
72 CoMMuniCATions of The ACM | juNe 2011 | voL. 54 | No. 6

contributed�articles

sharing the following features:
˲˲ Disk-oriented storage;
˲˲ Tables stored row-by-row on disk,

hence, a row store;
˲˲ B-trees as the indexing mecha-

nism;
˲˲ Dynamic locking as the concurren-

cy-control mechanism;
˲˲ A write-ahead log, or WAL, for

crash recovery;
˲˲ SQL as the access language; and
˲˲ A “row-oriented” query optimizer

and executor, pioneered in System R.7
The 1970s and 1980s were charac-

terized by a single major DBMS mar-
ket—business data processing—today
called online transaction processing,
or OLTP. Since then, DBMSs have come
to be used in a variety of new markets,
including data warehouses, scientific
databases, social-networking sites,
and gaming sites; the modern-day
DBMS market is characterized in the
figure here.

The figure includes two axes: hori-
zontal, indicating whether an applica-
tion is read-focused or write-focused,
and vertical, indicating whether an ap-
plication performs simple operations
(read or write a few items) or complex
operations (read or write thousands
of items); for example, the traditional
OLTP market is write-focused with
simple operations, while the data
warehouse market is read-focused
with complex operations. Many appli-

the relatioNal MoDel of data was proposed in 1970
by Ted Codd5 as the best solution for the DBMS problems
of the day—business data processing. Early relational
systems included System R 2 and Ingres,9 and almost all
commercial relational DBMS (RDBMS) implementations
today trace their roots to these two systems.

As such, unless you squint, the dominant commercial
vendors—Oracle, IBM, and Microsoft—as well as the
major open source systems—MySQL and PostgreSQL—
all look about the same today; we term these systems
general-purpose traditional row stores, or GPTRS,

10 Rules for
scalable
Performance
in ‘simple
operation’
Datastores

Doi:10.1145/1953122.1953144

Partition data and operations, keep
administration simple, do not assume
one size fits all.

By MiChAeL sToneBRAKeR AnD RiCK CATTeLL

	 key	insights
��Many scalable sQL and nosQL datastores
have been introduced over the past five
years, designed for Web 2.0 and other
applications that exceed the capacity of
single-server RDBMss.

��Major differences characterize these
new datastores as to their consistency
guarantees, per-server performance,
scalability for read versus write loads,
automatic recovery from failure of a
server, programming convenience, and
administrative simplicity.

��Applications must be designed for
scalability, partitioning application
data into “shards,” avoiding operations
that span partitions, designing for
parallelism, and weighing requirements
for consistency guarantees.

juNe 2011 | voL. 54 | No. 6 | CoMMuniCATions of The ACM 73

1
4

6
9

2

7
10

3
5
8

Look for

shared-nothing

scalability.

high availability and automatic

recovery are essential for

so scalability.

Avoid

MuLTi-noDe

operations.

Pay attention

to noDe

performance.

high-level

languages are

GooD

and need not hurt

performance.

Don’t try to

build ACiD

consistency

yourself.

oPen souRCe
gives you more

ConTRoL over your future.

Plan to carefully

LeVeRAGe main

memory databases.

onLine
eVeRyThinG.

Look for

administrative

siMPLiCiTy.

74 CoMMuniCATions of The ACM | juNe 2011 | voL. 54 | No. 6

contributed�articles

cations are, of course, in between; for
example, social-networking applica-
tions involve mostly simple operations
but also a balance of reads and writes.
Hence, the figure should be viewed as
a continuum in both directions, with
any given application somewhere in
between.

The major commercial engines
and open source implementations of
the relational model are positioned
as “one-size-fits-all” systems; that is,
their implementations are claimed to
be appropriate for all locations in the
figure.

However, there is also some dis-
satisfaction with one-size-fits-all. Wit-
ness, for example, the commercial
success of the so-called column stores
in the data-warehouse market. With
these products, only those columns
needed in the query are retrieved from
disk, eliminating overhead for unused
data. In addition, superior compres-
sion and indexing is obtained, since
only one kind of object exists on each
storage block, rather than several-to-
many. Finally, main-memory band-
width is economized through a query
executor that operates on compressed
data. For these reasons, column stores
are remarkably faster than row stores
on typical data-warehouse workloads,
and we expect them to dominate the
data-warehouse market over time.

