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sharing the following features: 
˲˲ Disk-oriented storage; 
˲˲ Tables stored row-by-row on disk, 

hence, a row store; 
˲˲ B-trees as the indexing mecha-

nism; 
˲˲ Dynamic locking as the concurren-

cy-control mechanism; 
˲˲ A write-ahead log, or WAL, for 

crash recovery; 
˲˲ SQL as the access language; and 
˲˲ A “row-oriented” query optimizer 

and executor, pioneered in System R.7 
The 1970s and 1980s were charac-

terized by a single major DBMS mar-
ket—business data processing—today 
called online transaction processing, 
or OLTP. Since then, DBMSs have come 
to be used in a variety of new markets, 
including data warehouses, scientific 
databases, social-networking sites, 
and gaming sites; the modern-day 
DBMS market is characterized in the 
figure here. 

The figure includes two axes: hori-
zontal, indicating whether an applica-
tion is read-focused or write-focused, 
and vertical, indicating whether an ap-
plication performs simple operations 
(read or write a few items) or complex 
operations (read or write thousands 
of items); for example, the traditional 
OLTP market is write-focused with 
simple operations, while the data 
warehouse market is read-focused 
with complex operations. Many appli-

the relatioNal MoDel  of data was proposed in 1970 
by Ted Codd5 as the best solution for the DBMS problems 
of the day—business data processing. Early relational 
systems included System R 2 and Ingres,9 and almost all 
commercial relational DBMS (RDBMS) implementations 
today trace their roots to these two systems. 

As such, unless you squint, the dominant commercial 
vendors—Oracle, IBM, and Microsoft—as well as the 
major open source systems—MySQL and PostgreSQL—
all look about the same today; we term these systems 
general-purpose traditional row stores, or GPTRS, 
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cations are, of course, in between; for 
example, social-networking applica-
tions involve mostly simple operations 
but also a balance of reads and writes. 
Hence, the figure should be viewed as 
a continuum in both directions, with 
any given application somewhere in 
between. 

The major commercial engines 
and open source implementations of 
the relational model are positioned 
as “one-size-fits-all” systems; that is, 
their implementations are claimed to 
be appropriate for all locations in the 
figure. 

However, there is also some dis-
satisfaction with one-size-fits-all. Wit-
ness, for example, the commercial 
success of the so-called column stores 
in the data-warehouse market. With 
these products, only those columns 
needed in the query are retrieved from 
disk, eliminating overhead for unused 
data. In addition, superior compres-
sion and indexing is obtained, since 
only one kind of object exists on each 
storage block, rather than several-to-
many. Finally, main-memory band-
width is economized through a query 
executor that operates on compressed 
data. For these reasons, column stores 
are remarkably faster than row stores 
on typical data-warehouse workloads, 
and we expect them to dominate the 
data-warehouse market over time. 

Our focus here is on simple-opera-
tion (SO) applications, the lower por-
tion of the figure. Quite a few new, non-
GPTRS systems have been designed 
to provide scalability for this market. 
Loosely speaking, we classify them 
into the following four categories: 

Key-value stores. Includes Dynamo, 
Voldemort, Membase, Membrain, Sca-
laris, and Riak. These systems have the 
simplest data model: a collection of 

objects, each with a key and a payload, 
providing little or no ability to inter-
pret the payload as a multi-attribute 
object, with no query mechanism for 
non-primary attributes; 

Document stores. Includes Couch-
DB, MongoDB, SimpleDB, and Ter-
rastore in which the data model con-
sists of objects with a variable number 
of attributes, some allowing nested 
objects. Collections of objects are 
searched via constraints on multiple 
attributes through a (non-SQL) query 
language or procedural mechanism; 

Extensible record stores. Includes 
BigTable, Cassandra, HBase, HyperT-
able, and PNUTS providing variable-
width record sets that can be par-
titioned vertically and horizontally 
across multiple nodes. They are gener-
ally not accessed through SQL; and 

SQL DBMSs. Focus on SO applica-
tion scalability, including MySQL Clus-
ter, other MySQL derivatives, VoltDB, 
NimbusDB, and Clustrix. They retain 
SQL and ACID (Atomicity, Consisten-
cy, Isolation, and Durability)a transac-
tions, but their implementations are 
often very different from those of GP-
TRS systems. 

