Module 3

Procedural Generation

e

Design Considerations

e \We use procedural generation to keep games fresh for the end user

e Letting the computer make things is great, but if we give it too much power,
we can end up on the bad sides of an extreme

e Too random, and the user will become confused or the generated content will
be nonsensical

e Too tight of restrictions, and the patterns become too obvious to spot

e We want to land in that sweet spot of randomness where the user is having a
new experience, but in a way that feels familiar and natural

How do we hit the sweet spot?

Play areas: Where players spend their time
Connectors: the links between areas. Players spend less time here
How do we randomly generate fun play areas?

The overwhelming paradigm is to hand make play areas
o This lets us as developers control how the space operates, and allows the player to recognize
familiar patterns

e \Where do we use the randomness then?
o Placement of obstacles/benefits in play areas
o Terrain, look, feel of play areas
o What kinds of obstacles/benefits are in play areas

e The bottom line: making new things is hard to do procedurally. It usually better
to focus on varying things using some heuristic

B

Procedural Generation

Heuristics: Noise

What is Noise?

e Random Values

o Aroll of a dice
o Math.random();
o Random number from 1 to 10

e Typically quite jagged
e Not very useful on its own

o
i
o
{ =
5]
e
7]
o
£
5
=

15
Dice Roll

White Noise

I/ returns a pseudorandom noise value for a given position

float noise(Vec2i vec) {
Random r = new Random();
r.setSeed(vec.hashCode());
return r.nextFloat();

Procedural Gen

VALUE NOISE

Value Noise

e Smooth white noise by taking the

average over neighbors
o essentially blurring

e Turns white noise into something
useful.

Helper: Grids on Grids

In order to generate noise,
we often layer a grid on top of our
existing coordinate system

like so

Helper: Grids on Grids

In order to generate noise,
we often layer a grid on top of our
existing coordinate system

like so

Value Noise

// returns a weighted average of the 9 points around the Vec2i v float
valueNoise(Vec2i vec){ // In this example, we are sampling with a grid size of
/[four corners, each multiplied by 1/16
corners = (noise(vec.x - ,vec.y-)+ noise(vec.x+ ,vec.y-)
+ noise(vec.x - ,vec.y +)+ noise(vec.x+ ,vecy+))/16;
I/ four sides, each multiplied by 1/8
sides = (noise(vec.x - , vec.y) + noise(vec.x + , vec.y)
+ noise(vec.x, vec.y -) + noise(vec.x,vec.y +))/8;
// center, multiplied by 1/4
center = noise(vec.x, vec.y) / 4;
return center + sides + corners;

Procedural Gen

INTERPOLATION

Interpolation

e Most interpolation functions take three arguments

o A and B the values to interpolate between
o t,avalue between 0 and 1

e When t == 0 the function returns A
e \When t == 1 the function returns B
e When 0 <1 <1 the function returns something between A and B

Short python script to see interpolation plots on following slides: Interpolation.py

B

https://drive.google.com/file/d/1UcN_OK7vy95cHqa0vUSgAxjxdcDeKUjt/view?usp=sharing

Linear Interpolation

o f=a(1-t) + bt
e Fast and jagged

Cosine Interpolation

o t'=(1-cos(t*pi))/2
o f=a(1-t)+ bt
e Slower but much smoother

Cubic Interpolation

o t =23t2-2t
o f=a(1-t)+ bt
e Similar to cosine

Perlin Interpolation

t' = 6t°- 15t* + 10t°
f=a(1-t) + bt

Slightly slower than cubic
Super smooth

Interpolating Coordinates

We want to be able to interpolate
any point in the xy-plane

From the grid of noise values find
the square containing the point
(X,y)

Interpolate along opposite edges of
the square and then interpolate
between edges to get the value at
the point.

X,y

Interpolating Coordinates

/[returns the noise interpolated from the four nearest vertices

float interpolatedNoise(vec){
topLeft = ((int) vec.x, (int) vec.y);
topRight = ((int) vec.x + 1, (int) vec.y);
botlLeft = ((int) vec.x, (int) vec.y + 1);
botRight = (int) vec.x + 1, (int) vec.y + 1);

float dx = vec.x — ((int) vec.x);

float dy = vec.y — ((int) vec.y);
float topNoise = interpolate(valueNoise(topLeft), valueNoise(topRight), dx);

float botNoise = interpolate(valueNoise(botLeft), valueNoise(botRight), dx);
return interpolate(topNoise, botNoise, dy);

Procedural Gen

PERLIN NOISE

Perlin Noise

Named for its creator, Ken Perlin

It's a great way to make smooth, natural noise
which can be used to create terrain, cloud patterns,

wood grain, and more!
el

s
g 1L Y
Slang ol

S0P A

= Bre
£

O LI,
Ul) REERRG

You will probably end up using it just for terrain

Recap: Value Noise

e Smooth white noise by taking an r
average of neighbors

e Turns white noise into something i
useful

Perlin Noise

e Assign each vertex a

pseudorandom gradient .,‘---uim-
O P sl R Y O W e 5

gradient(vec)
float theta = noise(vec) * 6.2832;
return new (cos(theta), sin(theta));

Perlin Noise

For a point, p=(x,y), we find the
noise values of each vertex of the
surrounding square for that point.
The Noise value of each vertex is
the dot product of its gradient and
the vector from that vertex to the
point p

What do we do with noise value...

Interpolate!

(x,v)-(xol,vl) ../(x,v)l-(xl,vl)

(x,¥)-(x0,y0)

(XJY)'(XIJYO)

Perlin Noise

e Interpolate between the noise
values of the four vertices (just like e
we did with value noise) i s pF
e Using linear interpolation is not
recommended, it will leave hard —» .
edges in your noise. The actual i -
Perlin algorithm uses a special fade "
function to get the interpolation just
right.

i = 3
p A:a.“ 4

Procedural Gen

ADDING NOISE

Adding Noise Functions

Adding Noise Functions

© www.scratchapixel.com

Sl WP . W iBcecanlilil

frequency = 1,scale=1+

L T e * kel IO i PO

frequency = 2, scale = 0.5 +

NN o N e N e T N N /O
frequency = 4, scale = 0.25 +

Ea NV e W e e e P e S i Ve VSt W e S N

frequency = 8, scale = 0.125 +

frequency = 16, scale = 0.0625

Actually Using Noise

e Sometimes it can hard to envision what using this noise might look like
e Two basic approaches:

e Create a random structure, then clean it up using rules
o Noise is great for creating a random structure

e Start with something handmade, and add randomness to it

Extras

e \We haven't really talked about how noise layering works

o Persistence, octaves, ...
o Here is a website that talks about some of those things:
https://pvigier.qithub.io/2018/06/13/perlin-noise-numpy.html

e Perlin Noise implementation reference:
http://adrianb.io/2014/08/09/perlinnoise.html

e Some cool island generation with perlin noise:
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic
-archipelagos-b59f004d8401

https://pvigier.github.io/2018/06/13/perlin-noise-numpy.html
http://adrianb.io/2014/08/09/perlinnoise.html
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401