Our focus here is on simple-opera-
tion (SO) applications, the lower por-
tion of the figure. Quite a few new, non-
GPTRS systems have been designed
to provide scalability for this market.
Loosely speaking, we classify them
into the following four categories:

Key-value stores. Includes Dynamo,
Voldemort, Membase, Membrain, Sca-
laris, and Riak. These systems have the
simplest data model: a collection of

objects, each with a key and a payload,
providing little or no ability to inter-
pret the payload as a multi-attribute
object, with no query mechanism for
non-primary attributes;

Document stores. Includes Couch-
DB, MongoDB, SimpleDB, and Ter-
rastore in which the data model con-
sists of objects with a variable number
of attributes, some allowing nested
objects. Collections of objects are
searched via constraints on multiple
attributes through a (non-SQL) query
language or procedural mechanism;

Extensible record stores. Includes
BigTable, Cassandra, HBase, HyperT-
able, and PNUTS providing variable-
width record sets that can be par-
titioned vertically and horizontally
across multiple nodes. They are gener-
ally not accessed through SQL; and

SQL DBMSs. Focus on SO applica-
tion scalability, including MySQL Clus-
ter, other MySQL derivatives, VoltDB,
NimbusDB, and Clustrix. They retain
SQL and ACID (Atomicity, Consisten-
cy, Isolation, and Durability)a transac-
tions, but their implementations are
often very different from those of GP-
TRS systems.

We do not claim this classification
is precise or exhaustive, though it does
cover the major classes of newcomer.
Moreover, the market is changing rap-
idly, so the reader is advised to check
other sources for the latest. For a more
thorough discussion and references
for these systems, see Cattell4 and the
table here.

The NoSQL movement is driven
largely by the systems in the first three
categories, restricting the traditional
notion of ACID transactions by allow-
ing only single-record operations to be

a ACID; see http://en.wikipedia.org/wiki/ACID

transactions and/or by relaxing ACID
semantics, by, say, supporting only
“eventual consistency” on multiple
versions of data.

These systems are driven by a vari-
ety of motivations. For some, it is dis-
satisfaction with the relational model
or the “heaviness” of RDBMSs. For oth-
ers, it is the needs of large Web prop-
erties with some of the most demand-
ing SO problems around. Large Web
properties were frequently start-ups
lucky enough to experience explosive
growth, the so-called hockey-stick ef-
fect. They typically use an open source
DBMS, because it is free or already
understood by the staff. A single-node
DBMS solution might be built for ver-
sion 1, which quickly exhibits scalabil-
ity problems. The conventional wis-
dom is then to “shard,” or partitioning
the application data over multiple
nodes that share the load. A table can
be partitioned this way; for example,
employee names can be partitioned
onto 26 nodes by putting all the “A”s on
node 1 and so forth. It is now up to ap-
plication logic to direct each query and
update to the correct node. However,
such sharding in application logic has
a number of severe drawbacks:

˲˲ If a cross-shard filter or join must
be performed, then it must be coded in
the application;

˲˲ If updates are required within a
transaction to multiple shards, then
the application is responsible for
somehow guaranteeing data consis-
tency across nodes;

˲˲ Node failures are more common
as the system scales. A difficult prob-
lem is how to maintain consistent
replicas, detect failures, fail over to
replicas, and replace failed nodes in a
running system;

˲˲ Making schema changes without
taking shards “offline” is a challenge;
and

˲˲ Reprovisioning the hardware to
add additional nodes or change the
configuration is extremely tedious
and, likewise, much more difficult if
the shards cannot be taken offline.

Many developers of sharded Web
applications experience severe pain
because they must perform these func-
tions in application-level logic; much
of the NoSQL movement targets this
pain point. However, with the large
number of new systems and the wide

A characterization of DBMs applications.

Complex operations

simple operations

data warehouses

social networking

oltP

write-focus read-focus

contributed�articles

juNe 2011 | voL. 54 | No. 6 | CoMMuniCATions of The ACM 75

range of approaches they take, cus-
tomersb might have difficulty under-
standing and choosing a system to
meet their application requirements.

Here, we present 10 rules we advise
any customer to consider with an SO
application and in examining non-GP-
TRS systems. They are a mix of DBMS
requirements and guidelines concern-
ing good SO application design. We
state them in the context of customers
running software in their own environ-
ment, though most also apply to soft-
ware-as-a-service environments.

We lay out each rule, then indicate
why it is necessary:

Rule 1. Look for shared-nothing
scalability. A DBMS can run on three
hardware architectures: The old-
est—shared-memory multiprocess-
ing (SMP)—means the DBMS runs on
a single node consisting of a collec-
tion of cores sharing a common main
memory and disk system. SMP is limit-
ed by main memory bandwidth to a rel-
atively small number of cores. Clearly,
the number of cores will increase in
future systems, but it remains to be
seen if main memory bandwidth will
increase commensurately. Hence,
multicore systems face performance
limitations with DBMS software. Cus-
tomers choosing an SMP system were
forced to perform sharding themselves
to obtain scalability across SMP nodes
and face the painful problems noted
earlier. Popular systems running on
SMP configurations are MySQL, Post-
greSQL, and Microsoft SQL Server.