We do not claim this classification 
is precise or exhaustive, though it does 
cover the major classes of newcomer. 
Moreover, the market is changing rap-
idly, so the reader is advised to check 
other sources for the latest. For a more 
thorough discussion and references 
for these systems, see Cattell4 and the 
table here. 

The NoSQL movement is driven 
largely by the systems in the first three 
categories, restricting the traditional 
notion of ACID transactions by allow-
ing only single-record operations to be 

a ACID; see http://en.wikipedia.org/wiki/ACID

transactions and/or by relaxing ACID 
semantics, by, say, supporting only 
“eventual consistency” on multiple 
versions of data. 

These systems are driven by a vari-
ety of motivations. For some, it is dis-
satisfaction with the relational model 
or the “heaviness” of RDBMSs. For oth-
ers, it is the needs of large Web prop-
erties with some of the most demand-
ing SO problems around. Large Web 
properties were frequently start-ups 
lucky enough to experience explosive 
growth, the so-called hockey-stick ef-
fect. They typically use an open source 
DBMS, because it is free or already 
understood by the staff. A single-node 
DBMS solution might be built for ver-
sion 1, which quickly exhibits scalabil-
ity problems. The conventional wis-
dom is then to “shard,” or partitioning 
the application data over multiple 
nodes that share the load. A table can 
be partitioned this way; for example, 
employee names can be partitioned 
onto 26 nodes by putting all the “A”s on 
node 1 and so forth. It is now up to ap-
plication logic to direct each query and 
update to the correct node. However, 
such sharding in application logic has 
a number of severe drawbacks: 

˲˲ If a cross-shard filter or join must 
be performed, then it must be coded in 
the application; 

˲˲ If updates are required within a 
transaction to multiple shards, then 
the application is responsible for 
somehow guaranteeing data consis-
tency across nodes; 

˲˲ Node failures are more common 
as the system scales. A difficult prob-
lem is how to maintain consistent 
replicas, detect failures, fail over to 
replicas, and replace failed nodes in a 
running system; 

˲˲ Making schema changes without 
taking shards “offline” is a challenge; 
and 

˲˲ Reprovisioning the hardware to 
add additional nodes or change the 
configuration is extremely tedious 
and, likewise, much more difficult if 
the shards cannot be taken offline. 

Many developers of sharded Web 
applications experience severe pain 
because they must perform these func-
tions in application-level logic; much 
of the NoSQL movement targets this 
pain point. However, with the large 
number of new systems and the wide 
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range of approaches they take, cus-
tomersb might have difficulty under-
standing and choosing a system to 
meet their application requirements. 

Here, we present 10 rules we advise 
any customer to consider with an SO 
application and in examining non-GP-
TRS systems. They are a mix of DBMS 
requirements and guidelines concern-
ing good SO application design. We 
state them in the context of customers 
running software in their own environ-
ment, though most also apply to soft-
ware-as-a-service environments. 

We lay out each rule, then indicate 
why it is necessary: 

Rule 1. Look for shared-nothing 
scalability. A DBMS can run on three 
hardware architectures: The old-
est—shared-memory multiprocess-
ing (SMP)—means the DBMS runs on 
a single node consisting of a collec-
tion of cores sharing a common main 
memory and disk system. SMP is limit-
ed by main memory bandwidth to a rel-
atively small number of cores. Clearly, 
the number of cores will increase in 
future systems, but it remains to be 
seen if main memory bandwidth will 
increase commensurately. Hence, 
multicore systems face performance 
limitations with DBMS software. Cus-
tomers choosing an SMP system were 
forced to perform sharding themselves 
to obtain scalability across SMP nodes 
and face the painful problems noted 
earlier. Popular systems running on 
SMP configurations are MySQL, Post-
greSQL, and Microsoft SQL Server. 

A second option is to choose a 
DBMS that runs on disk clusters, 
where a collection of CPUs with private 
main memories share a common disk 
system. This architecture was popular-
ized in the 1980s and 1990s by DEC, 
HP, and Sun but involves serious scal-
ability problems in the context of a 
DBMS. Due to the private buffer pool 
in each node’s main memory, the same 
disk block can be in multiple buffer 
pools. Hence, careful synchronization 
of these buffer-pool blocks is required. 
Similarly, a private lock table is includ-
ed in each node’s main memory. Care-
ful synchronization is again required 

b We use the term “customer” to refer to any 
organization evaluating or using one of these 
systems, even though some of them are open 
source, with no vendor.

but limits the scalability of a shared 
disk configuration to a small number 
of nodes, typically fewer than 10. 

