Two-Phase Commit Optimizations and Tradeoffs in the Commercial Environment!

George Samaras, Kathryn Britton, Andrew Citron, C. Mohan*

IBM Distributed Systems Architecture, IBM Almaden Research Center”
{Samaras, Brittonk, Citron}@ralvmé.vnet.IBM.com
mohan@almaden.ibm.com*

Abstract

An atomic commit protocol can ensure that all participants in a
distributed transaction reach consistent states, whether or not
system or network failures occur. One widely used protocol is
the two-phase commit (2PC) protocol, which has long appeared
in the literature.

Much of the literature focuses on improving performance in
failure cases by providing a non blocking 2PC that streamlines
recovery processing at the expense of extra processing in the
normal case. We focus on improving performance in the normal
case based on two assumptions: first that networks and systems
are becoming increasingly reliable, and second that the need to
support high-volume transactions requires a streamlined pro-
tocol for the normal case.

In this paper, various optimizations are analyzed in terms of reli-
ability, savings in log writes and network traffic, and reduction in
resource lock time. its unique contributions include the
description of some optimizations not described eilsewhere and a
systematic comparison of the optimizations and the environ-
ments where they cause the most benefit.

1. Introduction

A distributed transaction is the execution of one or more state-
ments that access data distributed on different systems. A dis-
tributed commit protocol is required to ensure that the effects of
a distributed transaction are atomic, that is, either all the effects
of the transaction persist or none persist, whether or not fail-
ures occur. A well-known commit protocol is the two-phase
commit (2PC) protocol [6, 19].

The performance of a commit protocol substantially affects the
transaction volume that a system can support. As pointed out in
[28], for transaction processing applications such as hotel res-
ervations, airline reservations, stock market transactions,
banking applications, or credit card systems, the commit proc-
essing takes up a substantial portion of the transaction time.
For example, it was shown in [28] that the commit processing
part of a transaction updating one record of a general-purpose
database typically represents about a third of the transaction
duration. For distributed systems where network messages and
delays are involved, the relative commit cost is, on average,
much higher.

1 Disclaimer: Some of the optimizations described in this
paper may never be shipped in an IBM preduct. Others may change
before they are shipped.

1063-6382/93 $03.00 © 1993 IEEE

520

A faster commit protocol can improve transaction throughput in
two ways: first, by reducing the commit duration for each trans-
action, and second, by causing locks to be released sooner,
reducing the wait time of other transactions.

The problem of improving 2PC performance can be met using
two different approaches. The first approach concentrates on
reducing recovery time, and therefore lock time, for failure
cases. In an environment prone to failures, transactions can be
blocked indefinitely waiting for the recovery of a failed site.
Since it is unknown whether the transaction witl commit or abort,
resource locks cannot be released. Thus, other transactions
can also be blocked waiting for the locked resources to become
available. Much research (see, i.e., [26, 4]) has concentrated on
providing a (nearly) non-blocking 2PC variation, i.e., one that
adds extra message flows to the basic 2PC protocol in order to
reduce the blocking delay required to resolve the transaction
outcome following a failure. Thus, the normal non-failure case
is slowed down to prevent intolerable delays following failures.

The tradeoff of reducing recovery time at the expense of
increasing the duration of normal commit operations may not be
acceptable in a highly reliable environment characterized by
high-volume transactions. The second approach focuses on
optimizing the basic 2PC protocol for this environment. The rest
of this paper describes several optimizations that reduce the
number of message flows and/or local processing required for
the non-failure case, sometimes at the expense of greater
recovery processing and delay for the failure case. These opti-
mizations take advantage of properties that are common in real-
world distributed transactions,

For the failure cases (hopefully, rare) where the protocol
outcome is blocked, certain participants might choose [25, 22]
not to wait for recovery processing to discover the outcome
because of valuable locks being held. Rather than waiting,
these participants unitaterally commit or abort the transaction.
This heuristic decision may damage the consistency of the
transaction. Heuristic decisions and their effect on 2PC reli-
ability have been, to our knowledge, little addressed in the liter-
ature, but they are considered a practical necessity in the
commercial environment. A commit protocol and its optimiza-
tions should be able to cope with these heuristic decisions: rec-
ognize them and report them reliably. The need for heuristic
decisions cannot be entirely avoided even with a "so-called”
non-blocking 2PC protocol, although the window in which they
might occur is reduced.

This paper presents several 2PC optimizations, and analyzes
them in terms of reliability (potential for heuristic decisions),
number of log writes, network traffic, resource lock time, and
other tradeoffs. Its unique contributions include a description of

IBM’s Presumed Nothing protocols and several new optimiza-
tions, particularly ones that effect peer-to-peer transactions (i.e
Leaving Inactive Partners Out, Last Agent, Wait For Outcome,
Vote Reliable and Long Locks). Some of these optimizations
have been designed on top of IBM's LUB.2 communication
protocol’, however, their presentation here is independent of
any communication protocol. LU6.2 implementation specifics for
some of these optimizations can be found in [14] and [23].

Section 2 introduces a 2PC protocol that is used as a baseline
for comparing the 2PC variations introduced in the rest of the
paper. Section 3 presents the Presumed Abort (PA) and IBM's
Presumed Nothing (PN) protocols and their usefulness within the
commercial sector. Section 4 discusses several optimizations
that are refinements of PN or PA or both, along with their
advantages and tradeoffs in different environments. Section 5
provides a performance analysis of the presented optimizations.
Section 6 concludes the paper.

2. Baseline Two-Phase Commit

As background for later discussion of 2PC variations, this
section introduces features of a distributed 2PC protocol that
affect performance: network message flows and required log
writes [24, 25]. These features are illustrated with a basic 2PC
protocol [6, 19] that is used as a comparison baseline for the
optimizations that follow.

Two-Phase Commit Concepts

Two types of components participate in 2PC: Jocal resource
managers (LRMs), such as database and file managers, which
have responsibility for the state of their resources only, and
transaction managers (TMs), which coordinate multiple partic-
ipants, inctuding both local resource managers and other remote
transaction managers.

