
LECTURE 2

Announcements

Alchemy 1 is done!
• Initial feedback for Alchemy 1

– Viewports are important – fix them now!
– Panning/moving should be done on tick
– Organize your projects well! If you’re

unsure about your design, talk to a TA

– Keep our support code in a separate
folder. Helps us grade.

• Next week your game will really start
to take form!

Don’t Forget Tic
• Retries should all be

returned
– Please send us an email

after you handin any retry

• A few more tips for the
future…
– Watch out for edge cases

– Plan out game/engine
separation before you start

QUESTIONS?
Announcements

LECTURE 2

Graphics II

WHAT’S A SPRITE?
Graphics II

THIS IS A SPRITE

Sprites as Bitmap Data
• “Raster” graphics
• Pre-constructed

images dynamically
placed on the screen

• Designed to represent
one type of object in a
game
– Objects may reference

different sprites
depending on state

Sprites as Animation Data
• Sprites as a filmstrip

• Designed to represent
frame-by-frame
snapshots of a single
game object

• Standardized padding,
size, and spacing allows
for easy drawing

 Typical Sprite File Format
• Multiple sprites per file
• Additional information often

(but not always) in config files:
– Padding
– Size
– Locations of a particular

object’s sprites

Formatting “Standards”

Keep In Mind
• Bounding box info and

sprite info should be
separate

• But keep in mind that
they will need to
coordinate with each
other

IMPLEMENTING SPRITES
Graphics II

Sprite Loading
• You should only load a sprite sheet

image once
– Each behavior using the sprite

maintains a reference to the sprite
sheet

• Consider making a Resource class
which loads in sprite sheets
– Load in image
– Handling image index for different

sprites
– Generalizable to other assets like

maps, sounds, text, etc…

Drawing Sprites
• About g.drawImage(...)
• Rare exception to the no JavaFX rule:

– You’re going to need to make a JavaFX image.

– Pass the RELATIVE file path

• Your drawing routine should handle different padding and
formats

Relative Paths
• For All Resource Files:

– Don’t use absolute paths

– “/gpfs/main/home/<login>/course/cs1971/ta
c/resources/spritesheet.png” is bad

– “resources/spritesheet.png” is good

– Absolute filepaths won’t work when we/your
classmates try to test your game

Drawing Sprites
• Draw rectangular chunks

from sprite sheet to the
canvas

• Don’t cache sub images
– It isn’t worth the

space/time tradeoff
• Remember to draw from

your single sprite sheet
reference

SpriteBehavior
• Has a reference to sprite sheet resource

• Should implement draw(GraphicsContext g)

• Once it has a GraphicsContext object, it can
draw itself

TransformBehavior
• Where should the SpriteBehavior draw the

image?

• How big should the image be?

• TransformBehavior- stores a position and size

• The TransformBehavior is special

– All game objects should have one, separate from
their behavior list

QUESTIONS?
Graphics II

LECTURE 2
Collision Detection I

MOTIVATION
Collision Detection I

Collisions have consequences
• Collision detection is

central to the vast
majority off games

• They’re very important

What do we want to collide?
• Points
• Circles
• Axis-Aligned Boxes
• Convex polygons

– Covered soonTM

• Other shapes
– Not covered

P

C
r

y

x
min

max

P
1

P
2

P
3

P
4

P
5

w

hdim = (w,h)

DETECTION ALGORITHMS
Collision Detection I

C
r

d

Point-Circle

P C
r Pd

• Check if the distance between the point
and the center is less than or equal to the
radius

• ||P - C||2 ≤ r2

Circle-Circle

C
1 r

1

d
C

2
r

2

C
1 r

1

C
2

r
2

d

• Check if the distance between the two
centers is less than or equal to the sum of
the radii

• ||C
1
 - C

2
||2 ≤ (r

1
 + r

2
)2

• Check if the point is within range on each
axis

• min
x
 ≤ p

x
 ≤ max

x
 AND min

y
 ≤ p

y
 ≤ max

y

Point-AAB

y

x

max

P

y

x
min

max

P

min

Circle-AAB
• Check if closest point to circle on AAB is in circle

– Closest point: clamp C.x, C.y to [min.x, max.x], [min.y, max.y]

– Then just do point-circle collision

C
r

max

min P

dC
r

max

Pmin dP=C
r

max

min

d=0

• Ensure overlap on each axis

• Project each box onto x and y axes

• Find all four Intervals, test for overlaps

AAB-AAB

Projection
• Imagine a light source

with parallel rays

• Shape is between
light source and axis

• “Shadow” cast on axis
is shape’s projection
onto that axis

Creating Projections
• Find the axis you want to project onto

– This should be a normalized vector (length 1)
– Vec2d has a normalize method

• x axis = Vec2d(1, 0)
• y axis = Vec2d(0, 1)