Oracle RAC is a popular example of 
a DBMS running shared disk, and it 
is difficult to find RAC configurations 
with a double-digit number of nodes. 
Oracle recently announced Exadata 
and Exadata 2 running shared disk 
at the top level of a two-tier hierarchy 
while running shared-nothing at the 
bottom level. 

The final architecture is a shared-
nothing configuration, where each 
node shares neither main memory nor 
disk; rather, the nodes in a collection 
of self-contained nodes are connected 
to one another through networking. 
Essentially, all DBMSs oriented to-
ward the data warehouse market since 
1995 run shared-nothing, including 
Greenplum, Vertica, Asterdata, Parac-

cel, Netezza, and Teradata. Moreover, 
DB2 can run shared-nothing, as do 
many NoSQL engines. Shared-nothing 
engines normally perform automat-
ic sharding (partitioning) of data to 
achieve parallelism. Shared-nothing 
systems scale only if data objects are 
partitioned across the system’s nodes 
in a manner that balances the load. If 
there is data skew or “hot spots,” then 
a shared-nothing system degrades in 
performance to the speed of the over-
loaded node. The application must 
also make the overwhelming major-
ity of transactions “single-sharded,” a 
point covered further in Rule 6. 

Unless limited by application data/
operation skew, well-designed, shared-
nothing systems should continue to 
scale until networking bandwidth is 
exhausted or until the needs of the 
application are met. Many NoSQL 

system information sources.

systems Link

Asterdata http://asterdata.com

bigTable http://labs.google.com/papers/bigtable.html

Clustrix http://clustrix.com

Couchdb http://couchdb.apache.org

db2 http://ibm.com/software/data/db2

dynamo http://portal.acm.org/citation.cfm?id=1294281

exadata http://oracle.com/exadata

Greenplum http://greenplum.com

Hadoop http://hadoop.apache.org

Hbase http://hbase.apache.org

HyperTable http://hypertable.org

Mongodb http://mongodb.org

MySQL http://mysql.com/products/enterprise

MySQL Cluster http://mysql.com/products/database/cluster

Netezza http://netezza.com

Nimbusdb http://nimbusdb.com

oracle http://oracle.com

oracle RAC http://oracle.com/rac

Paraccel http://paraccel.com

PNuTs http://research.yahoo.com/pub/2304

PostgreSQL http://postgresql.org

Riak http://basho.com/Riak.html

Scalaris http://code.google.com/p/scalaris

Simpledb http://amazon.com/simpledb

SQL Server http://microsoft.com/sqlserver

Teradata http://teradata.com

Terrastore http://code.google.com/p/terrastore

Tokyo Cabinet http://1978th.net/tokyocabinet

vertica http://vertica.com

voldemort http://project-voldemort.com

voltdb http://voltdb.com
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systems reportedly run 100 nodes or 
more, and BigTable reportedly runs on 
thousands of nodes. 

The DBMS needs of Web applica-
tions can drive DBMS scalability up-
ward in a hurry; for example, Facebook 
was recently sharding 4,000 MySQL in-
stances in application logic. If it chose 
a DBMS, it would have to scale at least 
to this number of nodes. An SMP or 
shared-disk DBMS has no chance at 
this level of scalability. Shared-nothing 
DBMSs are the only game in town. 

Rule 2. High-level languages are 
good and need not hurt performance. 
Work in a SQL transaction can include 
the following components: 

˲˲ Overhead resulting from the opti-
mizer choosing an inferior execution 
plan; 

˲˲ Overhead of communicating with 
the DBMS; 

˲˲ Overhead inherent in coding in a 
high-level language; 

˲˲ Overhead for services (such as con-
currency control, crash recovery, and 
data integrity); and 

˲˲ Truly useful work to be performed, 
no matter what. 

