
Open Issues in Parallel Query Optimization
WAQAR HASAN"

H e w l e t t - P a c k a r d Labs , U S A

hasan @ cs.stanford.edu

A b s t r a c t
We provide an overview of query processing in paral-
lel database systems and discuss several open issues
in the optimization of queries for parallel machines.

DANIELA FLORESCU

I N R I A , F r a n c e

Daniela.Florescu @ inria.fr

1 Introduction

Parallel database systems combine data management
and parallel processing techniques to provide high-
performance, high-availability and scalability for data-
intensive applications [10, 35]. By exploiting parallel
computers, they provide performance at a cheaper price
than traditional mainframe solutions. Further, they are
the solution of choice for high transaction throughput in
OLTP systems as well as low response times in decision-
support systems. Finally, parallel databases are the only
viable solution for very large databases.

SQL, the standard language for programming database
access, is a high-level, set-oriented, declarative language.
This permits SQL compilers to automatically infer and
exploit parallelism. Users do not have to learn a new lan-
guage and application code does not need to be rewritten
to benefit from parallel execution. This is to be contrasted
to the use of lower-level languages in scientific comput-
ing which often requires re-writing application code to
take advantage of parallel machines.

A key to the success of parallel database systems,
particularly in decision-support applications, is parallel
query optimization. Given a SQL query, parallel query
optimization has the goal of finding a parallel plan that
delivers the query result in minimal time. While consid-
erable progress has been made, several problems remain
open. Further, solutions to the optimization problem
are sensitive to the query language expressive power,
the underlying execution mechanisms, the machine ar-
chitecture, and variations in the cost metric being min-
imized. New applications, demands for higher perfor-
mance from existing applications, innovations in query
execution mechanisms and machine architectures are
changing some of the underlying assumptions thereby
offering new challenges.

Parallel query optimization offers challenges beyond
those addressed by past research in fields such as
distributed databases [30] or classical scheduling the-
ory [18]. While distributed and parallel databases are
fundamentally similar, research in distributed query op-
timization was done in the early 1980s, a time at which

*Current address: Informix Soft'are. 4100 Bohannon Drive. Menlo
Park. CA 94025. USA

PATRICK VALDURIEZ

I N R I A , F ran ce

Patrick. Valduriez @ inria.fr

communication over a network was prohibitively expen-
sive and computer equipment was not cheap enough to
be thrown at parallel processing. Most work [27] focused
on minimizing work (total resource consumption) rather
than response time. Response time was considered [2]
only for execution spaces that allowed independent par-
allelism but did not allow pipelined or partitioned paral-
lelism. The latter two forms of parallelism have also not
been addressed in classical scheduling theory.

In this paper, we describe some open issues in par-
allel query optimization and propose some directions of
research. We first provide a brief overview of parallel
architectures (Section 2), and of parallel query execu-
tion (Section 3) and optimization (Section 4). Section 5
introduces the new issues and Section 6 concludes.

2 Parallel Machine Architectures

Parallel system architectures range between two ex-
tremes, shared-memory and shared-nothing (see Fig-
ure 1). There are interesting intermediate architectures
such as shared-disk which we omit for brevity.

In shared-memory systems all processors may access
all memory modules and all disks. Examples are HP
T500, Bull's Escala, SGI Challenge, Cray CS6400 as well
as mainframes such as IBM3090 and Cray YMP. Exam-
ples of shared-memory parallel database systems include
research prototypes such as XPRS [25], DBS3 [4] and
Volcano [16], as well as commercial products such as In-
formix 7.2 Online Dynamic Server [26], Oracle 7.3/Par-
allel Query Option [29] and IBM DB2/MVS [28].

In shared-nothing systems, each processor has ex-
clusive access to its main memory and a subset of the
disks. Tandem Himalaya, IBM SP2 [i] as well as clusters
of workstations connected by commodity interconnects
such as ATM are examples of shared-nothing machines.
Examples of shared-nothing parallel database systems
include commercial products such as Tandem NonStop-
SQL [34, 12], IBM DB2 Parallel Edition [3], ATI" GIS
Teradata as well as research prototypes such as Bubba [5]
and Gamma [11].

The main advantage of shared-memory is simplicity.
Since meta-information (directory) and control informa-
tion (e.g., lock table) is shared by all processors, writing
database software is not very different than for single-
processor computers. However, balancing processor and
disk loads presents a problem. As compared to shared-
nothing, load balancing problems are simpler since any

28 S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996

Shared-Memory Machine
Shared-Nothing Machine

Figure 1: Shared-Memory and Shared-Nothing Architectures
processor may access any disk, jobs may be pre-empted
cheaply and communication costs are low.