A second option is to choose a
DBMS that runs on disk clusters,
where a collection of CPUs with private
main memories share a common disk
system. This architecture was popular-
ized in the 1980s and 1990s by DEC,
HP, and Sun but involves serious scal-
ability problems in the context of a
DBMS. Due to the private buffer pool
in each node’s main memory, the same
disk block can be in multiple buffer
pools. Hence, careful synchronization
of these buffer-pool blocks is required.
Similarly, a private lock table is includ-
ed in each node’s main memory. Care-
ful synchronization is again required

b We use the term “customer” to refer to any
organization evaluating or using one of these
systems, even though some of them are open
source, with no vendor.

but limits the scalability of a shared
disk configuration to a small number
of nodes, typically fewer than 10.

Oracle RAC is a popular example of
a DBMS running shared disk, and it
is difficult to find RAC configurations
with a double-digit number of nodes.
Oracle recently announced Exadata
and Exadata 2 running shared disk
at the top level of a two-tier hierarchy
while running shared-nothing at the
bottom level.

The final architecture is a shared-
nothing configuration, where each
node shares neither main memory nor
disk; rather, the nodes in a collection
of self-contained nodes are connected
to one another through networking.
Essentially, all DBMSs oriented to-
ward the data warehouse market since
1995 run shared-nothing, including
Greenplum, Vertica, Asterdata, Parac-

cel, Netezza, and Teradata. Moreover,
DB2 can run shared-nothing, as do
many NoSQL engines. Shared-nothing
engines normally perform automat-
ic sharding (partitioning) of data to
achieve parallelism. Shared-nothing
systems scale only if data objects are
partitioned across the system’s nodes
in a manner that balances the load. If
there is data skew or “hot spots,” then
a shared-nothing system degrades in
performance to the speed of the over-
loaded node. The application must
also make the overwhelming major-
ity of transactions “single-sharded,” a
point covered further in Rule 6.

Unless limited by application data/
operation skew, well-designed, shared-
nothing systems should continue to
scale until networking bandwidth is
exhausted or until the needs of the
application are met. Many NoSQL

system information sources.

systems Link

Asterdata http://asterdata.com

bigTable http://labs.google.com/papers/bigtable.html

Clustrix http://clustrix.com

Couchdb http://couchdb.apache.org

db2 http://ibm.com/software/data/db2

dynamo http://portal.acm.org/citation.cfm?id=1294281

exadata http://oracle.com/exadata

Greenplum http://greenplum.com

Hadoop http://hadoop.apache.org

Hbase http://hbase.apache.org

HyperTable http://hypertable.org

Mongodb http://mongodb.org

MySQL http://mysql.com/products/enterprise

MySQL Cluster http://mysql.com/products/database/cluster

Netezza http://netezza.com

Nimbusdb http://nimbusdb.com

oracle http://oracle.com

oracle RAC http://oracle.com/rac

Paraccel http://paraccel.com

PNuTs http://research.yahoo.com/pub/2304

PostgreSQL http://postgresql.org

Riak http://basho.com/Riak.html

Scalaris http://code.google.com/p/scalaris

Simpledb http://amazon.com/simpledb

SQL Server http://microsoft.com/sqlserver

Teradata http://teradata.com

Terrastore http://code.google.com/p/terrastore

Tokyo Cabinet http://1978th.net/tokyocabinet

vertica http://vertica.com

voldemort http://project-voldemort.com

voltdb http://voltdb.com

76 CoMMuniCATions of The ACM | juNe 2011 | voL. 54 | No. 6

contributed�articles

systems reportedly run 100 nodes or
more, and BigTable reportedly runs on
thousands of nodes.

The DBMS needs of Web applica-
tions can drive DBMS scalability up-
ward in a hurry; for example, Facebook
was recently sharding 4,000 MySQL in-
stances in application logic. If it chose
a DBMS, it would have to scale at least
to this number of nodes. An SMP or
shared-disk DBMS has no chance at
this level of scalability. Shared-nothing
DBMSs are the only game in town.

Rule 2. High-level languages are
good and need not hurt performance.
Work in a SQL transaction can include
the following components:

˲˲ Overhead resulting from the opti-
mizer choosing an inferior execution
plan;

˲˲ Overhead of communicating with
the DBMS;

˲˲ Overhead inherent in coding in a
high-level language;

˲˲ Overhead for services (such as con-
currency control, crash recovery, and
data integrity); and

˲˲ Truly useful work to be performed,
no matter what.

