An Almost-Serial Protocol for Transaction Execution
in Main-Memory Database Systems

Stephen Blott

Henry F. Korth

Bell Laboratories, Lucent Technologies
blott,hfk@research.bell-labs.com

Abstract

Disk-based database systems benefit from
concurrency among transactions — usually
with marginal overhead. For main-memory
database systems, however, locking overhead
can have a serious impact on performance.
This paper proposes SP, a serial protocol
for the execution of transactions in main-
memory systems, and evaluates its perfor-
mance against that of strict two-phase locking.
The novelty of SP lies in the use of timestamps
and mutexes to allow one transaction to begin
before its predecessors’ commit records have
been written to disk, while also ensuring that
no committed transactions read uncommitted
data. We demonstrate seven-fold and two-fold
increases in maximum throughput for read-
and update-intensive workloads, respectively.
At fixed loads, we demonstrate ten-fold and
two-fold improvements in response time for
the same transaction mixes. We show that
for a wide range of practical workloads, SP
on a single processor outperforms locking on
a multiprocessor, and then present a modified
SP, that exploits multiprocessor systems.

1 Introduction

The rapidly emerging wireless information infrastruc-
ture places a premium on the timely delivery of data.
The requirement of timeliness recurs at a variety of
levels with wireless systems, including the network in-
frastructure (cell hand-offs, etc.), billing, accounting
and monitoring (pre-paid billing, fraud detection and

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

prevention, and financial settlements between coop-
erating service providers), and high-level applications
(instant messaging, personal agents).

Most existing database management systems are
designed to maximize overall system throughput,
rather than provide short, predictable response times
for individual requests. Main-memory database sys-
tems [3, 7, 8, 9, 16, 17], however, have been designed
to achieve that latter goal. These systems offer most of
the features of a traditional disk-based system, while
having an architecture tuned to the assumption that
the entire database is resident in main memory.

In this paper, we focus on one aspect of main-
memory database performance: transaction concur-
rency control. The architecture of main-memory
databases reduces the benefit of supporting full con-
currency. The lack of disk I/O for purposes other than
logging and checkpointing eliminates most transaction
blocking for disk I/O. For this reason, we consider pro-
tocols that limit concurrency and reduce task switch-
ing, yet exploit the full power of available computing
resources. The resulting reduction in complexity of
transaction management combined with the reduction
in task switching offers substantial improvements in
performance, which we document experimentally.

The remainder of this paper is structured as follows.
Section 2 discusses the application of low-response-
time database management in wireless telecommuni-
cation systems. Section 3 covers related work on main-
memory concurrency control. Section 4 describes our
protocol for serial transaction execution. Section 5
presents an experimental evaluation that illustrates
the performance of our method under various types
of workload. Section 6 discusses the application of our
method to multiprocessors, and Section 7 concludes.

2 Wireless Systems
Time Constraints

and Response-

A main motivating factor in our work is the tight
response-time constraints of telecommunication sys-
tems. Unlike most on-line transaction-processing sys-
tems, in which throughput is the primary perfor-

mance metric, telecommunication systems have strin-
gent response-time requirements both in terms of aver-
age response time and variance therein. Although the
work we describe applies generally to main-memory
database systems regardless of application, we illus-
trate these needs via the following brief introduction
to a wireless telecommunication application.

2.1 Wireless Infrastructure

The infrastructure for wireless telecommunication con-
sists of mobile-switching centers (MSC) that control a
set of base stations (BS), each of which manages a
changing set of mobile stations (MS). The MSs can
be mobile phones or other wireless devices. MSCs
must interoperate with the regular phone network (the
public, switched telephone network or PSTN), and
through it, with MSCs of other wireless networks.
FEach wireless-service provider keeps a record of its cus-
tomers in a database called the home-location register
(HLR). For a given MS, the HLR record includes such
data as phone number, mobile-id number (the unique
identifier of the MS), profile, and current location.

When a MS moves outside the range of its home
network into that of some other service provider, it
must register with the new provider. This registra-
tion record is stored in the service provider’s visitor-
location register (VLR). This service provider must
contact the MS’s home service provider to obtain HLR
data, which it then caches in its VLR. The home ser-
vice provider updates its record of the current location
of the MS, records the registration of the MS with the
remote service provider, and may need also to cancel
any obsolete registrations the MS may have had with
other service providers.

From this, we can see that the simple act of “roam-
ing” to another network can create a flurry of database
updates. These updates must be completed before the
MS can make or receive a call on the network on which
it is roaming.

Suppose someone on the PSTN attempts to call
the MS. The telecommunication switches in the PSTN
route this call to the home network of the MS, where
the HLR is consulted, the location of the MS deter-
mined, and the correct VLR identified. This VLR is
then accessed to determine the correct MSC to which
to route the call. In practice, some caching and opti-
mizations are performed, but regardless, we see that
the initial set-up of a call requires multiple database
accesses. To provide mobile-phone users with their ex-
pected level of response, these database accesses have
time budgets of just a few milliseconds.

More critical in terms of the expectations of phone
users is fast hand-off of a MS from one BS to another.
The complexity of a hand-off increases if the old and
new BSs are managed by different MSCs. Total hand-
off time in some networks is as low as 20 milliseconds.
This time is not just for database access! It also in-

cludes time for other computations such as the evalua-
tion of heuristics to minimize thrashing in cases where
a user is traveling along a boundary between two BSs’
regions, and managing cases where the new BS cannot
accommodate the load of an incoming user.

2.2 Databases for Wireless Networks

To meet these technical challenges, network equipment
makers use main-memory database management sys-
tems. Each aspect of the architecture, algorithms and
data structures of these systems has been tuned under
the assumption that the entire database is memory
resident. By eliminating each source of overhead, un-
predictability, and wasted CPU cycles, these systems
are able to achieve the types of performance required
of wired and wireless network systems.

Locking operations are one substantial source of
CPU overhead for these systems. In this paper, we
focus on the cost of concurrency, and optimizing trans-
action execution in light of the fact that the database
is memory resident.