Sharing memory among processors leads to three
problems: limited scalability, high cost and low avail-
ability. As the number of processors increase, conflicting
accesses to the shared-memory rapidly degrade perfor-
mance. Retaining performance requires special-purpose
and costly design of the bus and memory. Therefore, scal-
ability is limited to tens of processors. The architecture
hurts availability since the memory space is shared by all
processors. A memory fault may affect most processors.

Shared-nothing architectures solve scalability and
availability problems by reducing interference between
processors. Taqdem and Teradata have demonstrated
commercial installations with hundreds of processors.
As remarked earlier, laad balancing is harder in shared-
nothing systems Shared-memory systems can offer the
best price-performance when the numbers of processors
is small. This has led to hybrid architectures which con-
sist of a shared-nothing system in which each node is a
shared-memory multi-processor. Examples are Encore
93 and ATT GIS P90 [7].

3 Parallel Query Execution

A procedural plan for a SQL query is conventionally rep-
resented as an annotated query tree. Such trees encode
procedural choices such as the order in which operators
are evaluated and the method for computing each opera-
tor. Each tree node represents one (or several) relational
eperators. Annotations on the node represent the details
of how it is to be executed. For example a join node
may be annotated as being executed as a hash-join and a
base relation may be annotated as being accessed by an
index-scan. The EXPLAIN statement of most SQL systems
allows such trees to be viewed by a user.

The work in computing a query may be partitioned
using three forms of parallelism: independent, pipelined
and partitioned. Two operators neither of which uses data
produced by the other may simultaneously run on dis-

tinct processors. This is termed independent parallelism.
Since operators produce and consume sets of tuples, the
tuples output by a producer can sometimes be fed to a
consumer as they get produced. Such concurrency is
termed pipelining and, when the producer and consumer
use distinct processors, is termed pipelined parallelism.
Intra-operator parallelism based on partitioning of data is
termed partitioned parallelism.

There are intrinsic limits on the benefit from parallel
execution due to constraints on available parallelism and
due to the overheads of parallel execution.

Available parallelism is constrained by several fac-
tors. Inter-operator parallelism is constrained by timing
constraints between operators. For example, a hash join
works by first building a hash table on one operand and
then, probing the hash table for matches using tuples of
the second operand. Since the hash table must be fully
built before being probed, there is aprecedence constraint
in the computation. As another example, an operator that
scans a table may pipe its output to the operator that build
a hash table. Such concurrency eliminates the need to
buffer intermediate results. It, however, places a parallel
constraint in the computation. In many machine archi-
tectures, data on a specific disk may only be accessed by
the processor that controls the disk. Thus data placement
constraints limit both inter and intra-operator parallelism
by localizing scan operations to specific processors. For
example, if an Employee table is stored partitioned by
department, a selection query that retrieves employees
from a single department has no available parallelism.

Using parallel execution requires starting and initial-
izing processes. These processes may then communicate
substantial amounts of data. These startup and commu-
nication overheads increase total work. The increase
is significant and may offset the advantages of parallel
execution in some cases [12].

Example 3.1 Figure 2 shows a query tree and the corre-
sponding operator tree. Thin edges are pipelining edges
that represent parallel constraints. Thick edges are block-

S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996 29

ing edges that represent precedence constraints. A sim-
ple hash join is broken into B u i l d and P r o b e opera-
tors. Since a hash table must be fully built before it can
be probed, the edge from Bu'i.ld to P r o b e is block-
ing. A sort-merge join sorts both inputs and then merges
the sorted streams. The merging is implemented by the
Me r ge operator. In this example, we assume the right
input of sort-merge to be pre-sorted. The ol~erator tree
shows the sort required for the left input broken into two
operators FormRuns and MergeRuns. Since the merg-
ing of runs can start only after run formation, the edge
from FormRuns to MergeRuns is blocking.

The operator tree exposes the available parallelism
and timing constraints among operators. Partitioned par-
allelism may be used for any operator. Pipelined par-
allelism may be used between two operators connected
by a pipelining edge. Two subtrees with no (transitive)
timing constraints between them may run independently
(eg: subtrees rooted at FormRuns and B u i l d) . []

4 Parallel Query Optimization

The optimization problems in the context of parallel ma-
chines can be understood with respect to the two-phase
view [24, 21] shown in Figure 3. The breakup into phases
provides a way of conquering problem complexity similar
to the use of phases in programming language compila-
tion. It eases both the understanding of the problems as
well as the development of solutions.