Here, we cover the first three, leav-
ing the last two for Rule 3. Hierarchical 
and network systems were the domi-
nant DBMS solutions in the 1960s and 
1970s, offering a low-level procedural 
interface to data. The high-level lan-
guage of RDBMSs was instrumental in 
displacing these DBMSs for three rea-
sons: 

˲˲ A high-level language system re-
quires the programmer write less code 
that is easier to understand; 

˲˲ Users state what they want instead 
of writing a disk-oriented algorithm 
on how to access the data they need; 
a programmer need not understand 
complex storage optimizations; and 

˲˲ A high-level language system has 
a better chance of allowing a program 
to survive a change in the schema with-
out maintenance or recoding; as such, 
low-level systems require far more 
maintenance. 

One charge leveled at RDBMSs in 
the 1970s and 1980s was they could 
not be as efficient as low-level systems. 
The claim was that automatic query 
optimizers could not do as good a job 
as smart programmers. Though early 
optimizers were primitive, they were 
quickly as good as all but the best hu-

man programmers. Moreover, most 
organizations could never attract and 
retain this level of talent. Hence, this 
source of overhead has largely disap-
peared and today is only an issue on 
very complex queries rarely found in 
SO applications. 

The second source of overhead is 
communicating with the DBMS. For 
security reasons, RDBMSs insist on 
the application being run in a separate 
address space, using ODBC or JDBC 
for DBMS interaction. The overhead 
of these communication protocols 
is high; running a SQL transaction 
requires several back-and-forth mes-
sages over TCP/IP. Consequently, any 
programmer seriously interested in 
performance runs transactions using 
a stored-procedure interface, rather 
than SQL commands over ODBC/
JDBC. In the case of stored procedures, 
a transaction is a single over-and-back 
message. The DBMS further reduces 
communication overhead by batch-
ing multiple transactions in one call. 
The communication cost is a function 
of the interface selected, can be mini-
mized, and has nothing to do with the 
language level of the interaction. 

The third source of overhead is cod-
ing in SQL rather than in a low-level 
procedural language. Since most seri-
ous SQL engines compile to machine 
code or at least to a Java-style interme-
diate representation, this overhead is 
not large; that is, standard language 
compilation converts a high-level spec-
ification into a very efficient low-level 
runtime executable. 

Hence, one of the key lessons in the 
DBMS field over the past 25 years is 
that high-level languages are good and 
do not hurt performance. Some new 
systems provide SQL or a more limited 
higher-level language; others provide 
only a “database assembly language,” 
or individual index and object opera-
tions. This low-level interface may be 
adequate for very simple applications, 
but, in all other cases, high-level lan-
guages provide compelling advantag-
es. 

Rule 3. Plan to carefully leverage 
main memory databases. Consider a 
cluster of 16 nodes, each with 64GB 
of main memory. Any shared-nothing 
DBMS thereby has access to about 1TB 
of main memory. Such a hardware con-
figuration would have been considered 

extreme a few years ago but is com-
monplace today. Moreover, memory 
per node will increase in the future, 
and the number of nodes in a cluster 
is also likely to increase. Hence, typi-
cal future clusters will have increasing 
terabytes of main memory. 

As a result, if a database is a couple 
of terabytes or less (a very large SO da-
tabase), customers should consider 
main-memory deployment. If a data-
base is larger, customers should con-
sider main-memory deployment when 
practical. In addition, flash memory 
has become a promising storage me-
dium, as prices have decreased. 

Given the random-access speed of 
RAM versus disk, a DBMS can poten-
tially run thousands of times faster. 
However, the DBMS must be architect-
ed properly to utilize main memory ef-
ficiently; only modest improvements 
are achievable by simply running a 
DBMS on a machine with more mem-
ory. 

To understand why, consider the 
CPU overhead in DBMSs. In 2008, 
Harizopoulos et al.6 measured perfor-
mance using part of a major SO bench-
mark, TPC-C, on the Shore open-
source DBMS. This DBMS was chosen 
because the source code was available 
for instrumentation and because it 
was a typical GPTRS implementation. 
Based on simple measures of other GP-
TRS systems, the Shore results are rep-
resentative of those systems as well. 