3 Related Work

Traditionally, a key motivation for transaction concur-
rency is to keep the CPU active during disk I/Os. This
motivation exists in main-memory database systems as
well, but to a lesser extent, as disk I/O within a user
transaction’s execution comes from only one source —
the output of log records prior to transaction commit.
The only activity with significant disk I/O is check-
pointing, a matter that can be dealt with separately,
as in [19], where a technique called fuzzy checkpoint-
ing is used to avoid disrupting transaction processing
when a checkpoint is taken. In our earlier experimental
work with real-time telecommunication systems [1, 2],
we observed that the overhead of acquiring and re-
leasing locks had a significant impact on performance.
This argues for the use of relatively coarser-grain locks.
Indeed, the observation that fine-grain locking can in-
cur excessive overhead in certain cases was made in
the early days of research in lock protocols [12]. Sev-
eral authors, including [8, 9, 10, 18, 20], have noted
this in the context of main-memory database systems.
Salem and Garcia-Molina have proposed an approach
where most (short) transactions are scheduled serially,
but long transactions and checkpointing operations ex-
ecute concurrently [20]. Priority is generally given to
short, real-time transactions. However, unlike the al-
gorithm proposed here, Salem and Garcia-Molina’s al-
gorithm requires locks to be obtained by all classes of
transaction, and is also subject to deadlock. Dead-
lock, though typically a non-issue from a real-world
performance standpoint, takes on greater concern in a
response-time-constrained system where the impact of
deadlock on a single transaction may cause deadlines
to be missed.

Our focus here is on general-purpose transaction
management for response-time-constrained systems.
True real-time systems have special properties that
Graham [11] exploits to achieve serializability via the
concept of transaction classes from SDD-1 [5]. Gra-
ham formalized the design principles underlying these
systems, and defined a broad class of systems for which
mutual exclusion of critical sections within transaction
classes ensures serializability.

DeWitt et al. [8] have proposed a locking-based ap-
proach to concurrency control in main-memory sys-
tems whereby locks are released at the point the deci-
sion is made to commit a transaction, rather than after
the commit record has been written to disk. Under
this approach, known as ‘precommit,” the lock table
is extended to record not only the transactions that
are waiting for a lock, and those that hold it, but
also those that have released the lock, but are still
waiting for their commit record to be written. While
the protocol described here is also based on the con-
cept of precommit, our protocol eliminates the costs
of maintaining an additional data structure recording
this wait-for relationship.

An idea originating within IBM’s IMS FastPath,
(see [13] and [9], page 511) and pursued within IBM’s
Starburst System [15] is to attach some lock informa-
tion directly to objects themselves [17]. These locks
are never paged out. Moreover, whenever a lock is
required, it is usually to be found already within the
CPU cache. In FastPath, lock information is encoded
in two bits within object headers. Locking algorithms
using these bits are designed in such a way that, if
lock contention is low—which is the expected case—
then locks can be acquired and released with efficient
bit-manipulation operations on objects themselves. In
[10], Gottemukkala and Lehman address the overhead
of latches, short-term low-level locks typically used
to control access to system-internal data structures.
They found the use of table-level latches in place
of page-level latches in the Starburst system’s main-
memory manager achieved up to a 35% performance
gain (although still subject to the risk of deadlock).

One important dependency concerns the interaction
between locking and checkpointing. In order to ensure
that dirty pages are not written into checkpoints, many
systems require the checkpointing process to acquire
locks [20]. Since the checkpointing process generally
runs frequently, locking should be at a fine granular-
ity to avoid unnecessary blocking (which is in contrast
to the argument above for coarse-granular locking).
An alternative, non-locking approach is a technique
known as fuzzy checkpointing, which was used origi-
nally in IMS FastPath [13]. With fuzzy checkpointing,
the checkpointing process does not acquire database
locks, and thus dirty pages can become part of a check-
point. However, by also recording a section of the log
together with the checkpoint itself, the database can

be returned to a transaction-consistent state during
recovery. The work described here is based on the
DataBlitz™ Main-Memory Database System, which
uses a fuzzy checkpointing algorithm [19].

In our application domain, most transactions are
extremely short and the probability of lock contention
extremely low. Moreover, with short, main-memory
transactions, the cost of CPU-cache flushes due to the
interleaving of concurrent transactions is significant.
For these reasons, we studied alternative approaches
to concurrency control in main-memory systems based
on extremely-coarse granular locking, at the database
level (that is, transactions are executed serially, except
for some concurrency during commit). Our work thus
takes previous work in this area to its logical extreme.

4 Developing the SP Protocol

This section describes a series of protocols for serial
transaction execution, each in turn improving upon
the limitations of its predecessor. We begin in Sec-
tion 4.1 with a naive protocol that is presented only
for illustrative purposes. In Section 4.2, we review and
expand upon the precommit concept introduced by [8].
Section 4.3 presents our approach.

Throughout, we assume a process structure in
which several processes—or threads, although we use
only the term process here—access a shared database
system. Each transaction is executed by one process
only. A single mutex, which we call the database mu-
tex, is used to ensure mutual exclusion of database ac-
cesses. While one process holds the database mutex,
any other process requesting the mutex is blocked, at
least until the first process releases it.

4.1 A Naive Protocol

The simplest approach to concurrency based on a sin-
gle mutex is the following. Prior to issuing its first op-
eration, each transaction ensures that no other trans-
action is active by acquiring the database mutex. Since
no two transactions are ever active at the same time,
database locks need not be acquired, and deadlock
cannot occur. The database mutex is released only
after a transaction’s commit or abort processing has
been completed. Clearly, executions governed by this
protocol are serializable (indeed, they are serial) [4].
Moreover, the overhead of this protocol is marginal.
In contrast, for lock-based protocols, acquiring a sin-
gle lock can itself involve several mutex operations, in
addition to the operations necessary to create and/or
update the lock data structures themselves [14].

The major limitation of this approach, however, is
that processing and logging operations cannot be over-
lapped. Since transactions execute serially, the CPU
can be idle while logging operations take place. In the
worst case, regardless of the multi-programming level,
the system alternates between periods of CPU activity,
and periods of I/O activity for logging.