Here, we cover the first three, leav-
ing the last two for Rule 3. Hierarchical
and network systems were the domi-
nant DBMS solutions in the 1960s and
1970s, offering a low-level procedural
interface to data. The high-level lan-
guage of RDBMSs was instrumental in
displacing these DBMSs for three rea-
sons:

˲˲ A high-level language system re-
quires the programmer write less code
that is easier to understand;

˲˲ Users state what they want instead
of writing a disk-oriented algorithm
on how to access the data they need;
a programmer need not understand
complex storage optimizations; and

˲˲ A high-level language system has
a better chance of allowing a program
to survive a change in the schema with-
out maintenance or recoding; as such,
low-level systems require far more
maintenance.

One charge leveled at RDBMSs in
the 1970s and 1980s was they could
not be as efficient as low-level systems.
The claim was that automatic query
optimizers could not do as good a job
as smart programmers. Though early
optimizers were primitive, they were
quickly as good as all but the best hu-

man programmers. Moreover, most
organizations could never attract and
retain this level of talent. Hence, this
source of overhead has largely disap-
peared and today is only an issue on
very complex queries rarely found in
SO applications.

The second source of overhead is
communicating with the DBMS. For
security reasons, RDBMSs insist on
the application being run in a separate
address space, using ODBC or JDBC
for DBMS interaction. The overhead
of these communication protocols
is high; running a SQL transaction
requires several back-and-forth mes-
sages over TCP/IP. Consequently, any
programmer seriously interested in
performance runs transactions using
a stored-procedure interface, rather
than SQL commands over ODBC/
JDBC. In the case of stored procedures,
a transaction is a single over-and-back
message. The DBMS further reduces
communication overhead by batch-
ing multiple transactions in one call.
The communication cost is a function
of the interface selected, can be mini-
mized, and has nothing to do with the
language level of the interaction.

The third source of overhead is cod-
ing in SQL rather than in a low-level
procedural language. Since most seri-
ous SQL engines compile to machine
code or at least to a Java-style interme-
diate representation, this overhead is
not large; that is, standard language
compilation converts a high-level spec-
ification into a very efficient low-level
runtime executable.

Hence, one of the key lessons in the
DBMS field over the past 25 years is
that high-level languages are good and
do not hurt performance. Some new
systems provide SQL or a more limited
higher-level language; others provide
only a “database assembly language,”
or individual index and object opera-
tions. This low-level interface may be
adequate for very simple applications,
but, in all other cases, high-level lan-
guages provide compelling advantag-
es.

Rule 3. Plan to carefully leverage
main memory databases. Consider a
cluster of 16 nodes, each with 64GB
of main memory. Any shared-nothing
DBMS thereby has access to about 1TB
of main memory. Such a hardware con-
figuration would have been considered

extreme a few years ago but is com-
monplace today. Moreover, memory
per node will increase in the future,
and the number of nodes in a cluster
is also likely to increase. Hence, typi-
cal future clusters will have increasing
terabytes of main memory.

As a result, if a database is a couple
of terabytes or less (a very large SO da-
tabase), customers should consider
main-memory deployment. If a data-
base is larger, customers should con-
sider main-memory deployment when
practical. In addition, flash memory
has become a promising storage me-
dium, as prices have decreased.

Given the random-access speed of
RAM versus disk, a DBMS can poten-
tially run thousands of times faster.
However, the DBMS must be architect-
ed properly to utilize main memory ef-
ficiently; only modest improvements
are achievable by simply running a
DBMS on a machine with more mem-
ory.

To understand why, consider the
CPU overhead in DBMSs. In 2008,
Harizopoulos et al.6 measured perfor-
mance using part of a major SO bench-
mark, TPC-C, on the Shore open-
source DBMS. This DBMS was chosen
because the source code was available
for instrumentation and because it
was a typical GPTRS implementation.
Based on simple measures of other GP-
TRS systems, the Shore results are rep-
resentative of those systems as well.

Harizopoulos et al.6 used a database
size that allowed all data to fit in main
memory, as it was consistent with
most SO applications. Since Shore, like
other GPTRS systems, is disk-based,
it meant all data would reside in the
main memory buffer pool. Their goal
was to categorize DBMS overhead on
TPC-C; they ran the DBMS in the same
address space as the application driv-
er, avoiding any TCP/IP cost. They then
looked at the components of CPU us-
age that perform useful work or deliver
DBMS services.

