
LECTURE 6

Announcements

Mid-Semester Feedback
• Please fill out

the feedback
form!!

• You can do it
today after
playtesting!!!

Special Topics Lectures
• This is the last week we’re

doing normal lectures

• Starting next week, we’ll be
introducing various things
you can add to your final
project
– Possibly featuring BRGD!

This Week: Nin2
• A real game, not just a

physics demo!
• Make sure to come to

hours if you’re
spending huge
amounts of time
debugging
– This week's topics can

be a bit tricky

Nin1 Initial Feedback
• Gravity is a force, not an impulse

– If you set it as an impulse, fall speed is
dependent on frame rate

• The gravitational constant (“g”) is an acceleration,
not a force

– Multiply by mass (F = ma)

– Otherwise, heavy objects fall slower than light
objects

• Play around with g- if things are falling too slowly,
crank it up

Nin1 Initial Feedback
• Are your players warping through platforms?
• Try setting a maximum tick duration!

– If tickLen > maxLen:
do multiple ticks of length maxLen

Nin1 Initial Feedback
• Help! Objects are

sinking into each
other when they
collide!
– Remember to move

the objects away by
half the MTV (or by 1 –
mass ratio)

Nin1 Initial Feedback
• Help! Objects are sinking into

each other when I stack them!

– Run collision resolution
multiple times per physics
step until stabilization

– Make sure to cap the
number of checks per tick

Final Design
• Meeting with the TA staff to talk about your final

project
– Next week after lecture
– Email us engine ideas by this Friday

• You’ll be telling us:
– What engine features you’ll implement (per person)
– Whose engine(s) you’ll build off of
– How you will use version control

CS195u: 3D Game Engines
• Running next semester!

– 12p-1p Wednesday in 316

• Two (soft) prerequisites:
– Software engineering: 1971, 32, or 33
– Graphics: 123

• Topics include physics, world/level
representation, pathfinding over
navigation meshes

• cs.brown.edu/courses/csci195u/
• See the website for more details
• You can run the project demos in

/course/cs1972/demo

CS195u: 3D Game Engines
• cog
• sphere
• adrenaline
• roam
• dragonfly
• Administrator
• PolyhedroneDefense
• castle_defense
• mystic
• lifesimulator2017
• ampli

QUESTIONS?
Announcements

LECTURE 6

Ray Casting

What is raycasting?
• Determine the first

object that a ray hits
• A ray is like a ray of

light, has a source and
direction and goes on
forever

• Think of it as shooting a
laser in a particular
direction

Raycasting Uses
• When would we need

to raycast?
– Hitscan weapons

– Line of sight for AI

– Area of effect

The Ray

• A ray is a point (source) and a
direction

• Point on ray given by:

• r = p + td

• p is the source

• d is the direction

– This must be normalized!

• t is a scalar value (length)

Basics
• Raycasting boils down to

finding the intersection of a
ray and shapes

• Kind of like collision
detection all over again

• You want the point of
collision as well

Ray-Circle
• If the source is outside

• Project center onto ray

• Check if the projection is
positive and the projection
point is within the circle

Ray-Circle
• If the source is outside

• Project center onto ray

• Check if the projection is
positive and the projection
point is within the circle

• Point of intersection?

Ray-Circle

• If the source is outside

• Project center onto ray

• Check if the projection is
positive and the projection
point is within the circle

p + d (L - √ (r 2 - x 2))

Ray-Circle

• If the source is inside

• Project center onto ray

• Projection must be in the circle

• Projection can be negative

p + d (L + √ (r 2 - x 2))

Ray-Polygon/AAB
• A polygon/AAB is

composed of edges
• We can check for

intersection of ray by
checking for
intersection of all edges

• There is no shortcut for
AABs this time

Ray-Edge

● Edge is defined by two end

points, a and b
● We need some other

vectors:
● m is direction of the

segment (normalized)
● n is the perpendicular to

the segment (normalized)

Ray-Edge

● Firstly, determine if the segment

straddles the ray

● Use cross products

● We have support code for this

● (a - p) X d and (b - p) X d must be

of opposite sign

● If the product of the two cross

products is greater than 0, there

is no intersection

Ray-Edge

● Secondly, determine where
the two lines intersect

● Point of intersection
○ q = p + td

● Solve for t
● t must be nonnegative

Ray-Edge

● Because q - b lies on the segment

● (q - b) · n = 0

● So plugging in:

● (p + td - b) · n = 0

● td · n = (b - p) · n

● t = (b - p) · n

 d · n

Ray-Polygon
● Intersect the ray with all

the edges of the polygon
● Ray intersects polygon if it

intersects at least one
edge

● Keep track of the point
closest to the source
(lowest t value)

Putting it all together
Raycasting:

1. Intersect ray with every shape in the world
– For circles, use the circle-ray algorithm in the slides

– For polygons and AABs, intersect each edge and
use the closest

2. Keep track of closest intersection point from
the source as well as the corresponding shape

QUESTIONS?
Raycasting

LECTURE 6
Saving/Loading

Parsing Txt Files Can be Hard
• Must read 1 line at a time
• No easy lookups
• Poor formatting or

inconsistent data could be
anywhere!