Read transactions:
acquire database mutex
begin transaction
perform transaction operations
commit (or abort) transaction
release database mutex

Update transactions:
acquire database mutex
begin transaction
perform transaction operations
generate log records in main memory
(or undo effects)
release database mutex
flush log (if committing)
commit (or abort) transaction

Figure 1: Outline of a precommit-based protocol. For
correctness, transaction dependencies must be man-
aged (see text).

4.2 A Protocol Using Precommit

A transaction is said to be precommitted if its commit
record is in the main-memory log buffer waiting for the
log to be flushed. True commit does not occur until
the commit record is flushed. The precommit oper-
ation can be used to overcome the limitations of the
naive approach of Section 4.1. The system must ensure
that transactions commit in an order such that commit
dependencies among transactions are maintained.

In [8], three sets are associated with each lock: those
actually holding the lock, those waiting for the lock,
and those that hold the lock but are still in the precom-
mit state. These lock data combined with transaction
dependency data are used to ensure a correct ordering
of the log-flushing operations.

For our purposes, in which we consider locking at
only the database granularity, we may consider an
adaptation of the precommit approach based on the
outline of Figure 1. An update transaction that is
about to commit releases the database mutex not af-
ter, but before flushing the log (see the figure). While
one transaction is waiting for a log-flush operation to
complete, another can begin its processing phase.

As stated in the figure, the protocol is incomplete
(and, therefore, actually incorrect). The difficulty is
that, because the database mutex is released early,
read-only transactions can now commit in the state of
having read uncommitted data (since read-only trans-
actions are not required to flush the log). One way to
overcome this difficulty, of course, is to force read-only
transactions also to flush the log prior to committing.
Under this approach, however, read-only transactions
always block (regardless of whether they actually read
uncommitted data) until all of their predecessors have
completed their commit phase. This additional delay
and increased variance in response time can be unac-
ceptable for response-time critical applications.

Our goal in this paper is to employ the concept of

precommit efficiently to our serial approach to trans-
action execution, which we do below.

4.3 SP: A Serial Protocol

In this section, we describe our serial protocol, SP. The
new protocol is based on two mechanisms: timestamps
and a mutex array. Timestamps are used to deter-
mine, for each read-only transaction, the identity of
the most-recent predecessor from which that transac-
tion has read. The mutex array is then used to ensure
that a read-only transaction is blocked at least until
that predecessor completes its commit processing.

4.3.1 Timestamps in SP

Key to SP is the use of timestamps. Unlike
the traditional timestamp-based concurrency-control
schemes [4], SP uses transaction timestamps for the
sole purpose of ensuring that commit dependencies
among transactions are satisfied. Actual concurrency
is managed by the database mutex (thus, the name
serial protocol).

As in prior timestamp-based schemes, each trans-
action T is assigned a timestamp 7'S(7") (which is ini-
tialized to 0) when it begins, and each data item d
is assigned a write timestamp WTS(d). Unlike tra-
ditional timestamp-based schemes, no read timestamp
is needed. A further distinction of our scheme is that
transaction timestamps are not fixed. Transaction
timestamps are maintained as follows:

e Immediately before transaction T issues its first
write operation, T is issued a new T'S(T) greater
than any issued previously. (This may be imple-
mented by incrementing a global counter. Note
also that transactions need not be pre-declared as
“read-only” or not under SP.)

e Write timestamps are maintained in the usual
way: when a transaction T writes data item d,
WTS(d) is set to be T'S(T). (Note that, be-
cause transactions execute serially, WT'S(d) is
non-decreasing.)

e When transaction T reads data item d, T'S(T) is
set to be the maximum of T'S(T") and WT'S(d).

Thus, upon completion of an update transaction T,
TS(T) is a new timestamp, higher than any other
within the system. Upon completion of a read-only
transaction, 7'S(T') is the timestamp of the most re-
cent transaction from which 7 reads. For each data
item d, WT'S(d) is the timestamp of the most recent
transaction that wrote into d. Notice that there are
no aborts or waits induced by this timestamp scheme.
Moreover, the database mutex and the monotonic-
ity of timestamps ensures that, prior to an update,
WTS(d) <TS(T).

Read transaction(T):

acquire database mutex

begin transaction

perform transaction operations

release database mutex

if aborting then abort

else
acquire A[T'S(T)] /* instantaneous */
release A[TS(T)]

commit

Update transaction(T):

acquire database mutex

begin transaction

perform transaction operations
(including timestamp updates)

generate log records in main memory

if aborting
perform transaction-undo steps
release database mutex

else /*# T is precommitted */
acquire A[TS(T)]
release database mutex
flush log
/* T is now committed */
release A[TS(T)]

Figure 2: SP: A serial protocol that uses timestamps
and an array of mutexes to ensure that read-only trans-
actions are blocked until the predecessors from which
they read commit.

The basic scheme we have outlined above can be
tuned for efficient timestamp maintenance and for
space efficiency in the representation of timestamps.
We discuss this later in Section 4.3.4.

4.3.2 The Mutex Array

The commit process in SP is governed by an array that
enforces all transaction dependencies. Let A denote an
infinite array of mutexes (which might be implemented
by a finite array that is indexed modulo the array size).
Consider an update transaction 7. When T intends
to commit, it acquires A[T'S(T)]—that is, the mutex
in position T'S(T') in array A—prior to releasing the
database mutex. A[T'S(T)] is then held until T re-
ceives the acknowledgment that its commit record has
been written to disk, at which point A[T'S(T)] is re-
leased. Now consider a read-only transaction 7. When
T intends to commit, it first releases the database mu-
tex and then acquires A[T'S(T)]—but only instanta-
neously. T may then commit. By holding the mutex
briefly, T ensures any transaction on which it has a
commit dependency has itself committed.

This protocol is sketched in Figure 2. Note that
the flush-log operation is performed sequentially on
log records (or pages) so that log records are flushed
in the order in which they were created.