Harizopoulos et al.6 used a database 
size that allowed all data to fit in main 
memory, as it was consistent with 
most SO applications. Since Shore, like 
other GPTRS systems, is disk-based, 
it meant all data would reside in the 
main memory buffer pool. Their goal 
was to categorize DBMS overhead on 
TPC-C; they ran the DBMS in the same 
address space as the application driv-
er, avoiding any TCP/IP cost. They then 
looked at the components of CPU us-
age that perform useful work or deliver 
DBMS services. 

Following is the CPU cycle usage for 
various tasks in the new-order trans-
action of TPC-C; since Harizopoulos 
et al.6 noted some shortcomings that 
are fixed in most commercial GPTRSs, 
these results have been scaled to as-
sume removal of these sources of over-
head: 

Useful work (13%). This is the CPU 
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cost for actually finding relevant re-
cords and performing retrieval or up-
date of relevant attributes; 

Locking (20%). This is the CPU cost 
of setting and releasing locks, detect-
ing deadlock, and managing the lock 
table; 

Logging (23%). When a record is up-
dated, the before and after images of 
the change are written to a log. Shore 
then groups transactions together in a 
“group commit,” forcing the relevant 
portions of the log to disk;

Buffer pool overhead (33%). Since 
all data resides in the buffer pool, any 
retrievals or updates require finding 
the relevant block in the buffer pool. 
The appropriate record(s) must then 
be located and the relevant attributes 
in the record found. Blocks on which 
there is an open database cursor must 
be “pinned” in main memory. More-
over, Least-Recently-Used or another 
replacement algorithm is utilized, re-
quiring the recording of additional in-
formation; and 

Multithreading overhead (11%). 
Since most DBMSs are multithreaded, 
multiple operations are going on in 
parallel. Unfortunately, the lock table 
is a shared data structure that must 
be “latched” to serialize access by the 
various parallel threads. In addition, 
B-tree indexes and resource-manage-
ment information must be similarly 
protected. Latches (mutexes) must 
be set and released when shared data 
structures are accessed. See Harizo-
poulos et al.6 for a more detailed dis-
cussion, including on why the latching 
overhead may be understated. 

A conventional disk-based DBMS 
clearly spends the overwhelming ma-
jority of its cycles on overhead activ-
ity. To go a lot faster, the DBMS must 
avoid all the overhead components 
discussed here; for example, a main 
memory DBMS with conventional 
multithreading, locking, and recovery 
is only marginally faster than its disk-
based counterpart. A NoSQL or other 
database engine will not dramatically 
outperform a GPTRS implementation, 
unless all these overhead components 
are addressed or the GPTRS solution 
has not been properly architected (by, 
say, using conversational SQL rather 
than a compiled stored procedure in-
terface).

We look at single-machine perfor-

mance in our analysis, but this perfor-
mance has a direct effect on the multi-
machine scalability discussed in Rule 
1, as well as in our other rules. 

Rule 4. High availability and au-
tomatic recovery are essential for SO 
scalability. In 1990, a typical DBMS ap-
plication would run on what we would 
now consider very expensive hardware. 
If the hardware failed, the customer 
would restore working hardware, re-
load the operating system and DBMS, 
then recover the database to the state 
of the last completed transaction by 
performing an undo of incomplete 
transactions and a redo of completed 
transactions using a DBMS log. This 
process could take time (several min-
utes to an hour or more) during which 
the application would be unavailable. 

Few customers today are willing to 
accept any downtime in their SO ap-
plications, and most want to run re-
dundant hardware and use data rep-
lication to maintain a second copy of 
all objects. On a hardware failure, the 
system switches over to the backup 
and continues operation. Effectively, 
customers want “nonstop” operation, 
as pioneered in the 1980s by Tandem 
Computers. 

Furthermore, many large Web prop-
erties run large numbers of shared-
nothing nodes in their configurations, 
where the probability of failure rises as 
the number of “moving parts” increas-
es. This failure rate renders human 
intervention impractical in the recov-
ery process; instead, shared-nothing 
DBMS software must automatically de-
tect and repair failed nodes. 

Any DBMS acquired for SO applica-
tions should have built-in high avail-
ability, supporting nonstop operation. 
Three high-availability caveats should 
be addressed. The first is that there is 
a multitude of kinds of failure, includ-
ing: 

˲˲ Application, where the application 
corrupts the database; 

˲˲ DBMS, where the bug can be recre-
ated (so-called Bohr bugs); 

˲˲ DBMS, where the bug cannot be 
recreated (so-called Heisenbugs); 

˲˲ Hardware, of all kinds; 
˲˲ Lost network packets; 
˲˲ Denial-of-service attacks; and 
˲˲ Network partitions. 