Following is the CPU cycle usage for
various tasks in the new-order trans-
action of TPC-C; since Harizopoulos
et al.6 noted some shortcomings that
are fixed in most commercial GPTRSs,
these results have been scaled to as-
sume removal of these sources of over-
head:

Useful work (13%). This is the CPU

contributed�articles

juNe 2011 | voL. 54 | No. 6 | CoMMuniCATions of The ACM 77

cost for actually finding relevant re-
cords and performing retrieval or up-
date of relevant attributes;

Locking (20%). This is the CPU cost
of setting and releasing locks, detect-
ing deadlock, and managing the lock
table;

Logging (23%). When a record is up-
dated, the before and after images of
the change are written to a log. Shore
then groups transactions together in a
“group commit,” forcing the relevant
portions of the log to disk;

Buffer pool overhead (33%). Since
all data resides in the buffer pool, any
retrievals or updates require finding
the relevant block in the buffer pool.
The appropriate record(s) must then
be located and the relevant attributes
in the record found. Blocks on which
there is an open database cursor must
be “pinned” in main memory. More-
over, Least-Recently-Used or another
replacement algorithm is utilized, re-
quiring the recording of additional in-
formation; and

Multithreading overhead (11%).
Since most DBMSs are multithreaded,
multiple operations are going on in
parallel. Unfortunately, the lock table
is a shared data structure that must
be “latched” to serialize access by the
various parallel threads. In addition,
B-tree indexes and resource-manage-
ment information must be similarly
protected. Latches (mutexes) must
be set and released when shared data
structures are accessed. See Harizo-
poulos et al.6 for a more detailed dis-
cussion, including on why the latching
overhead may be understated.

A conventional disk-based DBMS
clearly spends the overwhelming ma-
jority of its cycles on overhead activ-
ity. To go a lot faster, the DBMS must
avoid all the overhead components
discussed here; for example, a main
memory DBMS with conventional
multithreading, locking, and recovery
is only marginally faster than its disk-
based counterpart. A NoSQL or other
database engine will not dramatically
outperform a GPTRS implementation,
unless all these overhead components
are addressed or the GPTRS solution
has not been properly architected (by,
say, using conversational SQL rather
than a compiled stored procedure in-
terface).

We look at single-machine perfor-

mance in our analysis, but this perfor-
mance has a direct effect on the multi-
machine scalability discussed in Rule
1, as well as in our other rules.

Rule 4. High availability and au-
tomatic recovery are essential for SO
scalability. In 1990, a typical DBMS ap-
plication would run on what we would
now consider very expensive hardware.
If the hardware failed, the customer
would restore working hardware, re-
load the operating system and DBMS,
then recover the database to the state
of the last completed transaction by
performing an undo of incomplete
transactions and a redo of completed
transactions using a DBMS log. This
process could take time (several min-
utes to an hour or more) during which
the application would be unavailable.

Few customers today are willing to
accept any downtime in their SO ap-
plications, and most want to run re-
dundant hardware and use data rep-
lication to maintain a second copy of
all objects. On a hardware failure, the
system switches over to the backup
and continues operation. Effectively,
customers want “nonstop” operation,
as pioneered in the 1980s by Tandem
Computers.

Furthermore, many large Web prop-
erties run large numbers of shared-
nothing nodes in their configurations,
where the probability of failure rises as
the number of “moving parts” increas-
es. This failure rate renders human
intervention impractical in the recov-
ery process; instead, shared-nothing
DBMS software must automatically de-
tect and repair failed nodes.

Any DBMS acquired for SO applica-
tions should have built-in high avail-
ability, supporting nonstop operation.
Three high-availability caveats should
be addressed. The first is that there is
a multitude of kinds of failure, includ-
ing:

˲˲ Application, where the application
corrupts the database;

˲˲ DBMS, where the bug can be recre-
ated (so-called Bohr bugs);

˲˲ DBMS, where the bug cannot be
recreated (so-called Heisenbugs);

˲˲ Hardware, of all kinds;
˲˲ Lost network packets;
˲˲ Denial-of-service attacks; and
˲˲ Network partitions.

Any DBMS will continue operation
for some but not for all these failure

shared-nothing
DBMss are the only
game in town.

78 CoMMuniCATions of The ACM | juNe 2011 | voL. 54 | No. 6

contributed�articles

modes. The cost of recovering from
all possible failure modes is very high.
Hence, high availability is a statistical
effort, or how much availability is de-
sired against particular classes of fail-
ures.

The second caveat is the so-called
CAP, or consistency, availability, and
partition-tolerance, theorem.3 In the
presence of certain failures, it states
that a distributed system can have only
two out of these three characteristics:
consistency, availability, and partition-
tolerance. Hence, there are theoretical
limits on what is possible in the high-
availability arena.