4.3.3 Correctness of SP

The proof that SP ensures serializability and atomicity
is relatively straightforward. We present the details in
this section.

In the absence of failures (and therefore, ignoring
the issue of commit), SP’s use of a single lock over
the entire database guarantees serial (and thus serial-
izable) execution. Under this assumption, atomicity
is guaranteed automatically, so the timestamps do not
matter.

Relaxing our assumption about failures, we must
ensure that (1) no transaction commits in a state
where it has read uncommitted data and (2) the com-
mit order of transactions corresponds to the serializa-
tion order. For example, a read-only transaction must
not read a value written by an update transaction that
commits after the read-only transaction commits; as
the update transaction may then subsequently abort.
We show that SP in fact meets these requirements.

Let the final timestamp of T, T'S¢(T), be the final
value of T'S(T'), that is, the value of the timestamp of
T at the time T finishes its execution and attempts to
commit.

Since log records are usually flushed in units of
pages, transactions whose commit records share a log
page may commit “simultaneously.” Thus, in our dis-
cussion below, we may use phrases like “no later than”
rather than the word “before” in discussing commit.

Proposition 1 Update transactions commit in time-
stamp order. That is, if Ty and T> are update trans-
actions that commit, then if TSy (Th) < TS¢(T5), then
T, commits no later than Ts.

Proof: Since T'S¢(Th) < T'S§(T3), T1 performs its first
update before T5 did; so T} acquires the database mu-
tex before T5. As specified in Figure 2, T creates its
log records in main memory before T> creates any log
records. Thus, the flush operation will output the log
records of T} before or concurrent with those of Th. O

Proposition 2 Read-only transactions that commit
do not do so before any committed update transactions
from which they read.

Proof: Let T, be a read-only transaction that commits.
Let T} be the transaction from which 75 reads that
has the highest final timestamp. By Proposition 1,
T1 commits last among all transactions from which 75
reads. By the definition of timestamp assignment to
read-only transactions, T'Sy(T1) = T'S§(T2). Since T
reads from 77, it cannot begin its execution until after
T, releases the database mutex. But, prior to doing
so, Th acquires A[TS¢(T1)], which it holds until its
commit record has been flushed. T» cannot commit
without first acquiring A[T'S¢(T>)] = A[T'Sf(T1)]. O

The next proposition is based on a standard as-
sumption about the failure model of computing sys-
tems — that a failure causing loss of main memory is a
system crash.

Proposition 3 Any transaction that reads data writ-
ten by an aborted transaction itself aborts.
Proof: Let T; be an update transaction that aborts.
We consider two cases. First, assume 77 aborts with-
out having precommitted. Any transaction T, that
reads data written by 77 must acquire the database
mutex after T releases it. But since T aborts prior
to precommitting, it aborts prior to releasing the
database mutex, and its updates are undone. Next,
consider the second case in which T} aborts after hav-
ing precommitted. Then the log in main memory
(which contains T7’s commit record) must have been
lost before it could be flushed. By assumption, a fail-
ure that causes a loss of main memory is a system
crash in which all active transactions abort. By Propo-
sition 1 (for update transactions) or Proposition 2
(for read-only transactions), any transaction that read
from T; cannot have committed prior to the time of
the crash and therefore aborts. a
Next, we address the issue of blocking on the
database mutex. We ignore the case where an oper-
ating system process dies while holding the database
mutex. This issue is treated outside the scope of the
transaction manager. Indeed DataBlitz, the system we
used in our experiments, detects and properly recovers
from such scenarios.

Proposition 4 A transaction holding the database
mutex cannot block for disk I/0 nor for another mu-
tex.

Proof: The only disk I/0, the log flush, does not oc-
cur while the database mutex is held. The only case
where a transaction acquires a mutex while holding the
database mutex is the case of an update transaction T'
acquiring A[T'S¢(T)]. But since it holds the database
mutex at this point, no other transaction could have
read from 7 and no other update transaction could
have performed an update after T" began. Therefore,
T'Sf(T) is strictly the largest timestamp of any trans-
action and A[T'S;(T)] cannot have been acquired pre-
viously by any other transaction. O

4.3.4 Implementation of SP

We now describe several implementation details that,
for simplicity, we have ignored thus far.

Bounding the Size of a Timestamp: As pre-
sented above, timestamps grow ever larger. In prac-
tice, we can restart issuance of timestamps to update
transactions at 1 whenever the systems restarts, pro-
vided that we also reset all data timestamps to zero.
At system restart, resetting data timestamps is easy
to do, as the database is reloaded into memory. At the
price of slightly greater complexity, timestamps can be
reset any time the system is quiescent.

Timestamp Granularity: A timestamp is associ-
ated with each data item, however, we have not spec-
ified so far exactly how large a “data item” is. The

relative advantages of coarse and fine granularity are
well known. Fine granularity allows greater potential
concurrency at the price of higher overhead to store
and maintain timestamps. In SP, timestamps control
only write-read synchronization and relatively few up-
date transactions are likely to be awaiting a log flush
at any point in time. Thus, only a low degree of con-
currency is usually needed and coarse timestamp gran-
ularity should suffice in general.

For our telecommunication applications, the appli-
cation itself usually indicates the “natural” granular-
ity, e.g., a customer record or an HLR record.

5 Performance Experiments

In order to evaluate SP, we carried out a series of
performance experiments using DataBlitz. DataBlitz
uses strict 2PL for concurrency control. However,
DataBlitz also supports the ability to turn off locking,
offers control over the point at which logging opera-
tions are performed, and provides an efficient, user-
level semaphore implementation [6]. Using these fea-
tures, we implemented the SP protocol described in
Section 4.3 atop the existing, lower-level primitives of
DataBlitz. This provided a single platform whose be-
havior could be toggled between strict 2PL and SP.