The first phase, JOQR (for Join Ordering and Query
Rewrite), produces an annotated query tree that fixes
aspects such as the order of joins and the strategy for
computing each join. The second phase, parallelization,
converts the annotated query tree into a parallel plan.
The JOQR phase includes problems similar to conven-
tional query optimization. Parallelization does not have
a counterpart in conventional optimization.

Critical aspects of parallel execution that interact with
the decisions of the first phase can be incorporated into
the models and algorithms used for JOQR. For exam-
ple, expensive repartitioning of data is needed if one
or both operands of a join are not partitioned on the
join attribute. Such repartitioning may be avoided by
changing the choice of the join predicate or the order of
joins [23, 21, 20]. We remark that some two-phase ap-
proaches reuse a conventional optimizei for the JOQR
phase [24].

Following the design of conventional optimizers (such
as in Starburst [19]) JOQR may be broken into two steps.
The first rewrites queries based on heuristics while the
second uses a cost-model to fix the order of operations
and selects methods for computing each operator (for
example join and access methods).

Parallelization may also be broken i , to two steps. The
first extracts parallelism by macro-expar~ding the anno-

tated query tree to an operator tree. The operator tree
identifies the pieces of code (operators) that should be
considered to be atomic by the scheduler as well as the
timing constraints between operators. The second step
schedules the operator tree on the parallel machine. The
goal of a scheduler is to allocate machine resources so
as to exploit the available parallelism while respecting
timing and data placement constraints.

The two phases pose optimization problems at dif-
ferent levels of abstraction. An optimization problem is
modeled by specifying an execution space that defines the
space of choices and a cost model that assigns a cost to
each execution. Given such a model, search algorithms
that minimize cost may be devised.

Models employed for the two phases are usually quite
different due to the nature of the problems. JOQR fo-
cuses on algebraic transformations and selection of strate-
gies for each high-level operator. The model therefore
abstracts away facets such as allocation of machine re-
sources. The cost metric is either work (i.e. total re-
source consumption) or a very rough guess of response
time. The parallelization phase, on the other hand, takes
a fixed procedural plan and focuses on allocating ma-
chine resources. The model includes a detailed view of
machine resources and the cost metric is response time.

It is clearly not essential for optimization algorithms to
be developed using a strict two-phase view. For example
JOQR may generate a set of plans or the two phases may
be integrated.

5 Some Open I s sues

We now discuss several open issues in parallel query
optimization. Many of these issues apply generally to
query optimization but parallelism makes them harder.

5.1 Heterogeneous Machines

A standard assumption in most research is to consider all
nodes of a parallel machine to be identical. However, it is
desirable for database software to work in heterogeneous
environments.

One often touted advantage of parallel machines is
the ability to incrementally add components (processors,
disks). By the time a user needs more computing power,
newer and faster components are likely to be available.

Another scenario for heterogeneity is the existence of
a large number of diverse machines in most office envi-
ronments. The machines differ in processor speed, the
amount of memory, and the speed and number of at-
tached disks. Many of these machines are under-utilized,
especially at night. Commodity interconnects such as
Myrinet, FDDI or an ATM switch may be used to turn
idle machine cycles into a useful parallel machine.

Distributed information systems may also be enabled
by the ubiquity of WANs such as the Internet. At one

30 S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996

index-scan indx-scan

,..~ sort-meree
I % E'mgr = M'empNum MACRO.EXpANuND

- - " simple hash ,,,.-
EMP M t > ~ E.dep "-' D.depnum

scan / / q]~x,

EmPS I, s

FormRuns Build,

Avg

Probe

OPTIMIZATION

• IndexScan(S)

Figure 2: Macro-Expansion of Query Tree to Operator Tree (Parallelism Extraction)

(E)

JOOR p A 11/A 1 .11" . lE I .17 ,AT IONl
-I

AVG

I

Query
,_ Result
O

Figure 3: Parallel Query Optimization: A Two-phase View
end of the spectrum, when there is strong central con-
trol, these problems may be modeled by considering the
system to be a heterogeneous parallel system. At the
other end, decentralized resources management poses ex-
tremely challenging problems [33]. Further, these new
environments may require new optimization objectives
such as minimizing monetary cost to the end-user given
response time constraints, or minimizing response time
given a fixed budget.

ordering is sensitive to estimates of intermediate result
sizes. It is well known that such estimates may have
large errors and better information may be available at
execution time.