The TMs and LRMs that participate in 2PC include one coordi-
nator and one or more subordinates. The coordinator is the TM
acting on behalf of the process that initiates a commit operation;
a subordinate is either an LRM or a remote TM that is acting on
behalf of another process in the distributed transaction. Remote
TMs may also have subordinate LRMs and TMs. The coordi-
nator is the one that coordinates the final outcome of the commit
processing. The coordinator must arrive at a COMMIT or
ABORT decision and propagate that decision to all subordinates.
Subordinate TMs propagate the decision to their subordinate
TMs or LRMs.

Participants log information about intermediate states of a
commit operation in order to be able to recreate the state of the
transaction after a system failure. Two types of log writes are
performed by the participants, forced log writes and non-forced
writes. During forced log writes, the 2PC operation is sus-
pended; the TM does nothing until the record is guaranteed to
be in stable storage. Non-forced log writes do not suspend the
2PC operation but are not guaranteed to survive a system
failure. A non-forced log write is written to nonvolatile storage
when the next forced log write occurs, or when some other log
manager event occurs, such as log buffer overfiow. Since non-
forced log writes are not guaranteed, information that is vital for
correct processing after a system failure must be forced.

A widely used commit protocol is the two-phase commit (2PC)
protocol. This protocol ensures that ali participants commit if
and only if all can commit successfuily. The two phases are the
voting phase and the decision phase. During the voting phase,

521

the coordinator of the commit protocol, asks all the other partic-
ipants to prepare to commit. A participant votes YES if it can
guarantee that it can perform the outcome requested by the
coordinator, either commit or abort, whether or not system or
network failures occur. If a participant is unable to prepare to
commit for any reason, it votes NO. During the decision phase
the coordinator propagates the outcome of the transaction to all
participants: if all participants voted YES, the commit outcome is
propagated; if any participant voted NO, the abort outcome is
propagated. Each participant in the transaction commits or
aborts the effects of the transaction based on the outcome. it
can then release locks on local resources, such as data bases
or files, making them avaitable to other transactions.

Figure 1 (and Figure 2) shows the message flows and forced
log writes involved in the classic two-phase commit protocol.
The first two flows comprise the voting phase, while the next
two flows comprise the decision phase.

Coordinator Subordinate
Prepare
o9
*log Prepared
Vote YES
o+————p
*log Committed
Commit
o—————————o
*log Committed
Ack
. o+——
Tog END ’

*: Log record is force-written.

Figure 1. Simple Two-Phase Commit Processing

A subordinate agent may also function as a cascaded (interme-
diate) coordinator to downstream subordinates. The coordi-
nator, cascaded coordinators, and remaining subordinates form
a transaction commit tree. The cascaded coordinator propa-
gates messages from the coordinator downstream and collects
responses from its subordinates to send back upstream to the
coordinator. Figure 2 shows a time sequence of the 2PC pro-
tocol with a cascaded coordinator. A participant in the tree does
not generally know whether its coordinator is the root of the
commit tree or a cascaded coordinator, just as a coordinator
does not know whether its subordinates are cascaded coordina-
tors or leaf subordinates.

Network Traffic

The 2PC protocol involves network traffic to convey the
instructions to prepare and later to commit from the coordinator
to remote TMs and to convey the responses from the subordi-
nates back to the coordinator.

Any message that is sent over the network slows down the
commit protocols since it adds network transit delays. Several
of the 2PC optimizations described later in this paper reduce
commit time by reducing the number of network flows. Sending
messages to different participants in paralle! also reduces the
delay caused by network traffic. In some cases, reducing the
number of flows and parallelism are in conflict (see last-agent
optimization).

Logging

A 2PC performance goal is to minimize the number of times a
log write is forced. A forced log entry slows down commit pro-
tocols because the system waits until the entry is written to non-
volatile storage. Minimizing forced log writes and conducting
extra recovery processing to regain the lost information is one
way to optimize the normal, non-failure case rather than the
failure case. For example, the END log record does not need to
be forced because the only effect of its absence following a
failure is redundant recovery processing, which takes extra
recovery time but does no other harm.

Coordinator Cascaded Subordinate
Coordinator
Prepare Prepare
o AU ‘U
*log Prepared
Vote YES
o¢+——————¢
*log Prepared
Vote YES
o+
*1og Committed
Commit
o %0
*log Committed
Commit
e m—
*log Committed
Ack
[—
log END
Ack

o+———————9
log END

*: Log record is force-written.

Figure 2. Two-Phase Commit Processing with Intermediate

Coordinator
Baseline Summary

The overall cost of the baseline 2PC protocol for the commit
case is: each subordinate writes three log records (one pre-
pared record, one committed/abort record and one END?
record—the prepared and the committed records are forced) and
sends two messages. The coordinator sends two messages to
each immediate subordinate and writes two log records (one
committed record and one END record—the committed record is
forced). For a transaction commit tree with n participants the
cost is 4(n-1) messages, 2n-1 forced writes and n non-forced
writes.

3 IBM, CICS, 0B2, IMS/VS and VM/ESA are trademarks of Interna-
tional Business Machines Corp.. TMF and Tandem are trademarks of
Tandem Computers, Inc.. OEC, VAX and VMS are trademarks of
Digital Equipment Corp.. Transarc is a registered trademark of
Transarc Corp.. Encina is a trademark of Transarc Corp.. Tuxedo
and Unix are registered trademarks of Unix System Laboratories,
Inc.. X/Open is a trademark of X/OPEN Company Ltd..

522

3. Two-Phase Commit Variations
Presumed Nothing (PN)

Presumed Nothing was developed in the mid 1970's for the
peer-to-peer environment that is supported by LU 6.2 (aiso
known as APPC) [14, 17] and initially by LU6.1 [12). The PN
design effort was done independently from the 2PC effort [11].
PN was designed and developed for the commercial environ-
ment and, so far, IBM has implemented it in CICS® [15], and
VM/ESA® [22].

The peer-to-peer environment has led to the following unusual
features of PN:

* The transaction itself is not inherently a tree. Any
program can initiate work; two programs can initiate work
independently with or without any communication between
them. This is in contrast to a client-server model,
assumed by most 2PC protocols, where the client starts
the transaction and servers wait until they get requests
from clients or other servers.