Our experimental database consisted of a single
hash table, with 20,000 64-byte records. We performed
experiments on a uni-processor system varying the
multi-programming level from 1 to 35. Before begin-
ning, each transaction determined randomly whether
it was a read-only or an update transaction (according
to a probability that was also varied). Each transac-
tion probed 20 entries in the table, either reading or
updating each entry (as determined above). Our ex-
periment was designed to simulate the workload gener-
ated by telecommunication applications such as those
discussed in Section 2. In order to avoid the possibility
of deadlock biasing our results against the strict 2PL
case, table entries were probed sequentially.

We discuss both throughput and the more impor-
tant metric for our applications, response time.

5.1 Throughput as a Function of Updates and
Multiprogramming

In our first set of experiments, we measured maximum
throughput for DataBlitz using SP, and for DataBlitz
using strict 2PL, as a function of both the multi-
programming level and the percentage of transactions
that are update transactions. The results are illus-
trated in Figure 3. In the figure, we plot throughput
(transactions per second) as a function of the fraction
of transactions that are update transactions and do
this for 4 distinct levels of multiprogramming. Each
graph has 2 curves: one for SP, and one for 2PL. We
see that SP always performs better, especially when
fewer than 30% of transactions are update transac-
tions. In practice, we can say without qualification

T
-
e

800

Ml!ltirprogramming Iéve\ =1[SP]
Multi-programming level = 1 [2PL |

700

600

400

Throughput

300

100 |

Throughput

800 [Mﬂlli—programming IéveI:S[SP] —

Multi-programming level =5 [2PL] ---%---

700 |-

600 |

400

300 |

100 |-

60 80
Percentage of transactions which are update transactions

(A)

100

40 60 80
Percentage of transactions which are update transactions

(B)

100

Mul‘ti—programming Iev‘el =15[SP] T
Multi-programming level = 15 [2PL] ---x---
700

600

400

Throughput

300

200

100 |

Throughput

Mu\‘!i—programming Iev‘el =35[SP] — A
Multi-programming level = 35 [2PL] ---%---
700 - 4

600 |-

400
300 |
200 |

100 |-

Percentage of transactions which are update transactions

(©)

40 60 80
Percentage of transactions which are update transactions

(D)

Figure 3: Maximum throughput in transactions per second as a function of the fraction of transactions that are
update transactions, for multi-programming levels of (A) 1, (B) 5, (C) 15 and (D) 35.

that SP performs better since real-world percentages
of update transactions in our motivating applications
are much smaller than 30%.

First, consider Figure 3(A), for which the multi-
programming level is 1. Let p denote the time to exe-
cute the processing steps of one transaction, and [de-
note the time taken by the locking steps of the transac-
tion. From the graph, we observe that approximately
110 transactions run per second under 2PL at mul-
tiprogramming level 1 with 0% update transactions.
Since there are no I/O operations, 110p + 110l = 1sec.
Under SP, 780 transactions run per second with no
locking, so 780p = 1sec. From this, we derive that the
overhead of locking is approximately 6 times the cost
of performing the database operations themselves.

In Figures 3(A) through 3(D), the multi-
programming level is raised from 1 process to 35
processes! (all on the one processor of our test sys-
tem). For low update percentages, increased multi-

1a level near the saturation point for our experimental envi-
ronment

programming has a marginal effect on throughput (due
mainly to the additional overhead of context switch-
ing). For high update percentages, however, the
effect on throughput is significant. For both SP
and strict 2PL, throughput increases with the multi-
programming level. This is because, as more pro-
cesses are added, the probability that all of them are
blocked on log flushing operations decreases. How-
ever, as throughput increases, the effect of the locking
overhead also becomes increasingly apparent, and, at
a multi-programming level of 35, the throughput of
SP is double that of strict 2PL, even for 100% update
transactions. SP’s throughput continues to improve
at higher levels of multiprogramming until we reach a
point at which it is never the case that processes are
waiting for log flushing to complete. The performance
of 2PL eventually degrades significantly as the multi-
programming level rises due to lock contention (and
deadlock as well, had we not designed our experiment
specifically to remove the possibility of deadlock under
the 2PL scenario).

T T
Update rate = 2%, write txns[2PL] —+—

Update rate = 2%, read txns [2PL] ---x---
Update rate = 2%, write txns[SP] ------
Update rate = 2%, read txns [SP] &

0.1

Response time (seconds)

0.01

250

0.001 L L L L
0 50 100 150 200
Throughput (transactions per second)
10 T T T T
Update rate = 33%, write txns[2PL] —+—
Update rate = 33%, read txns [2PL] ---%---
Update rate = 33%, write txns[SP] ------
Update rate = 33%, read txns [SP] &
1fp 4
@
E
< o
© -
E 01 F e * o 4
b3 8
5 -
8 4 =
4]
o o
o)
0.01 [ela) 4
0.001 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Throughput (transactions per second)

(©)

90

Response time (seconds)

Response time (seconds)

10

T T T T
Update rate = 10%, write txns[2PL] —+—
Update rate = 10%, read txns [2PL]
Update rate = 10%, write txns[SP] ------
Update rate = 10%, read txns [SP] &

0.1

0.01

0.001 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Throughput (transactions per second)
10 T T
Update rate = 100%, write txns[2PL] —+—
Update rate = 100%, write txns[SP] ------
1k 4
¥
- *
01 Jede KT 4
0.01 | E
0.001 L . . L .
0 10 20 30 40 50 60

Throughput (transactions per second)

(D)

Figure 4: Average response time as a function of throughput, for percentages of update transactions of (A) 2%,
(B) 10%, (C) 33% and (D) 100%; multi-programming level is 35.

5.2 Response Time as a Function of Load

In a second series of experiments, we varied the offered
load, and measured average response time. These ex-
periments allow us to determine how response time de-
grades in our wireless telecommunication application
as the network reaches peak utilization. In practice,
this is of greater importance than our measurements in
the first series of experiments, since we are concerned
with being able to guarantee with high probability that
the response time required by the application is met.
We report average response time, rather than worst
case, since the variance in response time in our main-
memory environment is low.