Moreover, many site administrators
want to guard against disasters (such
as earthquakes and floods). Though
rare, recovery from disasters is impor-
tant and should be viewed as an exten-
sion of high availability, supported by
replication over a wide-area network.

Rule 5. Online everything. An SO
DBMS should have a single state: “up.”
From the user’s point of view, it should
never fail and never have to be taken
offline. In addition to failure recovery,
we need to consider operations that re-
quire the database be taken offline in
many current implementations:

Schema changes. Attributes must be
added to an existing database without
interruption in service;

Index changes. Indexes should be
added or dropped without interrup-
tion in service;

Reprovisioning. It should be pos-
sible to increase the number of nodes
used to process transactions, without
interruption in service; for example, a
configuration might go from 10 nodes
to 15 nodes to accommodate an in-
crease in load; and

Software upgrade. It should be pos-
sible to move from version N of a DBMS
to version N + 1 without interruption of
service.

Though supporting these opera-
tions is a challenge, 100% uptime
should be the goal. As an SO system
scales to dozens of nodes and/or mil-
lions of users on the Internet, down-
time and manual intervention are not
practical.

Rule 6. Avoid multi-node opera-
tions. Two characteristics are neces-
sary for achieving SO scalability over a
cluster of servers:

Even split. The database and ap-

plication load must be split evenly
over the servers. Read-scalability can
be achieved by replicating data, but
general read/write scalability requires
sharding (partitioning) the data over
nodes according to a primary key; and

Scalability advantage. Applications
rarely perform operations spanning
more than one server or shard. If a
large number of servers is involved in
processing an operation, the scalabil-
ity advantage may be lost because of
redundant work, cross-server commu-
nication, or required operation syn-
chronization.

Suppose a customer has an employ-
ee table and partitions it based on em-
ployee age. If it wants to know the sal-
ary of a specific employee, it must then
send the query to all nodes, requiring
a slew of messages. Only one node will
find the desired data; the others will
run a redundant query that finds noth-
ing. Furthermore, if an application per-
forms an update that crosses shards,
giving, say, a raise to all employees in
the shoe department, then the system
must pay all of the synchronization
overhead of ensuring the transaction
is performed on every node.

Hence, a database administrator
(DBA) should choose a sharding key to
make as many operations single-shard
as possible. Fortunately, most appli-
cations naturally involve single-shard
transactions, if the data is partitioned
properly; for example, if purchase or-
ders (POs) and their details are both
sharded on PO number, then the vast
majority of transactions (such as new
PO and update a specific PO) go to a
single node.

The percentage of single-node
transactions can be increased further
by replicating read-only data; for ex-
ample, a list of customers and their
addresses can be replicated at all sites.
In many business-to-business environ-
ments, customers are added or deleted
or change their addresses infrequent-
ly. Hence, complete replication allows
inserting the address of a customer
into a new PO as a single-node opera-
tion. Therefore, selective replication of
read-mostly data can be advantageous.

In summary, programmers should
avoid multi-shard operations to the
greatest extent possible, includ-
ing queries that must go to multiple
shards, as well as multi-shard updates

Avoid multi-shard
operations to the
greatest extent
possible, including
queries that must
go to multiple
shards, as well
as multi-shard
updates requiring
ACiD properties.

contributed�articles

juNe 2011 | voL. 54 | No. 6 | CoMMuniCATions of The ACM 79

requiring ACID properties. Custom-
ers should carefully think through
their application and database design
to accomplish this goal. If that goal is
unachievable with the current appli-
cation design, they should consider a
redesign that achieves higher “single-
shardedness.”

Rule 7. Don’t try to build ACID con-
sistency yourself. In general, the key-
value stores, document stores, and
extensible record stores we mentioned
have abandoned transactional ACID
semantics for a weaker form of atomic-
ity, isolation, and consistency, provid-
ing one or more of the following alter-
native mechanisms:

˲˲ Creating new versions of objects
on every write that result in parallel
versions when there are multiple asyn-
chronous writes; it is up to application
logic to resolve the resulting conflict;

˲˲ Providing an “update-if-current”
operation that changes an object only
if it matches a specified value; this way,
an application can read an object it
plans to later update and then make
changes only if the value is still cur-
rent;

˲˲ Providing ACID semantics but
only for read and write operations of a
single object, attribute, or shard; and

˲˲ Providing “quorum” read-and-
write operations that guarantee the
latest version among “eventually con-
sistent” replicas.