The transaction graph (tree) constituting a single distrib-
uted computation may cause multiple transactions to begin
and terminate in a serial fashion.

* Any participant in the transaction can decide to initiate a
commit operation and thus become the root of the trans-
action commit tree (the coordinator). Thus, the member of
a collection of cooperating processes that serves as the
coordinator can change from one transaction to the next.
Since the communicating processes are considered peers,
there is no hierarchical relationship among them that
determines the best place te initiate commit processing;
therefore it is left to application design to determine which
process should be the commit coordinator for a particular
transaction. Of course, it is an error for two participants
to initiate commit processing independently for the same
transaction, since that would mean two TMs owning the
commit decision; if this occurs, the transaction aborts.

As a resuit, the coordinator of a particular commit opera-
tion is not known in advance; it is only known once 2PC
processing starts.

Since it was designed for a real-world environment with intense
demands on data resources, the PN protocol explicitly accom-
modates heuristic decisions resulting from intolerable delays.
The PN designers felt it was important for the root coordinator
to be informed of any heuristic damage that occurred, i.e., any
heuristic decision inconsistent with the outcome of the trans-
action.

The primary impact of these design decisions on the PN proto-
cols is that the coordinator (or cascaded-coordinator) must log a
commit-pending record before sending the prepare message to
subordinates (see Figure 3). This is necessary because the
coordinator must remember that there are subordinates. The
subordinates may be waiting for the outcome or may have made
heuristic decisions. The coordinator is responsible for initiating
recovery processing both to allow the subordinates to complete
commit processing and to find out whether they made heuristic
decisions.

2 The END Tog record at a leaf subordinate (LRM) is not strictly
needed. Since it is included in some 2PC implementations, we
included it here te simplify the analysis.

The need for accurate reporting causes the application at the
root of the transaction commit tree to be kept in suspense about
the outcome of the 2PC operation until all acknowledgments are
collected. If the application were informed earlier, it could
proceed on the assumption that the entire transaction were com-
mitted or aborted, when actually heuristic damage might have
occurred.

Cascaded Subordinate

Coordinator

Coordinator

*Jog Commit-
Pending

Prepare
]
*1og Commit-Pending
Prepare
o0
*log Prepared

*: Log record is force-written.
Note: The rest of the figure is the same as Figure 2

Figure 3. Presumed Nothing Commit Processing with Interme-
diate Coordinator

Thus, PN protocols provide reliable reporting of damage at the
expense of an extra log force and collecting acknowledgments
from all subordinates. However, to offset these performance
penalties, PN, as implemented in LU 6.2, includes a number of
other optimizations described in the next section: last agent,
long locks, vote read only, and wait for outcome.

Presumed Abort (PA)

Presumed Abort [24, 25] is an extension of the basic 2PC pro-
tocol that has been widely studied in academia and industry. It
has been implemented by a number of commercial products?,
i.e, Tandem’s TMF [30], DEC’s VAX/VMS [1, 18], Transarc's
Encina Product Suite [27], and Unix System Laboratories’
TUXEDO [9], and is now part of the 1ISO-OSI [31] and X/Open?
[3] distributed transaction processing standards. PA was devel-
oped for the R* distributed database project {20, 21]. In the R*
client-server model, the participants have fixed requester-server
roles. Servers initiate no work uniess the requester asks for it.
Servers never ask their clients to act in the role of server. The
coordinator is the TM of the client, and the subordinates are the
servers.

Like the baseline 2PC, PA does not log before sending the
Prepare message. Unlike the baseline 2PC, a subordinate does
not have to force write an abort record before acknowledging an
abort command. If a prepared record is found on its log after a
crash, the subordinate initiates recovery processing with its
coordinator. If the coordinator has no information about the
transaction, it presumes that the transaction aborted and telis
the subordinate to abort; hence the name presumed abort.

The PA protocol incorporates the read-only and leave-inactive-
partners-out optimizations described in the next section.

The subordinate (server) initiates recovery processing when it
finds itself in doubt after a failure. This is necessary since the
coordinator may have no memory of the transaction if it also
failed.

523

In R*, heuristic decisions that caused database inconsistencies
were only reported to the immediate coordinator, which is not
necessarily the root of the tree, and to the subordinate system’s
operator. This meant that the root coordinator might be told the
transaction committed successfully when it had not. This was
considered acceptable because heuristic decisions did not
happen frequently. Moreover, R* was a research project, and
real customers did not have real data involved.

The optimizations developed by PA for the client-server environ-
ment have been generalized to be incorporated in the peer-to-
peer model [23].

4. 2PC Optimizations

This section describes several optimizations to the PA or PN
protocols or both, some of which have been previously pub-
lished [24, 25, 6, 14]. These optimizations are tuned toward the
normal non-failure case. Our analysis assumes that we are
dealing with a transaction tree with n participants unless other-
wise noted.

Read Only

A partner that has participated in a transaction, but has not per-
formed any updates, is allowed to vote read-only. This vote
implies that the effects of commit and abort outcomes would be
identical for that subordinate. That partner is left out of the
second phase of the commit processing and avoids any log
writes [24, 25].

A cascaded coordinator is allowed to vote “read-only” if and
only if all its subordinates have voted read-only; otherwise it
needs to learn the outcome in order to propagate it to the subor-
dinates that did not vote read-only.

For an environment that is dominated by read-oniy transactions
this optimization provides enormous savings.

This optimization is used in both the PA and PN protocols. The
PA protocol is especially optimized for this type of transaction:
PA performs no logging at all if all subordinates vote read-only.
PN still has the coordinator log a commit-pending record, but the
subordinate performs no logging.

Subordinate Coordinator Subordinate

Prepare

0 0

Prepare

—>0
Vote Read-Only

p———————————9
*1og prepared

Yote YES

e
*1og Committed
Commit

0

*1og Committed
log END Ack

o

Tog END

Figure 4. Partial Read-Only Commit Processing.