Our experiments were done with a multiprogram-
ming level of 35 with varying arrival rates. We set
the percentage of transactions that are update trans-
actions to be 2%, 10%, 33%, and 100%, and show the
results for each in Figure 4 (A) through (D), respec-
tively. Response time is plotted separately for read-
only and for update transactions (there are, of course,

no read-only transactions in Figure 4(D)). The scales
on the y-axes are logarithmic. The z-axes actually
show throughput rather than load. This allows us
more clearly to explain the behavior of 2PL under
heavy load.

From the figure, we see immediately that, as we
saw in the first series of experiments, SP’s performance
degrades gracefully under heavy load, unlike 2PL. For
heavy loads, only SP is feasible.?

In the range of loads where response time compar-
isons can be made, SP offered significant response time
improvements over strict 2PL. For example, in Fig-
ure 4(B), where 10% of transactions are update trans-

2The graphs in Figure 4 for 2PL show a doubling back of
the curves. This occurred at the point of maximum throughput
for 2PL. Offered loads beyond the level of maximum throughput
cause contention and thrashing that actually reduce throughput
as load rises. Thus, we see two response-time values for certain
throughput levels. The lower value comes at a point where of-
fered load is less than maximum throughput; the higher value
comes at a point where offered load is greater than maximum
throughput (a region certainly to be avoided in practice).

actions, at 20 transactions per second, the response
time for read-only transactions is 6 ms in the case of
SP, as opposed to 30 ms in the case of 2PL. The re-
sponse time for update transactions is 50 ms in the
case of SP, as opposed to almost 200 ms in the case of
strict 2PL.

These response time improvements—of a factor of 4
to 5—are significant for our telecommunication appli-
cations. This difference is enough to allow a general-
purpose database solution to be employed in place of
a custom-coded, special-purpose system. Similar per-
formance gains cannot be obtained simply by upgrad-
ing the hardware to a faster processor and using 2PL,
since we would still face 2PL’s inability to scale to high
loads. SP’s lack of lock contention not only offered
better response time, but also better scalability.

5.3 The Effect of the Commit Mechanism

Up to this point, our focus has been on comparing SP
with 2PL. Now we consider whether the incremental
complexity of the mutex array A is justified relative
to the simpler approach described in Section 4.2, in
which read-only transactions must flush the log to disk
prior to committing. Once again, we measured aver-
age response time as a function of offered load (using
the same techniques as in Section 5.2). We present
in Figure 5 (A), (B), and (C), the average response-
time graphs for read-only transactions when the per-
centage of transactions that are update transactions is
2%, 10%, and 33%, respectively. We focus on read-
only transactions here, since the commit protocols dif-
fer only in their treatment of read-only transactions.

These graphs suggest that the effect of the choice
of commit mechanism is dependent first upon the of-
fered load, and then upon the fraction of transactions
that are update transactions. At low load, the prob-
ability of a read-only transaction encountering a situ-
ation where the log buffer is non-empty is small, and
the two mechanisms perform nearly identically. Con-
versely, at higher load, the probability of a read-only
transaction encountering a non-empty log buffer is in-
creased, and our mechanism using the mutex array can
reduce response time significantly. On the other hand,
this effect diminishes as a larger fraction of the trans-
actions are update transactions. This is because as
update transactions become more frequent, so too do
the number of read-only transactions whose commit
is delayed necessarily under both mechanisms, due to
conflicts. For low-to-moderate ratios of update trans-
actions to read-only transactions, the benefit of our
commit mechanism appears worth the slightly added
complexity.

6 SP on Multiprocessor Systems

One apparent limitation of SP is that, prima facie, it
cannot exploit the parallelism of multiprocessor sys-
tems. If transactions execute serially, then at most

0.025

Ubda(e rate = 2%, ‘read txns [furced flush] —+—
Update rate = 2%, read txns [SP] ---%---

0.015

Response time (seconds)

0.005

.
0 50 100 150 200 250 300
Throughput (transactions per second)

(A)

' Update }ate = 10%,‘ read txns [‘fu ced qusH] —
Update rate = 10%, readl txns [SP] ---%---

Response time (seconds)
o
o
a
T

.
0 20 40 60 80 100 120 140 160 180
Throughput (transactions per second)

' Update |"ate = 33%“ read txns [‘forced qusH] —
Update rate = 33%, read txns [SP] ---x---

0.2

0.1

Response time (seconds)

L L
0 10 20 30 40 50 60 70 80 90

Throughput (transactions per second)

Figure 5: Average response time of read-only trans-
actions as a function of throughput, update rates of
(A) 2%, (B) 10% and (C) 33%; multi-programming
level is 35.

3000

T
Strict 2PL, 100% updates —<—
Strict 2PL, 50% updates -+-
Strict 2PL, 10% updates -8--
Strict 2PL, 1% updates -x

2500 | Serial protocol (SP) -~ -

2000 - AN p

1500

,
H
‘

1000

T
!

Average response time, nominally in milliseconds
£
i

10 15
Number of processors

Figure 6: Average response time as a function of the
number of processors: 2PL and unmodified SP.

one processor can be busy at any time, leaving addi-
tional processors idle. In this section, we present a se-
ries of experiments that help quantify and explain the
trade-offs of concurrency and serial execution in multi-
processor systems. Unlike the experiments reported in
Section 5, those reported here are based on an analyt-
ical model, driven by real call-data traces. In general,
each transaction goes through three phases: waiting,
processing, and logging. In order to avoid the added
variables of disk simulations, we model only the wait-
ing and processing phases. Thus, “response time” here
refers to the time until a transaction decides to com-
mit (the actual response time may be longer because
of logging).

Our model sets the ratio of the service time for 2PL
transactions to that of SP transactions based on our
earlier experimental results in Section 5.1, where we
found locking overhead to be roughly 6 times the ex-
ecution time for a transaction, resulting in a 7 : 1
service-time ratio. The workload determined the inter-
arrival times. There was no a-priori bound on the de-
gree of multiprogramming.