Any DBMS will continue operation 
for some but not for all these failure 

shared-nothing 
DBMss are the only 
game in town. 
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modes. The cost of recovering from 
all possible failure modes is very high. 
Hence, high availability is a statistical 
effort, or how much availability is de-
sired against particular classes of fail-
ures. 

The second caveat is the so-called 
CAP, or consistency, availability, and 
partition-tolerance, theorem.3 In the 
presence of certain failures, it states 
that a distributed system can have only 
two out of these three characteristics: 
consistency, availability, and partition-
tolerance. Hence, there are theoretical 
limits on what is possible in the high-
availability arena. 

Moreover, many site administrators 
want to guard against disasters (such 
as earthquakes and floods). Though 
rare, recovery from disasters is impor-
tant and should be viewed as an exten-
sion of high availability, supported by 
replication over a wide-area network. 

Rule 5. Online everything. An SO 
DBMS should have a single state: “up.” 
From the user’s point of view, it should 
never fail and never have to be taken 
offline. In addition to failure recovery, 
we need to consider operations that re-
quire the database be taken offline in 
many current implementations: 

Schema changes. Attributes must be 
added to an existing database without 
interruption in service; 

Index changes. Indexes should be 
added or dropped without interrup-
tion in service; 

Reprovisioning. It should be pos-
sible to increase the number of nodes 
used to process transactions, without 
interruption in service; for example, a 
configuration might go from 10 nodes 
to 15 nodes to accommodate an in-
crease in load; and 

Software upgrade. It should be pos-
sible to move from version N of a DBMS 
to version N + 1 without interruption of 
service. 

Though supporting these opera-
tions is a challenge, 100% uptime 
should be the goal. As an SO system 
scales to dozens of nodes and/or mil-
lions of users on the Internet, down-
time and manual intervention are not 
practical. 

Rule 6. Avoid multi-node opera-
tions. Two characteristics are neces-
sary for achieving SO scalability over a 
cluster of servers: 

Even split. The database and ap-

plication load must be split evenly 
over the servers. Read-scalability can 
be achieved by replicating data, but 
general read/write scalability requires 
sharding (partitioning) the data over 
nodes according to a primary key; and 

Scalability advantage. Applications 
rarely perform operations spanning 
more than one server or shard. If a 
large number of servers is involved in 
processing an operation, the scalabil-
ity advantage may be lost because of 
redundant work, cross-server commu-
nication, or required operation syn-
chronization. 

Suppose a customer has an employ-
ee table and partitions it based on em-
ployee age. If it wants to know the sal-
ary of a specific employee, it must then 
send the query to all nodes, requiring 
a slew of messages. Only one node will 
find the desired data; the others will 
run a redundant query that finds noth-
ing. Furthermore, if an application per-
forms an update that crosses shards, 
giving, say, a raise to all employees in 
the shoe department, then the system 
must pay all of the synchronization 
overhead of ensuring the transaction 
is performed on every node. 

Hence, a database administrator 
(DBA) should choose a sharding key to 
make as many operations single-shard 
as possible. Fortunately, most appli-
cations naturally involve single-shard 
transactions, if the data is partitioned 
properly; for example, if purchase or-
ders (POs) and their details are both 
sharded on PO number, then the vast 
majority of transactions (such as new 
PO and update a specific PO) go to a 
single node. 

The percentage of single-node 
transactions can be increased further 
by replicating read-only data; for ex-
ample, a list of customers and their 
addresses can be replicated at all sites. 
In many business-to-business environ-
ments, customers are added or deleted 
or change their addresses infrequent-
ly. Hence, complete replication allows 
inserting the address of a customer 
into a new PO as a single-node opera-
tion. Therefore, selective replication of 
read-mostly data can be advantageous. 