5.3 Space-Time Tradeoffs

5.2 Dynamic/Pre-emptive Optimization

The machine resources available for executing a query
may change while the query is in execution. For example,
another query may complete and release resources. This
motivates the need for dynamic revision [6] of scheduling
decisions.

We observe that the additional freedom to revise
scheduling decisions gave two advantages in classical
scheduling problems such as multi-processor schedul-
ing. Firstly, pre-emptive schedule are better than non-
preemptive schedules. Secondly, the algorithmic prob-
lems get simplified.

It can be costly to pre-empt a query that uses a large
number of resources on a parallel machine. Any pre-
emptive scheme must account for the trade-off between
the cost and benefit of pre-emption.

Optimization decisions other than scheduling may also
benefit from revision at execution time [31, 17]. Join

Exploiting parallelism poses a host of scheduling prob-
lems that may be characterized along two dimensions: the
machine model and the task model. The machine model
represents resources such as processors, disks, memory
and the network. The task model consists of operator tree
and the degrees of freedom that the scheduler is allowed
(i.e. the use of partitioned, pipelined and independent
parallelism).

One challenge is to incorporate space-time tradeoffs
in the task model. It is well known that additional mem-
ory can be exploited to reduce the I/O and CPU cost of
operations such as sorting. In a parallel machine, more
memory is obtained by spreading computation over a
larger number of processors - thus I/O and CPU can be
traded for memory and communication. It is challenging
to devise models and algorithms that minimize response
time subject to limits on maximum memory usage while
taking this trade-off into account.

S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996 31

5.4 Extended/Non-Relational Data Models

Most research on parallel query optimization is in the
context of the relational model. All parallel database
products are relational. The penetration of database tech-
nology into new domains such as technical and scientific
applications is extending DBMS functionality with ob-
ject and rule capabilities. Examples of new functionality
(as in SQL3 and ODMG standards) are sequence or graph
data structures, path expressions, foreign functions (writ-
ten in programming languages), and passive and active
rules. Procedural extensions to database systems incor-
porate control features such as sequencing, conditionals
and loops.

One challenge is to determine how the models and al-
gorithms developed for parallel query optimization need
to change for these extended data models. The FAD
language of Bubba and the Flora language of the IDEA
system [13] have operators that express various forms of
parallelism over an object data model. The SVP model
[32] allows sets, sequences and parallelism to be captured
in a unified framework formalizing divide-and-conquer
mappings. These languages are possible formal founda-
tions for further research in parallel database languages
and parallel query optimization.

5.5 Evaluation of Algorithms

Two important aspects of evaluating an algorithm are the
quality of the plans and the running time of the algorithm.
Standard benchmarks such as TPC-D provide a measure
of overall system performance. They do not measure time
spent on optimization and cannot isolate the quality of the
optimizer from the quality of other system components.
Further, they are not designed to stress test parallel query
optimizers. Thus, one challenge is to develop standard
criteria for evaluating optimization algorithms.

We believe it is important to measure the quality of
plans by comparison with the optimal plan. One met-
ric for the quality of plans is the performance ratio [15]
which is the ratio of the cost of the produced plan to the
cost of the optimal plan. This measure has several advan-
tages. Firstly, the fact that it is a relative measure, allows
the quality of plans generated to be measured independent
of the quality of other system components. Secondly, it
provides a measure of potential benefits from algorithmic
advances. Lastly, both the average performance ratio as
well as the worst-case performance ratio are of interest.
Further, the ratio may be measured either experimentally
or by analysis. It is worth noting that performance ratio
can be computed without incurring the prohibitive effort
of actually finding the optimal plan. Using an easy to
compute lower bound on the optimal cost yields a pes-
simistic estimate of the performance ratio.

The second aspect of evaluating an algorithm is its
running time. Since there is a tradeoff between the time

spent in optimizing a query versus executing it, the eval-
uation criteria depend 'on the number of times the query
will be executed. Two important cases are canned and
interactive queries. A canned query is executed many
times and an interactive query exactly once. Optimiza-
tion time is not a major concern for canned queries. The
tradeoff is thus important for interactive queries. Ideas
such as approximation schemes in which better plans are
obtained by expending more effort may be useful.