Use XML!
• Java supports XML I/O!
• Can query the file for

elements by name, ID,
attribute, and more

• Information can be
organized into hierarchies

Writing XML
• XML looks like HTML
• XML has a very rigid structure
• Errors/typos will cause the parser to fail

Writing XML
• XML Declaration:

<?xml version="1.0" encoding="UTF-8" ?>

• Must be at the top of each XML file

Writing XML
• Construct tags to hold information
• Each opening tag must match a closing tag

<Tag> ← opening tag

</Tag> ← closing tag

Writing XML
• You can nest tags
• Must close tags in the reverse order that they

were opened

<OuterTag>

<InnerTag>

</InnerTag>

</OuterTag>

Writing XML
• Each pair of tags can hold an arbitrary

number of inner tags
• You can freely reuse tag names

•

<Tag>

<Tag></Tag>

<Tag></Tag>

</Tag>

Writing XML
• Tags can be arbitrarily deep (as long as each

one is closed)

<OutermostTag>

<MiddleTag>

<InnerTag>

<EvenMoreInnerTag>

...

Writing XML
• Can put text in between innermost tags
• Can use numbers, but they’re parsed as strings

<OuterTag>

<InnerTag>text, ints, whatever</InnerTag>

<AnotherTag>5</AnotherTag>

</OuterTag>

Writing XML
• Can add extra information to a tag (attributes)

<OuterTag name=“outer”>

<InnerTag id=”inner”>

</InnerTag>

</OuterTag>

Writing XML
• Tags can close themselves

<SelfClosingTag/>

<AnotherTag name=”tag2”/>

Writing XML
• Comments are held between <!-- and -->
• Comments are multiline
• Very useful for commenting out parts of the

file

<!-- I am a comment! -->

<RealTag></RealTag>

<!--CommentedTag></CommentedTag-->

Writing XML
• Each file must have exactly one pair of

outermost tags
– This doesn’t include the XML declaration at the

beginning

Writing XML
<?xml version="1.0" encoding="UTF-8" ?>

<Game>

<Map w=”5” h=”5”>0101000000110111000000101</Map>

<Object id=”player” x=”42” y=”17”>

<SpriteBehavior image=”player.png”/>

<CollisionBehavior shape=”AAB” w=”10” h=”25”/>

<!-- more behaviors -->

</Object>

<Object … >

<!-- more behaviors -->

</Object>

<!-- more objects -->

</Game>

Reading XML
import javax.xml.parsers.DocumentBuilderFactory

import javax.xml.parsers.DocumentBuilder

import org3.w3c.dom.Document

// Setup the parser

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder docBuilder = factory.newDocumentBuilder();

Document doc = docBuilder.parse(“<file_path>”);

doc.getDocumentElement().normalize();

Reading XML
Node node = doc.getDocumentElement();

System.out.println(node.getNodeName());

for(Node n : doc.getElementsByTagName(“Object”)) {

if(n.getNodeType() == Node.ELEMENT_NODE) {

Element e = (Element) n;

e.getAttribute(“e”);

e.getElementsByTagName(“SpriteBehavior”);

e.getChildNodes();

}

}

Useful Classes
• DocumentBuilderFactory

• DocumentBuilder

• Document (org.w3c.dom NOT javax/swing)

• Element

• Node & NodeList

Reading an XML
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder docBuilder = factory.newDocumentBuilder();

Document doc = docBuilder.parse(“<file_path>”);

doc.getDocumentElement().normalize();

NodeList nList = doc.getElementsByTagName("Player");

Element player = (Element) nList.item(0);

System.out.println(player.getAttribute(“Health”));

System.out.println(player.getChildNodes());

--Output:--

>>>”100”

>>>[Element named “Sword”]

Writing XML
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder docBuilder = factory.newDocumentBuilder();

Document doc = docBuilder.newDocument();

// Create elements, and attributes to them

Element player = doc.createElement(“Player”);

player.setAttribute(“Health”, “100”);

Element sword = doc.createElement(“Sword”);

// Add child elements to other elements, and top element to the doc

player.appendChild(sword);

doc.appendChild(player);

QUESTIONS?
Saving and Loading

You loaded the file… now what?
• Keep a reference of the available Behavior types you have

– Map<String, Class<? extends Behavior>>

• Keep a reference of the GameObjects in your level

– Map<String, GameObject>

• NodeList objList = doc.getElementsByTagName("object");

• Iterate over each entry in the list and translate it into a GameObject

Initializing Behaviors
• For each 'object' element:

– Make a new GameObject
– Get the behaviors

• NodeList bList = obj.getElementsByTagName("Behavior");

– Iterate over them; initialize each behavior using your map of
available behaviors

– Add the behaviors to your new GameObject

• It’s your engine; give each Behavior a special constructor or
initializer!

