
Module 3
Procedural Generation
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Design Considerations

● We use procedural generation to keep games fresh for the end user
● Letting the computer make things is great, but if we give it too much power, 

we can end up on the bad sides of an extreme
● Too random, and the user will become confused or the generated content will 

be nonsensical
● Too tight of restrictions, and the patterns become too obvious to spot
● We want to land in that sweet spot of randomness where the user is having a 

new experience, but in a way that feels familiar and natural
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How do we hit the sweet spot?

● Play areas: Where players spend their time
● Connectors: the links between areas. Players spend less time here
● How do we randomly generate fun play areas?
● The overwhelming paradigm is to hand make play areas

○ This lets us as developers control how the space operates, and allows the player to recognize 
familiar patterns

● Where do we use the randomness then?
○ Placement of obstacles/benefits in play areas
○ Terrain, look, feel of play areas
○ What kinds of obstacles/benefits are in play areas

● The bottom line: making new things is hard to do procedurally. It usually better 
to focus on varying things using some heuristic
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Heuristics: Noise
Procedural Generation
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What is Noise?

● Random Values
○ A roll of a dice
○ Math.random();
○ Random number from 1 to 10

● Typically quite jagged
● Not very useful on its own
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White Noise

// returns a pseudorandom noise value for a given position 

float noise(Vec2i vec) { 
Random r = new Random(); 
r.setSeed(vec.hashCode()); 
return r.nextFloat();

}
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VALUE NOISE
Procedural Generation
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Value Noise

● Smooth white noise by taking the 
average over neighbors

○ essentially blurring
● Turns white noise into something 

useful.
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Helper: Grids on Grids

In order to generate noise, 

we often layer a grid on top of our 

existing coordinate system 

like so
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Value Noise

// returns a weighted average of the 9 points around the Vec2i v float 
valueNoise(Vec2i vec){  // In this example, we are sampling with a grid size of 1

// four corners, each multiplied by 1/16 
corners = ( noise(vec.x - 1, vec.y - 1) + noise(vec.x + 1, vec.y - 1) 

+ noise(vec.x - 1, vec.y + 1) + noise(vec.x + 1, vec.y + 1) ) / 16;
// four sides, each multiplied by 1/8
sides = ( noise(vec.x - 1, vec.y) + noise(vec.x + 1, vec.y) 

+ noise(vec.x, vec.y - 1) + noise(vec.x, vec.y + 1) ) / 8;
// center, multiplied by 1/4 
center = noise(vec.x, vec.y) / 4;
return center + sides + corners;

}
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INTERPOLATION
Procedural Generation
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Interpolation

● Most interpolation functions take three arguments
○ A and B the values to interpolate between
○ t, a value between 0 and 1

● When t == 0 the function returns A
● When t == 1 the function returns B
● When 0 < t < 1 the function returns something between A and B

Short python script to see interpolation plots on following slides: Interpolation.py
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https://drive.google.com/file/d/1UcN_OK7vy95cHqa0vUSgAxjxdcDeKUjt/view?usp=sharing


Linear Interpolation

● f = a(1-t) + bt
● Fast and jagged
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Cosine Interpolation
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● t’ = (1 - cos(t * pi)) / 2
● f = a(1-t) + bt
● Slower but much smoother



Cubic Interpolation
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● t’ = 3t2 - 2t3

● f = a(1-t) + bt
● Similar to cosine



Perlin Interpolation
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● t’ = 6t5 - 15t4 + 10t3

● f = a(1-t) + bt
● Slightly slower than cubic
● Super smooth



Interpolating Coordinates

● We want to be able to interpolate 
any point in the xy-plane

● From the grid of noise values find 
the square containing the point 
(x,y)

● Interpolate along opposite edges of 
the square and then interpolate 
between edges to get the value at 
the point.

18

x0,y0 x1,y0

x0,y1
x1,y1

x,y



Interpolating Coordinates

// returns the noise interpolated from the four nearest vertices 
float interpolatedNoise(Vec2f  vec){

Vec2i topLeft = Vec2i ((int) vec.x, (int) vec.y);
Vec2i topRight = Vec2i ((int) vec.x + 1, (int) vec.y);
Vec2i botLeft = Vec2i ((int) vec.x, (int) vec.y + 1);
Vec2i botRight = Vec2i (int) vec.x + 1, (int) vec.y + 1);
float dx = vec.x – ((int) vec.x); 
float dy = vec.y – ((int) vec.y);
float topNoise = interpolate(valueNoise(topLeft), valueNoise(topRight), dx);
float botNoise = interpolate(valueNoise(botLeft), valueNoise(botRight), dx);
return interpolate(topNoise, botNoise, dy);

} 
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PERLIN NOISE
Procedural Generation
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Perlin Noise

Named for its creator, Ken Perlin

It’s a great way to make smooth, natural noise 
which can be used to create terrain, cloud patterns, 
wood grain, and more!

You will probably end up using it just for terrain
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Recap: Value Noise

● Smooth white noise by taking an 
average of neighbors

● Turns white noise into something 
useful
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Perlin Noise

● Assign each vertex a 
pseudorandom gradient
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Vec2f gradient(Vec2i  vec){
float theta = noise(vec) * 6.2832;
return new Vec2f(cos(theta), sin(theta));

} 



Perlin Noise

● For a point, p=(x,y), we find the 
noise values of each vertex of the 
surrounding square for that point.

● The Noise value of each vertex is 
the dot product of its gradient and 
the vector from that vertex to the 
point p

● What do we do with noise value… 
Interpolate!
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Perlin Noise

● Interpolate between the noise 
values of the four vertices (just like 
we did with value noise)

● Using linear interpolation is not 
recommended, it will leave hard 
edges in your noise. The actual 
Perlin algorithm uses a special fade 
function to get the interpolation just 
right.
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ADDING NOISE
Procedural Generation
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Adding Noise Functions

27



Adding Noise Functions

28



Actually Using Noise

● Sometimes it can hard to envision what using this noise might look like
● Two basic approaches:
● Create a random structure, then clean it up using rules

○ Noise is great for creating a random structure
● Start with something handmade, and add randomness to it
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Extras

● We haven’t really talked about how noise layering works
○ Persistence, octaves, ...
○ Here is a website that talks about some of those things:

https://pvigier.github.io/2018/06/13/perlin-noise-numpy.html
● Perlin Noise implementation reference:

http://adrianb.io/2014/08/09/perlinnoise.html 
● Some cool island generation with perlin noise: 

https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic
-archipelagos-b59f004d8401
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