O
©
(7))
C
©
—
|_

BROWN

Speculation 0% aborts
Speculation 3% aborts
Speculation 5% aborts
Speculation 10% aborts

Blocking 10% aborts -
Locking 10% aborts -

20% 40% 60% 80%
Multi-Partition Transactions

Concurrency Control

100%

TPC-C Evaluation

o TPC-C
— common OLTP benchmark

— simulates creating/placing orders at warehouses

e This benchmark is a modified version of
TPC-C

Concurrency Control

TPC-C Evaluation

@
F

©
c
o
(&
(O}
n
~
n
o
o
=
(&]
©
n
=
©
S
-

BROWN

Speculation
Blocking

10 12 14 16
Warehouses

Concurrency Control

TPC-C Evaluation (100% New Order)

'Speculatio'n
Blocking
Locking

©
c
o
O
o
(]
~
(2]
c
o
=
(&}
(4]
(2]
c
©
S
|_

20% 40% 60% 80% 100%
_ Multi-Partition Transactions

EE BROWN
q D Concurrency Control

Evaluation Summary

Few Aborts

Many
Conflicts

Few
Conflicts

Many Aborts

Many

Few Conflicts Conflicts

Few multi-
round
xactions

Many muilti-
partition
xactions

Few multi-
partition
xactions

Speculation Speculation

Speculation Speculation

Locking or

Locking Speculation

Blocking or

Locking Blocking

N

[
q

@
0

Many muilti-
round
xactions

BROWN

Locking Locking

Concurrency Control

Locking Locking

Paper 2

o The Case for Determinism in Database
Systems

— Alexander Thompson, Daniel Abadi
— VLDB 2010

Concurrency Control

Overview

* Presents a deterministic database prototype

— argues that in the age of memory-based OLTP
systems (think H-Store), clogging due to disk
waits will be a minimum (or nonexistant)

— allows for easier maintenance of database
replicas

Concurrency Control

Nondeterminism in DBMSs

* transactions are executed in parallel

* most databases guarantee consistency for
some serial order of transaction execution
— which?...depends on a lot of factors

— key 1s that it 1s not necessarily the order in
which transactions arrive in the system

Concurrency Control

Drawbacks to Nondeterminism

e Replication
— 2 systems with same state and given same

queries could have different final states
 defeats the idea of “replica”

* Horizontal Scalability

— partitions have to perform costly distributed
commit protocols (2PC)

BROWN

Concurrency Control

Why Determinism?

* nondeterminism 1s particularly useful for
systems with long delays (disk, network,
deadlocks, ...)

— less likely in main memory OLTP systems

— at some point, the drawbacks of
nondeterminism outweigh the potential benefits

Concurrency Control

How to make 1t deterministic?

e all incoming queries are passed to a
preprocessor

— non-deterministic work 1s done 1n advance

* results are passed as transaction arguments
— all transactions are ordered
— transaction requests are written to disk

— requests are sent to all database replicas

BROWN

Concurrency Control

A small 1ssue...

 What about transactions with operations
that depend on results from a previous
operation?
— y € read(x), write(y)
* x is the records primary key
e This transaction cannot request all of its
locks until it knows the value of y

__ — ...probably a bad idea to lock y’s entire table

BROWN

Concurrency Control

Dealing with “difficult” transactions

 Decompose the transaction into multiple
transactions

— all but the last are simply to discover the full
read/write set of the original transaction

— each transaction 1s dependent on the previous
ones
e Execute the decomposed transactions 1 at a
time, waiting for results of previous

BROWN

Concurrency Control

System Architecture

Client Application

transaction requests

nondeterministic behavior allowed

Pl‘epI’OCGSSOI' determinism guarantee in effect

ordered & batched transactions

Database Replicas

dependent transaction restart requests

Concurrency Control

Evaluation

2 warehouse traditional

2 warehouse deterministic
10 warehouse traditional
10 warehouse deterministic

©
c
Q
O
[0}
@
)
c
9
=
13}
©
7]
c
©
p -
=

40 60
% multipartition transactions

Figure 3: Deterministic vs. traditional throughput
of TPC-C (100% New Order) workload, varying fre-
quency of multipartition transactions.

Concurrency Control

Evaluation Summary

In systems/workloads where stalls are
sparse, determinism can be desirable

Determinism has huge performance costs in
systems with large stalls

bottom line: good in some systems, but not
everywhere

BROWN

Concurrency Control

Paper 3

* An Almost-Serial Protocol for Transaction
Execution in Main-Memory Database
Systems

— Stephen Blott, Henry Korth

— VLDB 2002

Concurrency Control

Overview

* In main memory databases, there 1s a lot of
overhead 1n locking

naive approaches that lock the entire
database suffer during stalls when logs are
written to disk

main 1dea: maintain timestamps and allow
non-conflicting transaction to execute
- during disk stalls

BROWN

Concurrency Control

Timestamp Protocol

Iet transaction 7'/ be a write on x

Before T1 writes anything, 1ssue new
timestamp TS(7'1) s.t. TS(T1) 1s greater than
any other timestamp

When x 1s written, WTS(d) 1s set to TS(T'/)

When any transaction 72 reads d, TS(T2) 1s
set to max(TS(72), WTS(d))

BROWN

Concurrency Control

Transaction Result

e If 7'1s an update transaction:
— TS(T) 1s a new timestamp, higher than any other
e If 7T'1s a read-only transaction:

— TS(T) 1s the timestamp of the most recent
transaction from which 7 reads

e For data item x:

— WTS(x) 1s the timestamp of the most recent
transaction that wrote into x

BROWN

Concurrency Control

The Mutex Array

e an “infinite” array of mutexes, 1 per timestamp

e Commit Protocol:
— Update

e T acquires database mutex, executes

e When T wants to commit, acquire A[TS(7)], prior to
releasing database mutex

e Treleases A[TS(T)] after receiving ACK that its commit
record has been written to disk

— Read-Only

 release database mutex and acquire A[TS(7)]
* immediately release A[TS(T)], commit

BROWN

Concurrency Control

Evaluation

MLIJIti-programming Ielvel =1[SP] —
Multi-programming level =1 [2PL] ---*---

“—
]
Qo
L
(o)
3
o
=
£
[

1
80
Percentage of transactions which are update transactions

EEI EEI BROWN
q D Concurrency Control

General Conclusions

* As we make assumptions about query
workload and/or database architecture, old
techniques need to be revisited

e No silver bullet for concurrency/
determinism questions

— tradeoffs will depend largely on what 1s
important to the user of the system

BROWN

Concurrency Control

Questions”?

Concurrency Control