LECTURE 6

Tips for Nin II

Goal velocity
•

Constructing a world
• We have new support

code!
– CS1971LevelReader

– LevelData

• Use the properties of
LevelData to populate
your world

Constructing a world
• We have new support

code!
– CS1971LevelReader

– LevelData

• Use the properties of
LevelData to populate
your world

Constructing a world
• Keep a reference of the

available
classes/Behavior types
you have
• Map<String, Class<?>>

• Keep a reference of the
GameObjects in your level
– Map<String, GameObject>

Constructing a world
• Iterate over all the entities in your

level object and translate that into
actual GameObjects
• Use your Map<String, Class<?>>

to create them
• It’s your engine – make them all have

a special constructor or initializer!

• Iterate over all the connections in
your level
• From your Map<String, Entity>,

connect your Outputs and Inputs
objects together

Reflection and Friends
• Avoid Class.forName()

– What happens when code
is re-factored?

– Have to sync data and
code

– You may be tempted to
use this this week – don’t!

• (Also, cs1971 publisher
obfuscates demos,
breaking most reflection)

Connections, not Logic Gates
• Connections send

discrete events, not
electrical signals

• These events occur at
some exact point in
time; they don’t
become true

JAVA TIP OF THE WEEK
Tips for Nin II

Breaking is Awkward
• Let’s say we have

nested loops
• A break will only

escape the innermost
loop

• So we normally need
some dumb boolean
to keep track

// find the first occurrence of 0
int row, col;
boolean found = false;
for (row=0; row<rows; row++) {
 for (col=0; col<cols; col++) {
 if (data[row][col] == 0) {

 found = true;
 break;
 }
 }
 if (found) {
 break;
 }
}

Introducing Labeled Breaks
• Code blocks can be

labeled
• A break can be made

to escape to a certain
labeled block

• Can also use this
strategy with a
continue

// find the first occurrence of 0
int row, col;
search:
for (row=0; row<rows; row++) {
 for (col=0; col<cols; col++) {
 if (data[row][col] == 0) {
 break search;
 }
 }
}

Other “Fun” Stuff
• Arbitrary blocks of code

can be labeled

• Therefore you can have
an arbitrary break

• Whee! It’s like a goto!
– But don’t use it like one
– Can only jump within

the encapsulating
block

myLittleGoto: {
 // whatever code blah blah
 if (check) {
 break myLittleGoto;
 }

 // do some other stuff
 return;
}

// execution ends up here if
// check is true!

GAME DESIGN
Story

Advantages of Story
• Provides motivation for the player

• Players can take the identity of a
character

• Story can create a sense of immersion

Disadvantages of Story
• Story writing takes time and care, similar to

artwork
– Plots can become convoluted
– Plots can be bad

• Story requires heavy investment in visuals and
audio assets

• Storytelling can slow gameplay
• Replay value

– Why play the same game again?
– Why read the same book twice?

The real story is the player’s
• Many believe a designer’s goal is to write a

compelling story
– We know this is wrong!
– A mediocre story can sell if the player

becomes immersed in the experience

• Good characters and story can help with
immersion

Remember…
• We create the world

of the game. We bring
the player into that
experience. And they
fill it with their
emotions.

LET’S TALK STORIES!

A Rule of Thumb
• “There is no original story” – How to Read

Literature Like a Professor
– Many fantasy RPGs drew from their

pencil-paper ancestors (many of which drew
from J.R.R. Tolkein’s The Lord of the Rings)

• Many stories draw fundamentally from
religious roots as well

The Three Act Story
• All stories must have:
– The Beginning

– The Middle

– The End

• This is a massive oversimplification, but it’s
a good way to approach stories in games

The Beginning
• Many writers start by

creating a lush world
– This does not work in

games

• The story and game
starts the moment a
problem is presented
to our hero

Some beginnings:
• Limbo – You wake up in a forest…

• Skyrim – A dragon is giving you a second
lease on life, don’t waste it!