5.6 Cost Models

It is desirable to let users decide whether the cost of run-
ning a query is worth the benefit from the query result.
This requires the ability to accurately predict query ex-
ecution time. While this is a challenging problem even
for sequential machines, factors such as data skew [36, 9]
pose additional challenges for parallel machines. More
work is needed to develop and validate accurate cost
models.

Database systems are increasingly deployed in inter-
active systems where it is important to minimize the time
to produce the first few tup!es of the query result rather
than the time to complete the query. This new optimiza-
tion objective poses fresh challenges.

Two-phase optimization is useful to leverage the dif-
ficult problems but creates two cost models, each at a
different level of abstraction. Unifying or ensuring the
consistency of the two cost models is interesting. Valida-
tion of cost models is also hard as existing benchmarks
do not deal with skew and parallelism. This is the more
general problem of beuchmarking parallel query optimiz-
ers.

Since accurate cost estimation is hard, the comple-
mcntary approach of developing optimization techniques
that compensate for the lack of knowledge by delaying
decisions to runtimc is a useful direction.

6 Conclusions

Parallel query optimization is a key technology that has
already contributed to the success of parallel database
systems. New requirements from applications, demands
for higher performance from existing applications, in-
novations in query execution mechanisms and machine
architectures are changing some of the underlying as-
sumptions thereby offering new challenges.

In this paper, we have briefly introduced what we con-
sider the major issues to be addressed: heterogeneous
architectures, dynamic/pre-emptive optimization, space-
time tradeoffs, new language features, evaluation of op-
timization algorithms, and accuracy of the cost model.
Although all these issues can be addressed individually.
they are not independent. To make substantial progress, it
is important to build paaailel query optimizers and stress
them against real data and appl!cations.

32 S I G M O D R e c o r d , Vol. 25, No. 3, S e p t e m b e r 1996

References
[1] T. Agerwala, J.L. Martin, J.H. Mirza, D.C. Sadler, D.M.

Dias, and M. Snir. SP2 System Architecture. IBMSystems
Journal, 34(2): 152-184, 1995.

[2] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization
Algorithms for Distributed Queries. IEEE Transaction on
Software Engineering, 9(1), 1983.

[3] C.K. Bard, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran,
S. Padmanabhan, G.P. Copeland, and W.G. Wilson. DB2
Parallel Edition. IBM Systems Journal, 34(2):292-322,
1995.

[4] B. Bergsten, M.Couprie, , and P. Valduriez. Prototyp-
ing DBS3, a Shared-Memory Parallel Database System.
In First International Conference on Parallel and Dis-
tributed Information Systems, Miami Beach, Florida, De-
cember 1991.

[5] H. Boral, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Protutyping Bubba,
A Highly Parallel Database System. IEEE Transactions
on Knowledge and Data Engineering, 2(1), March 1990.

[6] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic
Load Balancing in Hierarchical Parallel Database Sys-
tems. In Proceedings of the Twenty Second International
Conference on Very Large Data Bases, September 1996.

[7] E Carino and P. Kostamaa. Exegesis of DBC/1012 and P-
90- Industrial Supercomputer Database Machines. In Par-
allel Architectures and Languages Europe, Paris, France,
June 1992.

[8] C. Chekuri, W. Hasan, and R. Motwani. Scheduling Prob-
lems in Parallel Query Optimization. In Proceedings of the
Fourteenth A CM SIGA CT-SIGMOD-SIGART Symposium
on Principles of Database Systems, 1995.

[9] D. DeWitt, J. Naughton, D. Schneider, and S. Seshadri.
Practical Skew Handling in Parallel Joins. In Proceed-
ings of the Eighteenth International Conference on Very
Large Data Bases, Vancouver, British Columbia, Canada,
August 1992.

[10] D.J. DeWitt and J. Gray. Parallel Database Systems: The
Future of High Performance Database Systems. Commu-
nications of the ACM, 35(6):85-98, June 1992.

[11] D.J. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
database machine project. IEEE Transactions on Knowl-
edge and Data Engineering, 2(1), March 1990.

[12] S. Englert, R. Glasstone, and W. Hasan. Parallelism and its
Price: A Case Study of NonStop SQL/MP. 1995. Sigmod
Record, Dec 1995.

[13] D. Florescu, J-R. Grdser, M. Novak, P. Valduriez, and
M. Ziane. Design and Implementation of Flora, A Lan-
guage for Object Algebra. Information Sciences, 1995.

[14] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query Opti-
mization for Parallel Execution. In Proceedings of ACM-
SIGMOD International Conference on Management of
Data, pages 9-18, June 1992.

