
Multiple issue 
(superscalar)



Translation of complex machine instruction (macro-op) to multiple steps

Microarchitecture dependent (Intel doesn’t provide documentation on 
this)

For example, addq 8(%rdi) %rax might be translated into:

add 8 to rdi

load that address from memory

add that value to rax

store the result in rax

x86 processors have had a uop decoder since the Pentium Pro (1997)

Even RISC processors decode into uops – driven by design of FUs

From ISA lecture: micro-ops

Each of these can be issued 
separately into a different 

functional unit!

https://developer.arm.com/documentation/swog011050/latest/


? ? ?
What is the theoretical best CPI for our OOO 

CPU (with or without speculation)?



Allows for multiple instructions to be issued at the same time

Dynamically (by processor): superscalar

Multiple variations: in-order, OOO, OOO + speculative

Statically (by compiler): Very Long Instruction Word (VLIW), EPIC

We’ll come back to this very soon

Multiple-issue



? ? ?
Potentially how many instructions can we 
issue at once if we have the following FUs:

● 1 load
● 1 store

● 2 integer ALUs
● 1 FP add/sub
● 1 FP mul/div



Issuing two instrs at once
lw t0 8(s0)

add t2, t0, t1

● What do the reservation 
stations/ROB look like?

● What does the hardware 
need to check in a single 
cycle?



1. Make sure there is room in the ROB (if speculative) and a reservation 
station for every instruction that might be in the next issue bundle (if 
necessary, bundles can be broken)

2. Analyze all dependences between instructions in bundle (done in 
hardware in one cycle – HW grows quadratically in complexity w/ 
bundle size!)

3. Update reservation stations info and ROB entries for all instructions in 
bundle and send them off to the FUs

Superscalar steps



l: lw t0, 0(s0)

addi t0, t0, 1

sw t0, 0(s0)

addi s0, s0, 8

bne t0, t1, l

Example



w/o
speculation



w/ speculation



Deeper pipelining: RAW hazards, control hazards

Strategies: stalling, flushing, forwarding, branch prediction, compiler 
reordering instrs

OOO

CPU reorders instrs (compiler doesn’t need to know about uarch)

Difficulties: WAW, WAR for stores, branches

OOO w/ speculation

Commit in order! Use branch prediction

Multiple issue

Potential gains in CPI

ILP summary, so far



Why is this a guide that’s specific to a uarch (as opposed to an ISA)?

Some interesting observations (link)

● Issue width
● Recommendations for loads/stores
● (non) renaming of special registers
● Macro-op fusion

Arm Cortex SW Optimization Guide

https://developer.arm.com/documentation/swog011050/latest/


Intel Core i7 
(H&P fig. 
3.41)

Pre-decode??
Complex macro-op 

decoder??
Loop stream detect??



Firestorm (Apple M1)
Source (NOTE: reverse-engineered: might not be fully accurate)

https://dougallj.github.io/applecpu/firestorm.html


? ? ?
What performance metrics (beyond CPI) 
might become important in a speculative 

CPU?



H&P fig. 3.42

% of executed 
uops that were 
not committed



? ? ?
What effects would speculative execution have 

on the memory system?
(Hint: think protected access and/or caches)