It is possible to build your own ACID
semantics on any of these systems, giv-
en enough additional code. However,
the task is so difficult, we wouldn’t
wish it on our worst enemy. If you need
ACID semantics, you want to use a
DBMS that provides them; it is much
easier to deal with this at the DBMS
level than at the application level.

Any operation requiring coordi-
nated updates to two objects is likely
to need ACID guarantees. Consider a
transaction that moves $10 between
two user accounts; with an ACID sys-
tem, a programmer can simply write:

Begin transaction
Decrement account A
Increment account B
Commit transaction

Without an ACID system, there is
no easy way to perform this coordi-
nated action. Other cases requiring

ACID semantics include charging cus-
tomers’ accounts only if their orders
ship and synchronously updating bi-
lateral “friend” references. Standard
ACID semantics give the programmer
the all-or-nothing guarantee needed
to maintain data integrity in them. Al-
though some applications do not need
such coordination, a commitment to
a non-ACID system precludes extend-
ing such applications in the future in a
way that requires coordination. DBMS
applications often live a long time and
are subject to unknown future require-
ments.

We understand the NoSQL move-
ment’s motivation for abandoning
transactions, given its belief that trans-
actional updates are expensive in tradi-
tional GPTRS systems. However, newer
SQL engines can offer both ACID and
high performance by carefully elimi-
nating all overhead in Rule 3, at least
for applications that obey Rule 6 (avoid
multinode operations). If you need
ACID transactions and cannot follow
Rule 6, then you will likely incur sub-
stantial overhead, no matter whether
you code the ACID yourself or let the
DBMS do it. Letting the DBMS do it is
a no-brainer.

We have heard the argument for
abandoning ACID transactions based
on the CAP theorem,3 stating you can
have only two of three characteristics:
C consistency, A availability, and P par-
tition-tolerance. The argument is that
partitions happen, hence one must
abandon consistency to achieve high
availability. We take issue for three rea-
sons: First, some applications really
do need consistency and cannot give
it up. Second, the CAP theorem deals
with only a subset of possible failures,
as noted in Rule 4, and one is left with
how to cope with the rest. And third, we
are not convinced that partitions are a
substantial issue for data sharded on a
LAN, particularly with redundant LANs
and applications on the same site; in
this case, partitions may be rare, and
one is better off choosing consistency
(all the time) over availability during a
very rare event.

Though true that WAN partitions
are much more likely than LAN parti-
tions, WAN replication is normally
used for read-only copies or disaster
recovery (such as when an entire data
center goes offline); WAN latency is

too high for synchronous replication
or sharding. Few users expect to re-
cover from major disasters without
short availability hiccups, so the CAP
theorem may be less relevant in this
situation.

We advise customers who need
ACID to seek a DBMS that provides it,
rather than code it themselves, mini-
mizing the overhead of distributed
transactions through good database
and application design.

Rule 8. Look for administrative sim-
plicity. One of our favorite complaints
about relational DBMSs is their poor
out-of-the-box behavior. Most prod-
ucts include many tuning knobs that
allow adjustment of DBMS behavior;
moreover, our experience is that a DBA
skilled in a particular vendor’s prod-
uct, can make it go a factor of two or
more faster than one unskilled in the
given product.

As such, it is a daunting task to
bring in a new DBMS, especially one
distributed over many nodes; it re-
quires installation, schema construc-
tion, application design, data distri-
bution, tuning, and monitoring. Even
getting a high-performance version of
TPC-C running on a new engine takes
weeks, though code and schema are
readily available. Moreover, once an
application is in production, it still
requires substantial DBA resources to
keep it running.

When considering a new DBMS,
one should carefully consider the out-
of-the-box experience. Never let the
vendor do a proof-of-concept exercise
for you. Do the proof of concept your-
self, so you see the out-of-the-box situ-
ation up close. Also, carefully consider
application-monitoring tools in your
decision.

Lastly, pay particular attention to
Rule 5. Some of the most difficult ad-
ministrative issues (such as schema
changes and reprovisioning) in most
systems require human intervention.

Rule 9. Pay attention to node per-
formance. A common refrain heard
these days is “Go for linear scalabil-
ity; that way you can always provision
to meet your application needs, while
node performance is less important.”
Though true that linear scalability
is important, ignoring node perfor-
mance is a big mistake. One should al-
ways remember that linear scalability

80 CoMMuniCATions of The ACM | juNe 2011 | voL. 54 | No. 6

contributed�articles

means overall performance is a multi-
ple of the number of nodes times node
performance. The faster the node per-
formance, the fewer nodes one needs.