In summary, programmers should 
avoid multi-shard operations to the 
greatest extent possible, includ-
ing queries that must go to multiple 
shards, as well as multi-shard updates 

Avoid multi-shard 
operations to the 
greatest extent 
possible, including 
queries that must 
go to multiple 
shards, as well  
as multi-shard 
updates requiring 
ACiD properties. 



contributed�articles

juNe 2011  |   voL.  54  |   No.  6  |   CoMMuniCATions of The ACM     79

requiring ACID properties. Custom-
ers should carefully think through 
their application and database design 
to accomplish this goal. If that goal is 
unachievable with the current appli-
cation design, they should consider a 
redesign that achieves higher “single-
shardedness.” 

Rule 7. Don’t try to build ACID con-
sistency yourself. In general, the key-
value stores, document stores, and 
extensible record stores we mentioned 
have abandoned transactional ACID 
semantics for a weaker form of atomic-
ity, isolation, and consistency, provid-
ing one or more of the following alter-
native mechanisms: 

˲˲ Creating new versions of objects 
on every write that result in parallel 
versions when there are multiple asyn-
chronous writes; it is up to application 
logic to resolve the resulting conflict; 

˲˲ Providing an “update-if-current” 
operation that changes an object only 
if it matches a specified value; this way, 
an application can read an object it 
plans to later update and then make 
changes only if the value is still cur-
rent; 

˲˲ Providing ACID semantics but 
only for read and write operations of a 
single object, attribute, or shard; and 

˲˲ Providing “quorum” read-and-
write operations that guarantee the 
latest version among “eventually con-
sistent” replicas. 

It is possible to build your own ACID 
semantics on any of these systems, giv-
en enough additional code. However, 
the task is so difficult, we wouldn’t 
wish it on our worst enemy. If you need 
ACID semantics, you want to use a 
DBMS that provides them; it is much 
easier to deal with this at the DBMS 
level than at the application level. 

Any operation requiring coordi-
nated updates to two objects is likely 
to need ACID guarantees. Consider a 
transaction that moves $10 between 
two user accounts; with an ACID sys-
tem, a programmer can simply write: 

Begin transaction 
Decrement account A 
Increment account B 
Commit transaction 

Without an ACID system, there is 
no easy way to perform this coordi-
nated action. Other cases requiring 

ACID semantics include charging cus-
tomers’ accounts only if their orders 
ship and synchronously updating bi-
lateral “friend” references. Standard 
ACID semantics give the programmer 
the all-or-nothing guarantee needed 
to maintain data integrity in them. Al-
though some applications do not need 
such coordination, a commitment to 
a non-ACID system precludes extend-
ing such applications in the future in a 
way that requires coordination. DBMS 
applications often live a long time and 
are subject to unknown future require-
ments. 

We understand the NoSQL move-
ment’s motivation for abandoning 
transactions, given its belief that trans-
actional updates are expensive in tradi-
tional GPTRS systems. However, newer 
SQL engines can offer both ACID and 
high performance by carefully elimi-
nating all overhead in Rule 3, at least 
for applications that obey Rule 6 (avoid 
multinode operations). If you need 
ACID transactions and cannot follow 
Rule 6, then you will likely incur sub-
stantial overhead, no matter whether 
you code the ACID yourself or let the 
DBMS do it. Letting the DBMS do it is 
a no-brainer. 

We have heard the argument for 
abandoning ACID transactions based 
on the CAP theorem,3 stating you can 
have only two of three characteristics: 
C consistency, A availability, and P par-
tition-tolerance. The argument is that 
partitions happen, hence one must 
abandon consistency to achieve high 
availability. We take issue for three rea-
sons: First, some applications really 
do need consistency and cannot give 
it up. Second, the CAP theorem deals 
with only a subset of possible failures, 
as noted in Rule 4, and one is left with 
how to cope with the rest. And third, we 
are not convinced that partitions are a 
substantial issue for data sharded on a 
LAN, particularly with redundant LANs 
and applications on the same site; in 
this case, partitions may be rare, and 
one is better off choosing consistency 
(all the time) over availability during a 
very rare event. 

Though true that WAN partitions 
are much more likely than LAN parti-
tions, WAN replication is normally 
used for read-only copies or disaster 
recovery (such as when an entire data 
center goes offline); WAN latency is 

too high for synchronous replication 
or sharding. Few users expect to re-
cover from major disasters without 
short availability hiccups, so the CAP 
theorem may be less relevant in this 
situation. 

