
Module 3
Procedural Generation

1

Design Considerations

● We use procedural generation to keep games fresh for the end user
● Letting the computer make things is great, but if we give it too much power,

we can end up on the bad sides of an extreme
● Too random, and the user will become confused or the generated content will

be nonsensical
● Too tight of restrictions, and the patterns become too obvious to spot
● We want to land in that sweet spot of randomness where the user is having a

new experience, but in a way that feels familiar and natural

2

How do we hit the sweet spot?

● Play areas: Where players spend their time
● Connectors: the links between areas. Players spend less time here
● How do we randomly generate fun play areas?
● The overwhelming paradigm is to hand make play areas

○ This lets us as developers control how the space operates, and allows the player to recognize
familiar patterns

● Where do we use the randomness then?
○ Placement of obstacles/benefits in play areas
○ Terrain, look, feel of play areas
○ What kinds of obstacles/benefits are in play areas

● The bottom line: making new things is hard to do procedurally. It usually better
to focus on varying things using some heuristic

3

Heuristics: Noise
Procedural Generation

4

What is Noise?

● Random Values
○ A roll of a dice
○ Math.random();
○ Random number from 1 to 10

● Typically quite jagged
● Not very useful on its own

5

White Noise

// returns a pseudorandom noise value for a given position

float noise(Vec2i vec) {
Random r = new Random();
r.setSeed(vec.hashCode());
return r.nextFloat();

}

6

VALUE NOISE
Procedural Generation

7

Value Noise

● Smooth white noise by taking the
average over neighbors

○ essentially blurring
● Turns white noise into something

useful.

8

Helper: Grids on Grids

In order to generate noise,

we often layer a grid on top of our

existing coordinate system

like so

9

Helper: Grids on Grids

In order to generate noise,

we often layer a grid on top of our

existing coordinate system

like so

10

Value Noise

// returns a weighted average of the 9 points around the Vec2i v float
valueNoise(Vec2i vec){ // In this example, we are sampling with a grid size of 1

// four corners, each multiplied by 1/16
corners = (noise(vec.x - 1, vec.y - 1) + noise(vec.x + 1, vec.y - 1)

+ noise(vec.x - 1, vec.y + 1) + noise(vec.x + 1, vec.y + 1)) / 16;
// four sides, each multiplied by 1/8
sides = (noise(vec.x - 1, vec.y) + noise(vec.x + 1, vec.y)

+ noise(vec.x, vec.y - 1) + noise(vec.x, vec.y + 1)) / 8;
// center, multiplied by 1/4
center = noise(vec.x, vec.y) / 4;
return center + sides + corners;

}

11

INTERPOLATION
Procedural Generation

12

Interpolation

● Most interpolation functions take three arguments
○ A and B the values to interpolate between
○ t, a value between 0 and 1

● When t == 0 the function returns A
● When t == 1 the function returns B
● When 0 < t < 1 the function returns something between A and B

Short python script to see interpolation plots on following slides: Interpolation.py

13

https://drive.google.com/file/d/1UcN_OK7vy95cHqa0vUSgAxjxdcDeKUjt/view?usp=sharing

Linear Interpolation

● f = a(1-t) + bt
● Fast and jagged

14

Cosine Interpolation

15

● t’ = (1 - cos(t * pi)) / 2
● f = a(1-t) + bt
● Slower but much smoother

Cubic Interpolation

16

● t’ = 3t2 - 2t3

● f = a(1-t) + bt
● Similar to cosine

Perlin Interpolation

17

● t’ = 6t5 - 15t4 + 10t3

● f = a(1-t) + bt
● Slightly slower than cubic
● Super smooth

Interpolating Coordinates

● We want to be able to interpolate
any point in the xy-plane

● From the grid of noise values find
the square containing the point
(x,y)

● Interpolate along opposite edges of
the square and then interpolate
between edges to get the value at
the point.

18

x0,y0 x1,y0

x0,y1
x1,y1

x,y

Interpolating Coordinates

// returns the noise interpolated from the four nearest vertices
float interpolatedNoise(Vec2f vec){

Vec2i topLeft = Vec2i ((int) vec.x, (int) vec.y);
Vec2i topRight = Vec2i ((int) vec.x + 1, (int) vec.y);
Vec2i botLeft = Vec2i ((int) vec.x, (int) vec.y + 1);
Vec2i botRight = Vec2i (int) vec.x + 1, (int) vec.y + 1);
float dx = vec.x – ((int) vec.x);
float dy = vec.y – ((int) vec.y);
float topNoise = interpolate(valueNoise(topLeft), valueNoise(topRight), dx);
float botNoise = interpolate(valueNoise(botLeft), valueNoise(botRight), dx);
return interpolate(topNoise, botNoise, dy);

}

19

PERLIN NOISE
Procedural Generation

20

Perlin Noise

Named for its creator, Ken Perlin

It’s a great way to make smooth, natural noise
which can be used to create terrain, cloud patterns,
wood grain, and more!

You will probably end up using it just for terrain
21

Recap: Value Noise

● Smooth white noise by taking an
average of neighbors

● Turns white noise into something
useful

22

Perlin Noise

● Assign each vertex a
pseudorandom gradient

23

Vec2f gradient(Vec2i vec){
float theta = noise(vec) * 6.2832;
return new Vec2f(cos(theta), sin(theta));

}

Perlin Noise

● For a point, p=(x,y), we find the
noise values of each vertex of the
surrounding square for that point.

● The Noise value of each vertex is
the dot product of its gradient and
the vector from that vertex to the
point p

● What do we do with noise value…
Interpolate!

24

Perlin Noise

● Interpolate between the noise
values of the four vertices (just like
we did with value noise)

● Using linear interpolation is not
recommended, it will leave hard
edges in your noise. The actual
Perlin algorithm uses a special fade
function to get the interpolation just
right.

25

ADDING NOISE
Procedural Generation

26

Adding Noise Functions

27

Adding Noise Functions

28

Actually Using Noise

● Sometimes it can hard to envision what using this noise might look like
● Two basic approaches:
● Create a random structure, then clean it up using rules

○ Noise is great for creating a random structure
● Start with something handmade, and add randomness to it

29

Extras

● We haven’t really talked about how noise layering works
○ Persistence, octaves, ...
○ Here is a website that talks about some of those things:

https://pvigier.github.io/2018/06/13/perlin-noise-numpy.html
● Perlin Noise implementation reference:

http://adrianb.io/2014/08/09/perlinnoise.html
● Some cool island generation with perlin noise:

https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic
-archipelagos-b59f004d8401

30

https://pvigier.github.io/2018/06/13/perlin-noise-numpy.html
http://adrianb.io/2014/08/09/perlinnoise.html
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401
https://medium.com/@yvanscher/playing-with-perlin-noise-generating-realistic-archipelagos-b59f004d8401

