/6ompiler-
supported
ILP

/

STOP DOING Optimization

® Code was never meant to be optimized

e YEARS OF OPTIMIZING yet NO REAL-WORLD USE FOUND
for BETTER PERFORMANCE

® Wanted to get better performance anyways? We had a tool for
that, it was called "Upgrading hardware"

® "Yes please give me a low memory footprint. Please give me
5% CPU utilization" - Statements dreamed up by the utterly

Deranged

Look at what Low-level programmers have been demanding your Respect
for all this time, with all the RAM & CPU cores we built for them

(This is REAL optimizations, done by REAL programeers):

2 = number *
- numbor;
“{ long *) &y;
1>»»1);
float * A Y
threghalfs (x2:®.y =y

222022222222277

"l spent the entire week reducing the system latency by 2ms"

They have played us for absolute fools

L L L] L 4 4

Macxo-op fusion

source

NN
A\

Instruction Decode / Macro-
Fusion Presented

Read five Instructions from Instruction
Queue

Send fusable pair to single decoder
Single uop represents two instructions

Example

for (i=0; i<100000; i++)

{ (e 1]

Intel® Software College

Instruction Queue

add ecx, 1| 1

[mem1], ecx

edx, [mem1]

https://en.wikichip.org/wiki/File:core_mopf_on.png

Intel Coxe 17
(H&P fig.
3.41)

n

Pre-decode??
Complex macro-op
decoder??

Loop stream detect??

A4 4

& 4

NN)

N)

Firestoxrm (Apple M1)

Source (NOTE: reverse-engineered: might not be fully accurate)

I L1 Instruction Cache, 192KiB I

| Branch Execution |<——| Decode
8 popsl
I Map and Rename
8 uopsl 8 popsl 8 uopsl 8 popsl
I Dispatch Queue (12 Entry) Dispatch Queue (12 Entry) | | Dispatch Queue (10 Entry) | I Dispatch Queue (12 Entry)
1 pop 1 pop L 1 pop‘ 1 pop 1 uop‘ 1 pop 4 pops 1 pop 1 pop 1 pop 1 pop
A A2 v
aEntry) || @6Entry) || (6Entry) || (12Entry) || @8Entry) || (28 Entry) Scheduler (48 Entry) @6Entry) || @6Entry) || @6Entry) || @6Entry)
ALU ALU ALU ALU ALU ALU FP/SIMD FP/SIMD FP/SIMD FP/SIMD
FLAGS FLAGS FLAGS MuL MUL FCSEL FCSEL
8/BLADR | | B/BLADR DIV MADD ——) EORD) SORD TO INT O INT
MOV NzCV MOV NzCV BFM AMX AMX DIV/RECP
MRS PTRAUTH CRC SQRT/SHA
BR/BLR FROM FP FROM FP JCVTZS

| STQ (60 Entry) ”

LRQ (130 Entry), LEQ (?)

L1 Data Cache, 128KiB 8-Way
(128 banks of 2B each)

I Coalesced Retire Queue (~334 Entry) I

Rename Retire Queue (~623 Entry)

https://dougallj.github.io/applecpu/firestorm.html

What performance metrics (beyond CPI)
might become important in a speculative
CPU?

H&P fig.

% of executed
uops that were
not committed

3.42

Work wasted/total work

40% A

35% -

30% A

25% A

20% A

15% -

10% -

5% A

What effects would speculative execution have
on the memory system?
(Hint: think protected access and/or caches)

Remember this question?

2 92 9

What else could we parallelize here?

for (int i = 0; i < 100; i++) $
A[i] = A[i] + B[i];
$

A simplexr example

addi tO, x0, 0 // tO/1 = 0 for (int 1 = 0; i < 100; i++) 3
addi t1, x0, 1600 // t1 = 100 A[i] = A[i] + c;
loop: bge tO, t1, end ¢

s1li t2, 10, 2 // t2 = t0/i * 4
add t2, a0, t2 // t2 = A + t2

lw t3, 0(t2) // t3 = A[i]

add t3, t3, al // t3 = A[i] + c
sw t3, 0(t2) // A[i] = A[i] +c
addi to, t0, 1 // tO/i++

J loop

end: nop

C;