However, this optimization has some drawbacks. First, the
read-only partners are not informed of the final outcome of the
transaction, which could cause undesirable side effects if the
applications are written to use this information in any way.

Second, the read-only optimization can cause serialization prob-
lems. A subordinate can receive a prepare message before it is
finished with its part of the transaction. In the peer-to-peer
environment it is allowed to finish before it votes. Consider the
case where participants Pa and Pb are subordinates to a
common coordinator. Both receive prepare messages. Pa
votes read-only and releases locks before Pb has finished with
the transaction. Pb needs to access a resource that Pa
unlocked, but another unrelated transaction has locked the
resource and changed it. When Pb gains access to the
resource, the resource is not the same as it was when Pa
unlocked it. Thus, use of the read-only optimization prior to
global termination of a transaction may violate two-phase
locking and serialization rutes, and may cause the transaction to
behave incorrectly.

However, these serialization problems do not occur in a
requestor/server environment, since the transaction processes
cannot start any updates once 2PC has begun.

For a transaction commit tree of n members and m participants
that vote read-only the savings amount to 2m forced-writes and
2m message flows over the basic 2PC protocol.

Leaving Inactive Partners Out (OK-TO-LEAVE-OUT)

In a model where servers respond only to requests and do not
initiate any work of their own, commit processing may be opti-
mized if subordinates that have not participated in a transaction
are left out of the 2PC protocol. A form of this optimization was
originally implemented in R* [20]). In this section we briefly
described the adaptation of this optimization for PN. Greater
detail is presented in [23].

This optimization is easy to include in PA, since PA is based on
a requester-server model. It is more difficult to include in PN,
since PN assumes a model of independent peers. In PN, the
more general case where any partner can be left out if it has
not exchanged data with the commit coordinator does not work,
since the partner may have started work independently. The
configuration in Figure 5 illustrates this situation: assume pro-
grams Pd and Pe both initiate a commit operation, and Pa has
been left out of the current transaction by both Pb and Pc. The
two commit operations would occur independently, and might
come to different results. If a program from one subtree
touched the same resources as a program from the disjoint
subtree, damage could occur.

Left out
participant / \
Pb Pc
/ \
Pd Pe

——— > Pa

Figure 5. Transaction Tree Partitioned Because of Left Out
Partners

Further analysis indicated that the full generality is not required.
Most of the advantage of leaving partners out can be gained by
leaving out server subtrees that only operate in response to
requests from the coordinator.

The PN model includes a way for a subordinate to indicate that
it operates only in response to requests from the coordinator. A
subordinate may vote "OK to leave out” only if it will be sus-
pended untit its services are needed again. No member in the

524

left-out subtree can initiate another commit operation or perform
any independent work, since it is suspended until the coordi-
nator process inciudes it in another transaction.

Whether a subordinate process is a server that only responds to
requests is known by the application developer. LU 6.2 pro-
vides a parameter on the SET_SYNCPT_OPTIONS verb to indi-
cate whether the local transaction program may be suspended
until it receives a request from its coordinator. If so, the subor-
dinate communicates this information to its coordinator on the
YES vote. The value returned on the YES vote is considered a
protected variable, i.e., it takes effect only if the transaction
commits. The LU 6.2 default is "not OK to leave out”.

The following requirements must be met before a coordinator
can leave another partner out of the 2PC for the next trans-
action:

* No data has been exchanged with that partner during the
current transaction.

e The partner indicated in the previous successful commit
operation that it would be okay to leave it out of subse-
quent transactions. For this to occur, three things must
have happened:

All resources subordinate to the subordinate indi-
cated that they may be left out.

The subordinate is suspended in the commit opera-
tion. Control will be returned to its program only
when it has been sent data for a subsequent trans-
action.

All resources subordinate to the partner are similarly
suspended waiting for the beginning of a new trans-
action.

Just because a subordinate indicates that it can be left out does
not mean that it will be left out. The decision to leave a subordi-
nate out is based on the work that is carried out during the next
transaction. If there is reason for a requester to include its
server in the next transaction, it will do so regardiess of the
OK_TO_LEAVE_OUT value specified.

For a transaction tree of n members out of which m voted
OK-TO-LEAVE-OUT, this optimization saves 2m forced-writes
and 4m message flows over the basic 2PC protocol.

Last Agent

Experience with CICS/MVS and IBM’s DB2 [13] has shown that
a transaction often contains a single remote partner. This par-
ticufar situation ailows a highly optimized commit path. The
coordinator prepares itself to commit and gives the subordinate
the commit decision, i.e., it is up to the subordinate to decide the
outcome of the transaction. The coordinator that uses this opti-
mization prepares all of its other subordinates and itself to go
either way, force-writes a prepared record and sends a YES
vote to the last agent, so called because it is the last subordi-
nate contacted during the voting phase [6].

Unilike the normal 2PC case, the coordinator is not required to
send an explicit acknowledgment when it receives a commit
message. In the normal case, the coordinator can be blocked
waiting for acknowledgments (see late acknowledgment below).
The last agent is not blocked waiting for acknowledgment; as
soon as it sends the Commit message, it can proceed with the

next transaction. The next data sent to the subordinate serves
as an implied acknowledgment, since it implies that the coordi-
nator received the earlier Commit message. Receipt of the
implied acknowledgment allows its TM to write the End log
message and forget the outcome of the transaction. This opti-
mization is illustrated in Figure 6.

This optimization yields the greatest benefit when the coordi-
nator has no other remote subordinates. If it has other subordi-
nates, they must all vote YES before the coordinator can send
its YES vote to the last agent. The prepare message can be
sent in parallel to multiple subordinates so that their phase-one
processing can occur concurrently. Communication with a last
agent cannot overlap any other commit processing. Thus, the
last-agent optimization that reduces message flows to one agent
conflicts with the optimization inherent in preparing muitiple
agents concurrently. However, if messages to one of the
remote partners involve long network delays (i.e connection
through satellite) the last-agent optimization provides significant
savings. It is, for example, preferable to prepare the closely
located partners (fast first phase) and reduce the communication
required with the faraway partner to one slow round-trip
message exchange.