It is common for solutions to dif-
fer in node performance by an order
of magnitude or more; for example, in
DBMS-style queries, parallel DBMSs
outperform Hadoop by more than an
order of magnitude,1 and, similarly,
H-store (the prototype predecessor to
VoltDB) has been shown to have even
higher throughput on TPC-C com-
pared to the products from major
vendors.8 For example, consider a cus-
tomer choosing between two database
solutions, each offering linear scal-
ability. If solution A offers node perfor-
mance a factor of 20 better than solu-
tion B, the customer might require 50
hardware nodes with solution A versus
1,000 nodes with solution B.

Such a wide difference in hardware
cost, rack space, cooling, and power
consumption is obviously non-trivial
between the two solutions. More im-
portant, if each node fails on average
every three years, then solution B will
see a failure every day, while solution
A will see a failure less than once a
month. This dramatic difference will
heavily influence how much redundan-
cy is installed and how much admin-
istrative time is required to deal with
reliability. Node performance makes
everything else easier.

Rule 10. Open source gives you more
control over your future. This final rule
is not a technical point but still impor-
tant to mention, and, hence, perhaps,
should be a suggestion rather than
a rule. The landscape is littered with
situations where a company acquired
a vendor’s product, only to face expen-
sive upgrades in the following years,
large maintenance bills for often-in-
ferior technical support, and the in-
ability to avoid these fees because the
cost of switching to a different product
would require extensive recoding. The
best way to avoid “vendor malpractice”
is to use an open source product. Open
source eliminates expensive licenses
and upgrades and often provides mul-
tiple alternatives for support, new fea-
tures, and bug fixes, including the op-
tion of doing them in-house.

For these reasons, many newer Web-
oriented shops are adamant about us-
ing only open source systems. Also,

several vendors have proved it possible
to make a viable business with an open
source model. We expect it to be more
popular over time, and customers are
well advised to consider its advantages.

Conclusion
The 10 rules we’ve presented specify
the desirable properties of any SO
datastore. Customers looking at dis-
tributed data-storage solutions are
well advised to view the systems they
are considering in the context of this
rule set, as well as in that of their own
unique application requirements. The
large number of systems available to-
day range considerably in capabilities
and limitations.

Acknowledgments
We would like to thank Andy Pavlo,
Rick Hillegas, Rune Humborstad, Stav-
ros Harizopoulos, Dan DeMaggio, Dan
Weinreb, Daniel Abadi, Evan Jones,
Greg Luck, and Bobbi Heath for their
valuable input on this article.

References
1. abadi, D. et al. a comparison of approaches to

large-scale data analysis. In Proceedings of the
2009 SIGMOD Conference on Management of Data
(Providence, rI, June 29). aCM Press, new york,
2009, 165–178.

2. astrahan, M.M. et al. system r: a relational approach
to data management. ACM Transactions on Database
Systems 1, 2 (June 1976), 97–137.

3. brewer, e. towards robust Distributed systems.
Keynote at Conference on Principles of Distribute
Computing (Portland, or, July 2000); http://www.
cs.berkeley.edu/~brewer/cs262b-2004/PoDC-
keynote.pdf

4. Cattell, r. scalable sQl and nosQl datastores. ACM
SIGMOD Record 40, 2 (June 2011).

5. Codd, e.F. a relational model of data for large shared
databanks. Commun. ACM 13, 6 (June 1970), 377–387.

6. harizopoulos, s. et al. oltP: through the looking
glass and what we found there. In Proceedings of the
2008 SIGMOD Conference on Management of Data
(vancouver, b.C., June 10). aCM Press, new york,
2008, 981–992.

7. selinger, P. access path selection in a relational data
management system. In Proceedings of the 1979
ACM SIGMOD Conference on Management of Data
(boston, May 30). aCM Press, new york, 1979, 23–24.

8. stonebraker, M. et al. the end of an architectural era
(It’s time for a complete rewrite). In Proceedings of
the 2007 very Large Databases Conference (vienna,
austria, sept. 23). aCM Press, new york, 2007,
399–410.

9. stonebraker, M. et al. the design and implementation
of Ingres. ACM Transactions on Database Systems 1,
3 (sept. 1976), 189–222.

Michael Stonebraker (stonebraker@csail.mit.edu) is an
adjunct professor in the Computer science and artificial
Intelligence laboratory at the Massachusetts Institute
of technology, consultant and founder, Paradigm4, Inc.,
consultant and founder, goby, Inc., and consultant and
founder, voltDb, Inc.

Rick Cattell (rick@cattell.net) is a database technology
consultant at Cattell.net and on the technical advisory
board of schooner Information technologies.

© 2011 aCM 0001-0782/11/06 $10.00

The best way to
avoid “vendor
malpractice” is to
use an open source
product.