Reduce # of computations in loop

addi tO, x0, 0 // tO/1 =0

addi tO, x0, 0 // tO0/1 = 0 addi t1, x0, 100 // t1 = 100

addi t1, x0, 100 // t1 = 100 addi t2, a0, 0 // t2 = A

loop: bge tO, t1, end loop: bge tO, t1, end

slli t2, t0, 2 // t2 = t0/1i x 4 1w t3, 0(t2) // t3 = A[i]

add t2, a0, t2 // t2 = A + t2 add t3, t3, al // t3 = A[i] + c
lw t3, 0(t2) // t3 = A[i] sw t3, 0(t2) // A[i] = A[i] +c
add t3, t3, a1l // t3 = A[i] + c addi t2, t2, 4 // advance pointer
sw t3, 0(t2) // A[i] = A[i] +c addi to, t0, 1 [/ tO/i++

addi to, t0, 1 // tO/i++ 7 loop

7 loop end: nop

end: nop

Get rid of i

addi tO, x0, 0 // tO/1 = 0

addi t1, x0, 1600 // t1 = 100 addi t2, a0, 0 // t2 = A

addi t2, a0, 0 // t2 = A addi t1, a0, 400 // stop before A[1@0]\
loop: bge t0, t1, end loop: bge t2, t1, end

1w t3, 0(t2) // t3 = A[i] lw t3, 0(t2) // t3 = A[i]

add t3, t3, a1 // t3 = A[i] + ¢ add t3, t3, a1 // t3 = A[i] + ¢

sw t3, 0(t2) // A[i] = A[i] +c sw t3, 0(t2) // A[i] = A[i] +c
addi t2, t2, 4 // advance pointer addi t2, t2, 4 // advance pointer
addi t0, t0, 1 // t0/i++ J loop

7 loop end: nop

end: nop

What else could a compiler do?

addi t2, a0, 0 // t2 = A
addi tl1, a0, 400 // stop before A[100]
loop: bge t2, t1, end

1w t3, 0(t2) // t3 = A[i]
add t3, t3, al // t3 = A[i] + c
sw t3, 0(t2) // A[i1] = A[i] +c

addi t2, t2, 4 // advance pointer
7 loop
end: nop

Loop unrolling

What if we don’t know the # of iterations
through the loop at compile time?

int (i = 0; i < input_max; i++)

Dynamic loop size

for (int i = 0; i < input_max % 4; i++) 1
// do loop body
§
for (int j = input_max % 4; j < input_max; j += 4) {

// unrolled loop body (4x)

Besides compiler complexity, what is a
downside to loop unrolling?
(Could aggressive unrolling reduce
performance?)

2 92 2

O O C
Could we unroll this loop?
for (int i = 0; 1 < 100; i++) 3

A[i + 1] = A[i] + C[1i];
B[i + 1] = B[i] + A[i + 1];

2 92 2

O O C
Could we unroll this loop?
for (int i = 0; 1 < 100; i++) 3

A[i] = A[1i] + B[i];
B[i + 1] = C[i] + D[1i]

Detecting loop dependences

a
do: 1= 1; N

b
l: g=pmod i @ /@
2: A[i] = g + RSN
3: B[i] A[i-1] + 1 ’
end do DDG

Figure 6.5 : Intra-iteration and loop carried dependences @ .
doi=1, N @
From Instruction Level Parallelism by 1: B[i] = A[i-1] + r DPDG
Aiken, Banerjee, Kejariwal, Nicolau 5: R[] =8{ij # 1 s

end do " @

AN ® Figure 6.6 : Loop recurrences

C;

Other static ILP approaches

Software pipelining
Pipeline dependent instructions within a loop
Global scheduling
Move instructions across basic blocks
Trace scheduling
Find a trace (common path through program) of multiple basic blocks
Rearrange and parallelize instructions within trace

Need “compensation code” in case branching into/out of trace

®

VLIW (Vexry Long Instruction Woxd)

Compiler packs instructions into one long instruction word

Early VLIW: no dependences between instructions, units operate in lockstep
Pairs with loop unrolling, trace scheduling

Pros:

cons:

1w t3, 0(t2)‘|wt3,0(t2) sw t5, 0(t2) | mul t4,t5, al | addito,t0, 4 | bge t2, tl, end
mul t4, t5, al
(¢

sw t5, 0(t2)
addi t2, t2, 4
bge t6, t1, end

What tradeoffs do you see between dynamic
and static ILP? Which do you like more? Can
you imagine ways to combine them?