Coordinator Subordinate

*log Prepared

Vote YES
————»
*log Committed
Commit
0
*log Comitted
log END

implied ACK
o—>
Tog END

Figure 6. Last-Agent Commit Processing

The last-agent optimization is most useful with PN, since the
coordinator always logs before it sends a message to any sub-
ordinate. With PA, the savings in message flows conflicts with
the need for a possibly extra log force. Thus, the fast-agent
optimization requires that the initiator force-write a prepared
record before it sends its YES vote to the last agent. If the
agent is a not-last agent, the coordinator does not force any log
record before the Committed record. However, the extra forced
write can be avoided if the initiator is read-only. With respect to
this case, the initiator can vote read only to the last agent
without having to force-write a prepared log record.

With the peer-to-peer nature of PN, a subordinate can be
selected as the last agent by multiple coordinators. Unlike the
normal case, where the existence of muitiple coordinators
causes an abort, this can occur legally, since there is still only
one participant responsible for making the commit decision. In
fact, this case looks very much like the unsolicited-vote opti-
mization described next.

For a transaction tree of n members and m last agents this opti-
mization offers savings of 2m message flows over the basic 2PC
protocol, but no savings in forced-writes. It is possible to have
multiple last agents, since each last agent may choose one of its
subordinates to be a last agent.

525

Unsolicited Vote

If a participant is a server that is designed to know when it has
finished its part of a transaction, it can prepare itself to commit
and vote YES without waiting for the prepare request from the
coordinator. Thus, the server can remove the need for the first
message flow of 2PC by preparing itself on its own initiative,
force-writing a prepared record, and sending an unsolicited YES
vote to its coordinator. If used in conjuction with the last-agent
optimization, a bit in the YES vote distinguish this optimization
from the fast-agent one. An unsolicited YES vote does not ini-
tiate any commit processing in the receiver but does indicate
that the subordinate is already prepared.

For servers associated with relative high network delays, the
unsolicited-vote optimization provides significant performance
improvement. A form of this optimization was originally pro-
posed in the context of distributed INGRES [29] and IBM's
IMS/VS [12]. For a transaction tree of n members and m
unsolicited-ready participants this optimization saves m
message flows over the basic 2PC protocol.

Sharing the Log

A local resource manager uses a log to keep track of updates
so that it can either abort or commit a transaction. Before an
LRM votes YES, it ensures that this information has been forced
to non-volatile storage. When it learns of a commit outcome, it
also force-writes a commit record.

The LRM can share the same log as the coordinator transaction
manager [25]. With this optimization, the LRM takes advantage
of the knowledge that the TM will force-write a commit record.
The LRM does not force-write the prepared record because the
TM’s force-write of the commit record causes the locai LRM’s
earlier non-forced write to be written to the fog. If the trans-
action successfully commits, the TM’s commit record and the
LRM’s prepared record will both be on the tog. This ensures
successful recovery processing. If the system fails before the
commit is forced, the prepared record may be lost. This does
not change the outcome of the transaction, since the TM aborts
the transaction if it does not find a commit record on the log.
Similarly, the LRM does not need to force-write the commit
record. If the system fails and the non-forced commit record is
lost, since TM’s commit record and the LRM’s prepared record
are both on the log, the recovery process will successfuily
commit the transaction.

This optimization saves two forced-writes per LRM that shared
the log. The more LRMs that share the log with the TM, the
more savings per transaction.

Group Commits

There are certain points during 2PC where logging must com-
plete before the commit processing can continue. This blocks
the commit processing until the log 1/0 completes.

In systems where there are many disk I/Os, I/O requests can
queue up waiting for a previous IO request to complete. This
queueing can decrease the overall throughput of the transaction
processing system.

Where transaction rates are high, the group commit optimization
is practical. With this optimization the log manager delays per-
forming a force-write request until one of two things occur:
either a defined number of force-write requests arrive, or a

timer expires indicating that the force-write request(s) should be
processed even though the expected number of requests has
not arrived. This optimization was originally proposed and
implemented in IMS/VS?® Fast-Path [5].

For n transactions and a group commit of size m, this optimiza-
tion provides an average of 3n/2m forced-writes savings. In this
simple analysis we assumed that only one member of each
transaction resides at each node.

A detailed analysis of the group commit optimization is quite
complicated since several parameters are involved: l/O rate,
group size, number of participants, response time, and time to
allow the commit group to build up. Such analysis can be found
in [4, 28].

Long Locks

LU 6.2 2PC protocols (PN) allow an application program to trade
off network flows against duration of the commit operation, and
therefore the length of time that resource locks are held (long
locks). In the usual case, the subordinate sends the commit
acknowledgment to the coordinator as soon as it has ensured
that it has finished committing the transaction. If the coordinator
enables the long-locks variation, the subordinate delays sending
the commit acknowledgment until it sends the message begin-
ning the next transaction. Since the commit acknowiedgment
can be packaged in the same packet as the next-transaction
data, this reduces the network flows by one at the cost of
keeping the resources at the coordinator locked for a longer
period. Note that LU 6.2 allows this variation only if the coordi-
nator will be in RECEIVE state at the end of the commit opera-
tion, waiting for the subordinate to begin the next transaction.

Coordinator Subordinate
Prepare
You be in send state
Long locks
[0
Vote Yes
3 0
Commit

)
commits locally
buffers commit
starts
next transaction
Commit ack, data

[} 0

unlocks

Figure 7. Example of Long Locks itting one tr

Figure 7 shows the long-locks variation of the basic LU 6.2 2PC
protocol. The LU 6.2 Prepare (to not-last agents) and Vote YES
(to last agents) messages include instructions about the conver-
sation state the subordinate is expected to be in after a suc-
cessful commit. It also informs the subordinate whether or not
the coordinator wants the long-locks variation. The long-locks
variation combined with the last-agent optimization can commit
two transactions in three flows.

Long locks are advantageous where network resources are
expensive and delays between transactions are small. A good
application of this particular optimization was presented in [8].
The application involved banks that needed to reconcile their log
accounts at the end of the day. This application is particularly

526

characterized by a large number of short transactions with small
delays between them.