We advise customers who need 
ACID to seek a DBMS that provides it, 
rather than code it themselves, mini-
mizing the overhead of distributed 
transactions through good database 
and application design. 

Rule 8. Look for administrative sim-
plicity. One of our favorite complaints 
about relational DBMSs is their poor 
out-of-the-box behavior. Most prod-
ucts include many tuning knobs that 
allow adjustment of DBMS behavior; 
moreover, our experience is that a DBA 
skilled in a particular vendor’s prod-
uct, can make it go a factor of two or 
more faster than one unskilled in the 
given product. 

As such, it is a daunting task to 
bring in a new DBMS, especially one 
distributed over many nodes; it re-
quires installation, schema construc-
tion, application design, data distri-
bution, tuning, and monitoring. Even 
getting a high-performance version of 
TPC-C running on a new engine takes 
weeks, though code and schema are 
readily available. Moreover, once an 
application is in production, it still 
requires substantial DBA resources to 
keep it running. 

When considering a new DBMS, 
one should carefully consider the out-
of-the-box experience. Never let the 
vendor do a proof-of-concept exercise 
for you. Do the proof of concept your-
self, so you see the out-of-the-box situ-
ation up close. Also, carefully consider 
application-monitoring tools in your 
decision. 

Lastly, pay particular attention to 
Rule 5. Some of the most difficult ad-
ministrative issues (such as schema 
changes and reprovisioning) in most 
systems require human intervention. 

Rule 9. Pay attention to node per-
formance. A common refrain heard 
these days is “Go for linear scalabil-
ity; that way you can always provision 
to meet your application needs, while 
node performance is less important.” 
Though true that linear scalability 
is important, ignoring node perfor-
mance is a big mistake. One should al-
ways remember that linear scalability 
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means overall performance is a multi-
ple of the number of nodes times node 
performance. The faster the node per-
formance, the fewer nodes one needs. 

It is common for solutions to dif-
fer in node performance by an order 
of magnitude or more; for example, in 
DBMS-style queries, parallel DBMSs 
outperform Hadoop by more than an 
order of magnitude,1 and, similarly, 
H-store (the prototype predecessor to 
VoltDB) has been shown to have even 
higher throughput on TPC-C com-
pared to the products from major 
vendors.8 For example, consider a cus-
tomer choosing between two database 
solutions, each offering linear scal-
ability. If solution A offers node perfor-
mance a factor of 20 better than solu-
tion B, the customer might require 50 
hardware nodes with solution A versus 
1,000 nodes with solution B. 

Such a wide difference in hardware 
cost, rack space, cooling, and power 
consumption is obviously non-trivial 
between the two solutions. More im-
portant, if each node fails on average 
every three years, then solution B will 
see a failure every day, while solution 
A will see a failure less than once a 
month. This dramatic difference will 
heavily influence how much redundan-
cy is installed and how much admin-
istrative time is required to deal with 
reliability. Node performance makes 
everything else easier. 

Rule 10. Open source gives you more 
control over your future. This final rule 
is not a technical point but still impor-
tant to mention, and, hence, perhaps, 
should be a suggestion rather than 
a rule. The landscape is littered with 
situations where a company acquired 
a vendor’s product, only to face expen-
sive upgrades in the following years, 
large maintenance bills for often-in-
ferior technical support, and the in-
ability to avoid these fees because the 
cost of switching to a different product 
would require extensive recoding. The 
best way to avoid “vendor malpractice” 
is to use an open source product. Open 
source eliminates expensive licenses 
and upgrades and often provides mul-
tiple alternatives for support, new fea-
tures, and bug fixes, including the op-
tion of doing them in-house. 

For these reasons, many newer Web-
oriented shops are adamant about us-
ing only open source systems. Also, 

several vendors have proved it possible 
to make a viable business with an open 
source model. We expect it to be more 
popular over time, and customers are 
well advised to consider its advantages. 

Conclusion 
The 10 rules we’ve presented specify 
the desirable properties of any SO 
datastore. Customers looking at dis-
tributed data-storage solutions are 
well advised to view the systems they 
are considering in the context of this 
rule set, as well as in that of their own 
unique application requirements. The 
large number of systems available to-
day range considerably in capabilities 
and limitations. 
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