Creating Projections
• To project a point, take its dot product with the

projection axis
– double p = point.dot(axis)
– Store p for later

• Vec2d has a dot product method

Creating Projections
• To project an AAB onto the x axis:

– Project the top left and bottom right
points onto the x axis

– Store the two doubles in an Interval
– The space between them on the x axis

is the projection (shadow) of the AAB
on the x axis y

x

(1, 3)

(4, 5)

1 4

Projections ⇒ Collisions
• For each axis, check if the corresponding
Intervals overlap
– There should be two Intervals for each axis

• Intervals A and B overlap if and only if:
– A min ≤ B max AND B min ≤ A max

• If both axes overlap, the shapes are colliding

Interval Class
• Stores two projections

public final class Interval {

private double min;

private double max;

public bool overlap (Interval other)

}

COLLISION BEHAVIOR
Collision Detection I

Shapes
• AAB and Circle classes inherit from the

same abstract class
– Shape attributes

– Implement collision checks
• Point collisions are only for the mouse; no separate

class needed

Collision Behavior
• Contains collision information for a game

object

• Holds the specific Shape for that
GameObject

Collision System
• Keeps track of all game objects that can

collide

• Loops through all pairs of registered
objects

• Checks if each pair is colliding

• If there is a collision, both are notified- only
go through each pair once

Expanded Contract
public void tick(long nanosSinceLastTick);

public void draw(Graphics2D g);

public void collide(GameObject o);

QUESTIONS?
Collision Detection I

Collision Debugger
• Easy way to test

collisions

• Will give you stencil
code

• You fill in the math

LECTURE 2

Tips for Alchemy 2

Removing Units
• Beware the
ConcurrentModification
Exception!

• Consider a removal queue

– This can be generalized to
multiple phases of ticks

Sprites
• You’ll need to have sprites

in your game to make it
pretty!

• Lots of sprites on the
internet

• Stealing IP is fun and easy!
– We do it every lecture
– Be sure to call it fair use

JAVA TIP OF THE WEEK
Tips for Alchemy II

Double Dispatch
• If you have a Circle and an AAB but only know that they’re

Shapes, how do you determine which method to call?

void testCollide() {
Shape s = new Circle();
Shape s2 = new AAB();
s.collides(s2);

}

interface Shape {
collides(Circle c);
collides(AAB aab);
collides(Shape o);

}

boolean collides(Shape o) {
if (o instanceof Circle) {

return collides((Circle) o);
} else if (o instanceof AAB) {

return collides((AAB) o);
} else {

throw new IllegalArgumentException();
}

}

Double Dispatch
interface Shape {

collides(Shape o);
collidesCircle(Circle c);
collidesAAB(AAB aab);

}

public class Circle implements Shape {
collides(Shape o) {

return o.collidesCircle(this);
}
collidesCircle(Circle c) { /*code*/ }
collidesAAB(AAB aab) { /*code*/ }

}

public class AAB implements Shape {
collides(Shape o) {

return o.collidesAAB(this);
}
collidesCircle(Circle c) { /*code*/ }
collidesAAB(AAB aab) { /*code*/ }

}

Anonymous Methods
• Essentially an in-line

class/interface

• All anonymous
methods are inner
classes
– And therefore have a

reference to the
instance that creates
them

interface KeyHandler {
public void onKeyPressed(KeyEvent e);

}

void addKeyHandler(KeyHandler h) {
/*code*/

}

void init() {
obj.addKeyHandler(e -> {

/*code*/

});

}

QUESTIONS?
Tips for Alc II

GAME DESIGN 1
Intro to Game Design

What is a game designer?
• A game designer

creates the
experience and the
“feel,” and is not just a
programmer

• Games are a delivery
system for your ideas

Compared to other media
• Designers of movies, books, and plays are

creating a linear experience

• Interactivity is the defining feature of video
games as a medium of entertainment

MDA Framework

Where to begin?
• Approach from the player’s perspective

– What aesthetics do you want your game to have?
– What do you want your players to feel?

• Create a basic idea that encapsulates those
aesthetics

• Come up with dynamics that evoke the aesthetics
• First and foremost: know your audience!

– Sunlab users? Competitive MOBA veterans?
Kids?

– Kids in the SunLab playing competitive MOBAs?

Further References
• Extra Credits: Playing Like a Designer

– https://www.youtube.com/watch?v=_HmtmoGwpZc

– https://www.youtube.com/watch?v=QKEzMz6FcXs

• MDA: A Formal Approach to Game Design
– http://www.cs.northwestern.edu/~hunicke/MDA.pdf

Bartle’s Taxonomy of Player Types

Further References
• Extra Credits: Bartle’s Taxonomy

– https://www.youtube.com/watch?v=yxpW2ltDNow

• Gamasutra (articles and news about game dev)
– http://www.gamasutra.com

How to become a better designer?

• At Brown…
– Make games, play games, come to BRGD

• Play lots of games!

ALCHEMY 1 PLAYTESTING
YAY!