• Halo – Wake up, get to the bridge

• BioShock Infinite – Find Elizabeth

• Slender: The Eight Pages – Find 8 pages

What to include?
• The best beginnings include:

– Very immediate threats and
obstacles that will relate to
the more overarching threat
or obstacle that will define
the story

– Tools to overcome these
immediate threats and
obstacles

• These lend themselves well
to an environment where
your player can learn how to
play your game as well

The Middle
• Forms the bulk of the story
• This is where you introduce the more finely

grained details of the world
– If you wouldn’t mention it when describing the story in

one sentence, it probably goes here.
– Supporting characters

– Specific locations within the scope of your universe

• Relate the hero’s action to the overarching
background

The Middle

The End
• The conflict reaches some sort of resolution

– Does not mean the conflict is fixed/solved!

• The player should feel something and remember it
– Achievement

• Civilization
• Star Wars: Battlefront

– Victory
• Portal
• Street Fighter

– Shock
• Freedom Bridge
• http://www.kongregate.com/games/jordanmagnuson/freedom-bridge

– Loss/Sadness
• Halo: Reach

– This is by no means an exhaustive list

http://www.kongregate.com/games/jordanmagnuson/freedom-bridge

Who is our hero?
• The more a player

projects themselves into
the protagonist, the better
– This does not mean the

protagonist has to be like
the player

• Does not have to be the
entity that the player
controls
– Ex: Starcraft II’s Jim

Raynor, Sarah Kerrigan,
and Zeratul

Character Growth
• Characters are the first part of your game that the

player will grasp onto emotionally, so they need to
be dynamic or the players will detach

• In literature, characters grow through some sort of
internal/emotional change

• In games, characters grow by power-ups and
level-ups.
– This is not the same thing
– The take: It’s harder to develop characters in games.

• This leads to the problem of interactivity

Conflict
• Classical

classifications:
– Man against man
– Man against nature
– Man against self

• Other classifications
– Man against machine
– Man against fate
– Man against

supernatural
– Man against god

Antagonist…generally speaking
• Stories have some

sort of “enemy”

• Does not need to be a
single individual

• Basically whatever
creates the conflict or
whatever obstacle
exists

Know your audience!
• What will your game be rated?
• Based on the rating, what can you

incorporate into your game?
• Example: Movie and TV heavily regulate

the use of profanity
– How many bad words can you squeeze in to

maintain a PG-13 rating?

Cultural Gaps
• Visual novels are very

popular in Japan
– Some are similar to

dating simulations

– No market in the
United States

• Germany censors
extreme violence

Story writing is hard
• If you don’t think you’re good at it, don’t worry
• Here is an example process:

– What do you want your player to feel like?
• Explorer? Conqueror? Soldier? Underdog?

– What kind of universe does that game exist in?
• What is the setting? Does it all take place in one town? One continent?

One planet? One timeline?
• What are the rules of your world? Is there something supernatural about

it? What is the state of the world’s technology?

– What kind of protagonist will thrive in this world?
• What obstacles are they good at overcoming that makes the player want

to project themselves onto the protagonist?
• What obstacles are they bad at overcoming that makes them grow?

The 7 Basic Plots
1. Overcoming the monster (Shrek, Legend of Zelda)

– Protagonist sets out to defeat some evil force that threatens them or their homeland

2. Rags to riches (Cinderella, Fable 3)
– Poor protagonist experiences wealth, loses it all, and gains it back by growing as a

person

3. The quest (Lord of the Rings, Borderlands)
– Protagonist and companions set out for an important location or object

4. Voyage and return (Finding Nemo, Halo)
– Protagonist goes to a strange land, overcomes challenges, and returns with only the

experience

5. Comedy (Much Ado About Nothing, Saints Row 3)
– Light and humorous, triumph over adverse circumstance and a happy ending

6. Tragedy (Macbeth, Death Note, Spec Ops: The Line)
– Protagonist falls from grace and becomes a villain, whose death is a happy ending

7. Rebirth (Despicable Me, Red Dead Redemption)
– An important event causes the protagonist to change their ways and become a better

person

There is no original story
• Tropes and Clichés work!
– People relate easily to things they have seen

• Alluding to (but not using directly) other
experiences that you know elicit a certain emotion
is one of the best ways to get the player to feel a
certain way

– Use in moderation, don’t make it the core of
your story
• Works well as a setting

Story writing is hard
• Take away:
– Your player approaches your story from the

aesthetic, the overall “feel”

– You approach your story from the details, the
rules that govern your universe

– You have to start with the overall effect you
want to have on the player, and work
backwards

Things to See
• The Ultimate Guide to Video Game Writing

and Design
– Flint Dille and John Zuur Platten

• Game Design (2004)
– Bob Bates

– Advice on genre specific design

QUESTIONS?
Story in Games

NIN I PLAYTESTING
Let’s do it!