[15] M.R. Garey and D.S. Johnson. Computers and lntractabil-
ity. W.H. Freeman and Company, 1979.

[16] G. Graefe. Encapsulation of Parallelism in the Vol-
cano Query Processing System. In Proceedings of ACM-
SIGMOD International Conference on Management of
Data, May 1990.

[17] G. Graefe and K. Ward. Dynamic Query Optimization
Plans. In Proceedings of ACM-SIGMOD International
Conference on Management of Data, May 1989.

[18] R.L Graham, E.L. Lawler, J.K. Lenstra, and A.H.G Rin-
nooy Kan. Optimization and Approximation in Deter-
ministic Sequencing and Scheduling: A Survey. Annals
of Discrete Mathematics, 5:287-326, 1979.

[19] L.M. Haas, J.C. Freytag, G.M. Lohman, and H. Pirahesh.
Extensible Query Processing in Starburst. In Proceedings
of ACM-SIGMOD International Conference on Manage-
ment of Data, June 1989.

[20] A. Hameurlain and E Morvan. Exptciting inter-operation
parallelism for sql query optimization. In Proceedings
of the International Conference On Database and Expert
Systems Applications, Greece, September 1994.

[21] W. Hasan. Optimization of SQL Queries for Paral-
lel Machines. PhD thesis, Stanford University, 1995.
http://www-db.stan ford.edu/pub/hasan/1995/thesis.ps.

[22] W. Hasan and R. Motwani. Optimization Algorithms
for Exploiting the Parallelism-Communication Tradeoff
in Pipelined Parallelism. In Proceedings of the Twenti-
eth International Conference on Very Large Data Bases,
pages 36--47, Santiago, Chile, September 1994.

[23] W. Hasan and R. Motwani. Coloring Away Communi-
cation in Parallel Query Optimization. In Proceedings of
the Twenty First International Conference on Very Large
Data Bases, Zurich, Switzerland, September 1995.

[24] W. Hong. Parallel Query Processing Using Shared Mem-
ory Multiprocessors and Disk Arrays. PhD thesis, Uni-
versity of California, Berkeley, August 1992.

[25] W. Hong and M. Stonebraker. Optimization of Paral-
lel Query Execution Plans in XPRS. In Proceedings of
the First International Conference on Parallel and Dis-
tributed Information Systems, December 1991.

[26] Informix. INFORMIX-OnLine Extended Paral-
lel Server for Loosely Coupled Cluster and Mas-
sively Parallel Processing Architectures, July 1995.
http://www.informix.com.

[27] G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lind-
say, P. Selinger, and P. Wilms. Query Processing in R*.
In W. Kim, D. Reiner, and D. S. Batory, editors. Query
Processing in Database Systems. Springer Verlag, 1985.

[28] C. Mohan, H. Pirahesh, W.G. Tang, and Y. Wang. Paral-
lelism in Relational Database Management Systems. IBM
Systems Journal, 33(2), 1994.

[29] Oracle. Oracle Parallel Server, 1995.
http://www.oracle.com.

[30] M.T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1991.

[31] S. Roy. Adaptive Methods in Parallel Databases. PhD
thesis, Stanford University, 1991. Stanford CS Report
STAN-CS-91-1397.

[32] P. Valduriez S. Parker, E. Simon. SVP, a Data Model
Capturing Sets, Streams and Parallelism. In Proceedings
of the Eighteenth International Conference on VeD, Large
Data Bases, Vancouver, British Columbia, Canada, Au-
gust 1992.

[33] M. Stonebraker, R. Devine, M. Komacker, W. Litwin,
A. Pfeffer, A. Sah, and C. Staelin. An Economic Paradigm
for Query Processing and Data Migration in Manposa.
In Third International Conference on Parallel and Dis-
tributed Information Systems, Austin, Texas, September
1994.

[34] Tandem. Query Processing Using NonStop SQL/MP,
1995. http://www.tandem.com.

[35] P. Valduriez. Parallel Database Systems: Open Problems
and New Issues. Distributed and Parallel Databases: An
International Journal, 1 (2): 137-165, April 1993.

[36] C.B. Walton, A.G. Dale, and R.M. Jenevein. A Taxonomy
and Performance Model of Data Skew Effects in Parallel
Joins. In Proceedings of the Seventeenth International
Conference on Very Large Data Bases, Barcelona Spain,
September 1991.

SIGMOD Record, Vol. 25, No. 3, September 1996 33