We conducted three experiments. The first uses SP
as presented earlier in its non-parallelizable form. This
experiment allows us to gain insight into the degree
of parallelism 2PL needs to outperform non-parallel
SP. The second experiment uses a modified form of
SP that allows parallelism during those times when
the only active transactions are read-only. Here, SP
can take some advantage of the multiprocessor system;
the experiment tells us how much. Finally, we con-
sidered a partitioned-database architecture in which
the workload and data can be partitioned cleanly.
Although this third experiment appears designed to
make SP look good (and indeed it does exactly that),
we note that the scenario of this experiment in fact
conforms closely to several telecommunication appli-
cations [1, 2].

1000

T T
Serial protocol (SP), 100% updates ——
Serial protocol (SP), 50% updates -+~
Serial protocol (SP), 10% updates -8--
Serial protocol (SP), 1% updates -

100 I 4

10F 1

Average response time, nominally in milliseconds

6 10 12
Number of processors

Figure 7: Average response time as a function of the
number of processors: modified SP.

6.1 Unmodified SP versus 2PL

The first experiment we performed was to measure the
effect on average response time of using additional pro-
cessors. This we did for a workload generated from
1 day’s worth of call data. The percentage of update
transactions we used were 100% update transactions,
50%, 10%, and 1%.

The results of this first experiment are presented
in Figure 6. First, note that the average response
time using unmodified SP is unaffected by changes in
the number of processors, or by changes in the de-
gree of contention between transactions; it is 133 ms
in all cases. This is not surprising given that unmodi-
fied SP processes transactions serially and cannot ex-
ploit additional processors. Second, we observe that
the key factor affecting average response time in the
case of locking is the degree of data contention among
transactions. If contention is low, then the poten-
tial for parallelism is high, and strict 2PL can exploit
that parallelism. If, on the other hand, contention
is high, then the potential for parallelism is low, and
many transactions must be executed serially (even un-
der strict 2PL). This effect can be observed in Fig-
ure 6. Locking delivered better response times than
SP only when the number of processors exceeded 7
or 10, for update-transaction rates of 1% and 10%,
respectively. We observe that at low contention, the
2PL and SP curves cross when the number of proces-
sors corresponds to the service-time ratio and conjec-
ture that this holds in general. At high-contention, we
conjecture that the crossover point would occur at a
larger number of processors as the probability of lock
waits and deadlock adversely impact 2PL.

This experiment, though clearly designed to show
SP at its worst, demonstrates that for small multipro-
cessors, it is better to run SP and leave all but one
processor idle, rather than to use locking.

6.2 Modified SP: Concurrent Readers

For our second set of experiments, we consider an ex-
tended version of SP in which update transactions ex-
ecute strictly serially as before, but read-only transac-
tions execute in parallel. To achieve this extension, the
SP algorithm described in Section 4 is adapted such
that database access is controlled not by a mutex, but
by a single-writer, multiple-readers semaphore (effec-
tively, there is one shared/exclusive lock for the entire
database). All other aspects of this set of experiments
are the same as in Section 6.1.

The effect of this change is illustrated, for the same
workload, in Figure 7 (the scale on the y-axis is now
logarithmic). With 100% update transactions, aver-
age response time of SP is unaffected and remains
133 ms (there are no readers to benefit from additional
concurrency). However, with just a few readers able
to execute in parallel (for 50% and fewer update trans-
actions), wait times are starkly reduced, and average
response times improve accordingly, even with just a
few processors, as shown in the figure. At low update
rates, the average response time approaches the ser-
vice time (of 2 ms). Once this level is reached, adding
more processors does not help.

This series of experiments shows that with our mi-
nor modification, SP can take full advantage of multi-
processors when the percentage of update transactions
is low to moderate, as is the case in most applications.?
In our experimental scenario, a higher load could eas-
ily have been accommodated in a system offering 3
or more processors. Still better results may be possi-
ble if we had implemented an intelligent transaction-
queueing scheme that attempts to rearrange the work-
load to run in parallel as many read-only transactions
as there are processors.

6.3 A Partitioned Scenario

A limiting factor for SP in the series of experiments in
Section 6.2 is the need to lock the entire database in or-
der to run an update transaction. We have found this
requirement to be excessive in many of the telecom-
munication applications that we have considered. Of-
ten, the database is partitioned, usually based on a
key such as a customer identifier, mobile-id number,
or a telephone number. This partitioning allows multi-
ple sub-databases to coexist on a single multiprocessor
machine. Fach individual sub-database uses SP, but
parallelism is possible among sub-databases.
Assuming that a database and its workload can be
partitioned in this way, we next consider the case of
running one database instance (which we call a “site”)
for every processor. Since each site has a separate
database mutex, this partitioning introduces the pos-
sibility of parallelism not just among readers, but also

3For high percentages of update transactions, even unmodi-
fied SP is superior to 2PL, as shown in Section 6.

1000

T T
Serial protocol (SP), 100% updates ——
Serial protocol (SP), 50% updates -+~
Serial protocol (SP), 10% updates -8--
Serial protocol (SP), 1% updates -

100

10

Average response time, nominally in milliseconds

6 8 10 12
Number of processors

Figure 8: Average response time as a function of
the number of processors: modified SP, partitioned
database.

among all transactions. We again repeated our ear-
lier experiment, but with this extension. The results
are illustrated in Figure 8 (the scale on the y-axis is
again logarithmic). This figure shares the same y-axis
as the previous two figures. We show results here only
for SP as there is no change in how 2PL is modeled
in the scenario for this experiment. Because of the
additional possibility of parallelism involving update
transactions, this technique demonstrates significant
improvement in average response time for all work-
loads. We note that, with more than around three
processors (and for the workload assumed here), the
average response time using SP is lower, in all cases,
than the service time using 2PL (14 ms).

The scenario of this experiment corresponds closely
to the model used in the Sunrise system described
in [1, 2]. The Sunrise system processes “events” such
as a phone call and maintains aggregate summary data
in a DataBlitz database. When a single machine is
insufficient for an application, the database is parti-
tioned over several machines and a front-end “map-
per” directs each event to the appropriate machine.
Sunrise has provisions for managing queries across par-
titions and similar provisions can be made for SP in
our current experimental environment. We did not in-
corporate this into our experiment since the frequency
of such queries is extremely low and they appear as
regular queries to each site.