Commit Acknowledgment

One of the ways that different 2PC protocols vary is in the
timing of the commit acknowledgment. Some have early
acknowledgment [11, 25]: an intermediate system acknowi-
edges a commit received as soon as it has logged; others have
late acknowledgment [14]: an intermediate system waits to
acknowledge the commit received from its coordinator until it
has collected acknowledgments from all its subordinates. Early
acknowledgment means “l have committed and am in the middle
of propagation”; late acknowledgment means “lI and all
members of my subordinate subtree have committed success-
fully.” Early acknowledgment has the advantage that the
commit operation completes earlier for the root and intermediate
systems, allowing them to begin useful work earlier. Late
acknowledgment has the advantage that there is no uncertainty
at the root of the commit tree when it starts the next transaction
that it is building on the solid basis of a previously committed
transaction; if any heuristic damage has occurred, it has heard
about it. Thus, there is a tradeoff between wait time and confi-
dence in the outcome of the transaction. Of course, any inter-
mediate only knows about the commit outcome in its own
subtree, so this confidence is limited in a true peer-to-peer envi-
ronment where any program in the tree can start further work.

One acknowledgment pattern may not make sense for all appli-
cations and resource types. Thus, if the chance of a heuristic
decision is vanishingly small for all resources involved in a
transaction, tate acknowledgment does not add any value. Simi-
larly, interactive programs may choose to reduce wait time,
even if doing so involves a reduction in confidence, in order not
to keep a human at a terminal waiting longer than absolutely
necessary. Some variations to the late acknowledgment pattern
based on these considerations are described below.

Voting Reliable

Late acknowledgment is based on the assumption that any node
in a transaction tree may make a heuristic decision that disa-
grees with the decision taken by the rest of the tree, and that
the root of the commit tree should be informed if damage of this
nature occurs. It is possible however to have nodes in the tree
that make heuristic decisions only in drastic circumstances. For
example, a data-base system may be built on the assumption
that correcting heuristic damage is so difficuit that heuristic deci-
sions should be utterly discouraged. The probability of heuristic
decisions can be made so small that early acknowledgment is
acceptable, even for applications that rely on the semantics of
late acknowiedgment.

The vote reliable optimization uses information gathered from
LRMs to gain the early completion advantages of early-
acknowledgment protocols while maintaining the semantics of
late-acknowledgment protocols. When a LRM votes YES, it indi-
cates whether it is a reliable resource, i.e,, one for which
heuristic decisions are very unlikely. An intermediate TM col-
lects the reliability indicators from all its subordinates. If all
vote reliable, then it can use early-acknowledgment protocols
with its coordinator during the commit phase (see Figure 8). |If
any LRM votes “not reliable,” the intermediate uses late-
acknowledgment protocols. Generally speaking, the “reliability”
characteristic is a static one that will not vary from transaction
to transaction. Thus, a database system either is or is not

reliable®. However, since the resources involved can vary from
transaction to transaction, the intermediates collect the reliability
information during every first phase.

Coordinator Cascaded Subordinate
Coordinator
Prepare Prepare
o »0 0

"l\og Prepared
Vote YES,Reliable(YES)
o 0
*log Prepared
Vote YES,Reliable(YES)

O 0
*log Committed
Commit
[} »0
*log Committed
Commit
Ack o >0

o< o *log Committed
log END Implied Ack

o 0

log END

*: Log record is force-written.

Figure 8. Two-Phase Commit Processing, All Resources Voted
Reliable.

Wait for Outcome

Late acknowledgment implies that the intermediate does not
respond to its coordinator until it has collected acknowledg-
ments from its subordinates, even if failures occur that require
recovery processing. For major system failures, waiting for
recovery processing may involve considerable delay. An inter-
mediate may make muitiple attempts to contact a subordinate
before it succeeds.

When implementing the PN protocols for APPC in VM/ESA, usa-
bility evaluations uncovered a problem with this aspect of late
acknowledgment: a human waiting for the outcome of a trans-
action gets very impatient waiting for recovery processing to
complete [22]. Some people would rather get control back
earlier, even if they could not be guaranteed certainty that the
transaction completed without heuristic damage.

A feature was added to the IBM PN protocols and the APPC
interface [14, 17] to allow the application program to specify
whether it requires all recovery processing to complete before it
is told the outcome of the commit operation. |If yes, then late
acknowledgment occurs as usual; the coordinator application is
blocked, awaiting all acknowledgments and recovery processing
to occur. It no, one attempt to contact a failed partner is
attempted. If the first attempt fails, the system attempts to com-
plete the recovery processing in the background, but allows the

e There can be specific resources within an overall DB system
(e.g. a specific set of tables, or a specific set of [MS/ESA DL1
databases) that are not allowed to be heuristically changed. For
example, in CICS/MVS, protected transient data can sometimes have
this property, while all other resources are subject to heuristic
damage.

527

commit or abort operation to complete with an indication to the
application program that the outcome of the entire transaction is
not yet known. Similarly, an intermediate system will attempt to
contact a failed subordinate only once before sending an
acknowledgment to its coordinator indicating that “recovery is in
progress.” The commit or abort operation completes at the
coordinator with the “outcome pending” indication.

This feature allows the application developer to decide the rela-
tive merits of shorter wait time and confidence in outcome.
Unlike early acknowledgment protocols, the normal case is
complete confidence in outcome, and the application program is
informed when that cannot be achieved.

5. Performance Evaluation and Discussion

Two-phase commit optimizations comprise a set of rules applied
during 2PC processing that resuit in network traffic improve-
ments, reduction in the number of forced writes, and decreased
resource lock time. However, one other aspect that is important
while evaluating those optimizations is reliability: how these
optimizations reliably report the outcome of the transaction and
whether they increase the chances of heuristic damage.

Not all the optimizations provide improvements across all per-
formance metrics, and often an optimization might trade off one
metric for another. However, better performance can be
achieved by combining the different optimizations. Interesting
configurations can be proposed but because of space limitations
we do not discuss them here. We hope to present these
intriguing combinations in a future paper.

In the tables that follow, optimizations are analyzed in terms of
the absolute number of message eéxchange with subordinates.
Further analysis would break down the messages into those to
LRMs and those to remote TMs, which will in general involve
greater delays. Since, there are no exact weights that can be
associated with those two type of messages we did not carry
the analysis this far.

Table 1 summarizes the advantages and disadvantages of the
various optimizations.

Table 2 describes fiows and log writes of the optimization and
compares them with the basic two-phase commit, presumed
abort, and presume nothing. For comparison purposes, each
optimization is evaluated within presumed abort. The calcu-
lations are done within the context of a transaction with 2 partic-

ipants.

Table 3 provides a higher level of comparison by describing the
number of flows and log writes? needed to commit a transaction
with n members. Each row in the table describes the benefits
gamned if m participants use a particular optimization. The
example used in this table is a transaction with 11 participants
of which 4 followed the same optimization. The intention is not to
compare the optimizations with each other but to contrast them
with the basic 2PC protocol.

Table 4 shows the benefits of the long-locks optimization when
it is used by r transactions with small detays between them.

Table 1. Ad ges and D ages of 2PC Op

Optimization Advantages Disadvantages

Read Only fewer messages, fewer log writes, no ge of the ofa
early release of locks [iat serializability p

Last Agent fewer messages, early release of locks one extra forced write possible

Unsolicited Yote

fewer messages, early release of locks

Application specific

Ok To leave Out

no fog writes, no messages

N/A

Yote Reliable

fewer message flows

damage reporting to root coordinator tost
if reliable resource does take a heuristic decision

Wait For Outcome

2PC doesn’t block for most network partitions

C [of tr

may net be known by coordinator

Long Locks fewer network flows commit decision can be delayed and locks heid longer if
combined with last-agent op and no flow
for the next tr ion (design problem).
Shared Logs fewer forced writes independence of resource ger and g

sacrificed.

Group Commit

fewer forced writes,
overall system throughput maximized.

fonger lock holding times for individual transactions.

Table 2. Logging and network traffic of 2PC optimizations

2PC Type Coordinator Flows Coordinator Logs Subordinate Flows Subordinate Logs
Basic 2PC 2 2, 1 forced 2 3, 2 forced?
PN 2 3, 2 forced 4, 3 forced!
PA, Commit case 2 2, 1 forced 2 3, 2 forced’®
PA, Abort case 2 0, 0 forced 1 0, 0 forced
PA, Read-Only case 1 0 19]

PA & Last-Agent 1 3, 2 forced* 12 2, 1 forced

PA & Unsolicited Vote 1 2, 1 forced 2 3, 2 forced®
PA & ok-to-leave-out 0 0 0 [}

PA & Vote Reliable 2 2, 1 forced 12 2, 2 forced

PA & Wait-for-Outcome 2 2, 1 forced 2 3, 2 forced?
PA & Long Locks (not last- 2 2, 1 forced 1 3, 2 forced?
agent)

PA & shared logs 2 2, 1 forced 2 3, 0 forced
Note: ' The 2 forced writes are prepared and committed, the END is not force-logged. It is ible to bine the d and END into one forced-log (for feaf

subordinates). 2 In this optimization an implied-Ack is used, saving a link flow. The pair (x, y forced) means that x log writes are performed, of which y are forced.

Table 3. Logging and M

9

Costs for Opti

particular optimization.

Transaction consists of n partners where m members are following a

2PC TYPE Flow Log Write n= 1, m=4/wuf
Basic 2PC (no optimizations 4(n-1) 3n-1, 2n-1 forced 40, 32,21
present)

PA & Read Only 4{n-1) - 2m 3(n-m)-1, 2(n-m)-1 forced 32,20, 13
PA & Last Agent 4(n-1) - 2m 3n-1, 2n-1 forced 32,32, 2%
PA & Unsolicited Vote 4(n-1)-2m 3n-1, 2n-1 forced 32,32, 20
PA & Ok-To-Leave-Out 4{n-1) - 4m 3(n-m}-1, 2(n-m)-1 forced 24,2013
PA & Vote Reliable 4n-1) - m 3n-1, 2n-1 forced 36, 32, 21
PA & Wait-For-Outcome 4(n-1) 3n-1, 2n-1 forced 40,32, 21
PA & Share Logs 4(n-1) 3n-1, 2(n-m)-1 forced 40, 32,13
PA & Long Locks 4n-1) - m 3n-1, 2n-1 forced 36, 32, 21

Note: The triplet (f,w,uf) refers ta (# of messages, # of log writes, # of forced writes)

Table 4. Logging and Message Costs for Long-tocks Optimization.

r transactions occur, each consisting of 2 members.

2PC TYPE Flow Log Write r = 12 /f,w,uf
Basic 2PC 4r Sr, 3r forced 48, 60, 36
PA & Long Locks (not last agent} 3r Sr, 3r forced 386, 60, 38
PA & Long Locks (last agents) 3r/2 Sr, 3r forced 18, 60, 36

Note: The triplet (f,w,uf) refers to (# of messages, # of log writes, # of forced writes)

528

6. Conclusions

Two-phase commit protocols have been studied extensively by
the research community. While some of the research has con-
centrated on improving performance in the failure case, we find
in today’s commercial environment it is more advantageous to
optimize for the normal, non-failure case. This paper describes
eleven 2PC variations that optimize towards the normal case,
comparing them to a baseline 2PC protocol and describing envi-
ronments where they are most effective. The variations are
compared and contrasted in terms of number of message flows,
number of log writes (both forced and non-forced), probability of
heuristic damage, how damage is reported, and other tradeoffs.

Although most of these optimizations have been incorporated in
IBM’s LU 6.2 sync point protocols, they were presented in this
paper independently of the underlying communications protocol
to avoid implementation details. A description of some of these
optimization as they might be incorporated in IBM's LU6.2 is
presented in [14, 23].

Acknowledgments: We would like to acknowledge contributions
of our colleague at Almaden Research Center, Bruce Lindsay,
and valuable feedback from Ajay Kshemkalyani, Gary Schultz,
and James P. Gray.