7 Conclusion

This paper has investigated the issue of concurrency
in main-memory databases. Focusing primarily on
response-time requirements in telecommunication ap-
plications, we have proposed a serial protocol (“SP”)
for transaction execution in main-memory systems.
The advantage of SP is that the overhead locking is
all but eliminated, as too is deadlock, and the unpre-

dictable response time that deadlock can cause. The
novelty of SP lies in the use of timestamps and mu-
texes to allow parallelism between transaction execu-
tion and log flushing. It allows transactions to begin
processing before their predecessors have completed
flushing the log, while still ensuring that no transac-
tion commits in the state of having read uncommitted
data. By implementing SP atop the DataBlitz Main-
Memory Database System, we were able to compare
the performance of SP against that of strict 2PL. Our
results indicate the potential for a significant perfor-
mance gain—up to a factor of ten—in terms of both
response time and throughput. These gains are in ad-
dition to those of a main-memory system over disk-
based database systems.

We have described two extensions for multiproces-
sors, and presented a performance evaluation of these
extensions. Perhaps surprisingly, our results suggest
that—for certain workloads—the reduced overhead of
a serial execution can even outweigh the advantages
of moderate levels of parallelism in a multiprocessor.
If contention is low, then 2PL can offer better per-
formance since it can exploit the parallelism of the
platform. For such situations, we proposed a modified
version of SP that allows parallelism among read-only
transactions and showed that it outperformed 2PL for
levels of contention that generally occur in practice.

Our work was motivated by telecommunication ap-
plications, especially those of wireless systems. In Sec-
tion 2, we described scenarios where operations, such
as a hand-off of a mobile station between base sta-
tions, have time budgets in the tens of milliseconds.
The performance numbers shown here indicate that
SP can be the deciding factor in whether a general-
purpose system like DataBlitz is suitable or whether a
custom special-purpose system must be built.

Acknowledgments: We would like to acknowledge
the help of Rajeev Rastogi, Phil Bohannon, Yuri Bre-
itbart and the DataBlitz team for making this work
possible, and for their many helpful insights.

References

[1] J. Baulier, S. Blott, H. F. Korth, and A. Silberschatz.
A database system for real-time event aggregation in
telecommunication. In Proc. of the Int’l Conf. on Very
Large Databases, Aug. 1998. Industrial track paper.

[2] J. Baulier, S. Blott, H. F. Korth, and A. Silberschatz.
Sunrise: A real-time event-processing system. The
Bell Labs Technical Journal, 3(1), Jan-Mar 1998.

[3] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Hal-
dar, S. Joshi, A. Khivesera, H. F. Korth, P. McIlroy,
J. Miller, P. P. S. Narayan, M. Nemeth, R. Rastogi,
S. Seshadri, A. Silberschatz, S. Sudarshan, M. Wilder,
and C. Wei. Datablitz storage manager: Main mem-
ory database performance for critical applications. In
Proc. of the ACM SIGMOD Int’l Conf. on the Man-
agement of Data, 1999. Industrial track paper.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley, 1987.

[6] P. A. Bernstein, D. W. Shipman, and J. B. Roth-
nie. Concurrency control in a system for distributed
databases (SDD- 1). ACM Trans. on Database Sys-
tems, 5(1):18-51, Mar. 1980.

[6] P. Bohannon, D. Lieuwen, A. Silberschatz, S. Sudar-
shan, and J. Gava. Recoverable user-level mutual ex-
clusion. In Proc. of the IEEE Symposium on Parallel
and Distributed Processing, 1995.

[7] P. L. Bohannon, R. R. Rastogi, A. Silberschatz, and
S. Sudarshan. The architecture of the Dali main mem-
ory storage manager. The Bell Labs Technical Journal,
2(1):36-47, Winter 1997.

[8] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stone-
braker, and D. Wood. Implementation techniques for
main memory database systems. In Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, 1984.

[9] H. Garcia-Molina and K. Salem. Main memory
database systems: An overview. IEEE Trans. on
Knowledge and Data Engineering, 1992.

[10] V. Gottemukkala and T. Lehman. Locking and latch-
ing in a memory-resident database system. In Proc.
of the Int’l Conf. on Very Large Databases, 1992.

[11] M. H. Graham. How to get serializability for real-time
transactions without having to pay for it. In Proc. of
the IEEE Real-Time Systems Symposium, 1993.

[12] J. Gray. Notes on database operating systems. In Op-
erating Systems: An Advanced Course: Lecture Notes
in Computer Science 60. Springer-Verlag, 1978.

[13] J. Gray. IMS FastPath. Lecture notes, Oct. 1980.

[14] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[15] L. Haas, W. Schang, G. Lohman, J. McPher-
son, P. Wilms, G. Lapis, B. Lindsay, H. Pirahesh,
M. Carey, and E. Shekita. Starburst mid-flight: As
the dust clears. IEEE Trans. on Knowledge and Data
Engineering, 2(1):143-160, Mar. 1990.

[16] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silber-
schatz, and S. Sudarshan. Dali: A high performance
main memory storage manager. In Proc. of the Int’l
Conf. on Very Large Databases, 1994.

[17] T. Lehman, E. Shekita, and L. Cabera. An evalu-
ation of Starburt’s memory-resident storage compo-
nent. I[EEE Trans. on Knowledge and Data Engineer-
ing, 4(6):555-566, Dec. 1992.

[18] T. J. Lehman and M. J. Carey. A recovery algorithm
for high-performance memory-resident database sys-
tems. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pages 104-107, May 1987.

[19] R. Rastogi, P. Bohannon, J. Parker, A. Silberschatz,
S. Seshadri, and S. Sudarshan. Distributed multi-level
recovery in main-memory databases. Distributed and
Parallel Databases, 6(1):41-71, 1998.

[20] K. Salem and H. Garcfa-Molina. System M: A trans-
action processing testbed for memory resident data.

IEEE Trans. on Knowledge and Data Engineering,
2(1):161-172, Mar. 1990.