References

1 Bernstein, P., Emberton, W., Trehan, V. DECdta - Digital's
Distributed Transaction Processing Architecture, Digital
Technical Jour., Vol. 3, No. 1, Winter 1991.

3 Braginsky, E. The X/Open DTP Effort, Proc. 4th Int. Work-
shop on High Performance Transaction Systems, Asilomar,
September 1991.

4 Ching-Liang, Victor O.K. Li A Quorum-based Commit and
Termination Protocol for Distributed Database Systems,
Fourth Int. Conference on Data Eng, Los Angeles,
California, February 1-5, 1988

5 Gawlick, D., Kinkade, D. Varieties of Concurrency Control in
IMS/VS Fast Path, IEEE Database Eng., Vol. 8, No. 2, June
1985,

6 Gray, J.N. Notes on Data Base Operating Systems, In Oper-
ating Syst - An Adh d Course, R. Bayer, R. Graham,
and G. Seegmuller (Eds.), Lecture Notes in Computer
Science, Volume 60, Springer-Verlag, 1978. Also Available
as IBM Research Report RJ2188, IBM Almaden Research
Ce nter, February 1978.

8 Helland, P. The LU6.2 protocol boundary: The ‘L’ stands for
‘Lightweight’, Proc. 3th Int. Workshop on High Performance
Transaction Systems, September, 1989.

9 Hesselgrave, M. Considerations for Building Distributed

Transaction Processing Systems on UNIX System V, Proc.

UNIFORUM, Washington, January 1990.

Helland, P., Sammer, H., Lyon, J.,, Carr, R., Garrett P., and

Reuter, A., Group Commit Timers and High Volume Trans-

action Processing Systems,, Proc. 2nd Int. Workshop on

High Performance Transaction Systems, September 1987.

Transaction Processing and Sync Points, |1BM Document,

Document Number AWP-0055-6, IBM/RTP, October,1977.

An Overview of Information Management System/Virtual

Storage (IMS/VS) Intersystem Communications (1SC), Docu-

ment Number G320-5856, IBM, July, 1980.

IBM Database System DB2 , Document Number

GG24-3400-0, GG24-3202-1, IBM, 1988.

10

1"

12

13

529

14

15

17

18

19

2

23

24

27

31

Systems Network Architecture LU 6.2 Reference: Peer Pro-
tocois, Document Number SC31-6808-1, IBM, September
1990. Chapter 8 is the one that introduces and describes in
detail the Presumed Nothing commit protocol.

CICS General Information, Document Number GC33-0155-4,
1BM, October 1990.

Systems Network Architecture Transaction Programmer's
Reference Manual for LU Type 6.2, Document Number
GC3C-3084-4, IBM, September 1991.

Laing, W., Johnson, J., Landau, R. Transaction Management
Support in the VMS Operating System Kernel, Digital Tech-
nical Jour., Vol. 3, No. 1, Winter 1991.

Lampson, B.W. Atomic Transactions, In Distributed
Systems: Archit e and Impl tation - An Advanced
Course, BW. Lampson (Ed.), Lecture Notes in Computer
Science, Volume 105, Springer-Verlag, p246-265, 1981.
Lindsay, B., Haas, L., Mohan, C., Wilms, P., Yost, R. Com-
putation and Communication in R*: A Distributed Database
Manager, ACM Transactions on Computer Systems, Vol. 2,
No. 1, February 1984. Also available as IBM Research
Report RJ3740, IBM Almaden Research Center, January
1983.

tohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B.,
Selinger, P., Wilms, P. Query Processing in R*, In Query
Pr ing in Datab. 1 { , W. Kim, D. Reiner, and D.
Batory (Eds.), Springer-Verlag, 1985. Also available as IBM
Research Report RJ4272, IBM Almaden Research Center,
April 1984,

Maslak, B., Showalter, J., Szczygielski, T. Coordinated
Resource Recovery in VM/ESA, 1BM Systems Jouwr., Vol. 30,
No. 1, 1991.

Mohan, C., Britton, K., Citron, A., Samaras, G. Generalized
Presumed Abort Marrying Presumed Abort and SNA's LU
6.2 Commit Protocols, IBM Research Report, IBM Almaden
Research Center, November, 1991.

Mohan, C., Lindsay, B. Efficient Commit Protocols for the
Tree of Processes Model of Distributed Transactions, Proc.
2nd ACM SIGACT/SIGOPS Symposium on Principles of Dis-
tributed Computing, Montreal, Canada, August 1983. Also
available as IBM Research Report RJ3881, IBM Almaden
Research Center, June 1983.

Mohan, C,, Lindsay, B., Obermarck, R. Transaction Manage-
ment in the R* Distributed Data Base Management System,
ACM Transactions on Datab Systems, Vol. 11, No. 4,
December 1986. Also availabie as IBM Research Report
RJ5037, IBM Almaden Research Center, February 1986.
Skeen, D. Nonblocking Commit Protocols, Proc.
ACM/SIGMOD Int. Conference on Management of Data, Ann
Arbor, Michigan, 1981, pp. 133-142.

Spector, A. Open, Distributed Transaction Processing with
Encina, Proc. 4th Int. Workshop on High Performance Trans-
action Systems, Asilomar, September 1991.

Spiro, P, Joshi, A,, and T.K. Rengarajan Designing an Opti-
mized Transaction Commit Protoco! Digital Technical Jour.,
Vol. 3, No. 1, Winter 1991.

Stonebraker, M. Concurrency Control and Consistency of
Muiltiple Copies of Data in Distributed INGRES, IEEE Trans-
actions on Software Eng., Vol. 5, No. 3, May 1979.

The Tandem Database Group NonStop SQL: A Distributed,
High-Performance, High-Availability Implementation of SQL,
Proc. 2nd Int. Workshop on High Performance Transaction
Systems, Asiiomar, September 1987. Also in Lecture Notes
in Computer Science Vol. 359, D. Gawlick, M. Haynie, A.
Reuter (Eds.), Springer-Veriag, 1989.

Upton IV, F. OSI Distributed Transaction Processing, An
Overview, Proc. 4th Int. Workshop on High Performance
Transaction Systems, Asilomar, September 1991.

<
oy

