ISASs
revisited

oooooo

e O e e & e

Resources/readings

Intel® 64 and IA-32 Architectures Software Developer Manudls

Arm A64 Instruction Set Architecture

RISC and CISC comparison paper (1991)

RISC vs CISC power struggles paper (2013)

Agner Fog's instruction tables (for uop analysis)

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0596/latest/
https://dl.acm.org/doi/pdf/10.1145/106972.107003
https://research.cs.wisc.edu/vertical/papers/2013/hpca13-isa-power-struggles.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Texrminology review

ISA (Instruction set architecture): interface between high-level
programming language and hardware

Instructions
Registers
Memory models

1/O model

Microarchitecture: hardware implementation of ISA

®
Back in the day: accumulator architectures

Single-register architecture (register called “accumulator”)
All arithmetic operations have the accumulator as source and destination

e.g. ADD 200 means: add value at mem. address 200 to accumulator and
store result in accumulator

Born of necessity (registers were expensive!)

Fun reading: PDP-8 instruction set

https://homepage.cs.uiowa.edu/~jones/pdp8/man/mri.html

®

Computations in memory, or not?

Load/store or register-register architectures: all arithmetic operations
done in registers (need to load from memory into regjister first)

RISC-V, MIPS, Arm

Register-memory architectures: arithmetic operations can be done using
combination of registers and memory addrs

x86

®

Comparing 64-bit ADD instructions

RISC-V

ADD, ADDW (32-bit add), ADDI, ADDIW

Armvs8

Same mnemonic (ADD), different machine instructions source

ADD WO, W1, W2 (32-bit) ADD X0, X1, X2 (64-bit) ADD X0, X1, W2, SXTW
(sign-extended) ADD XO, X1, #42

Each AArché4 64-bit general-purpose register (X0-X30) also has a 32-bit (W0-W30) form.

Figure 4.2. 64-bit register with W and X access.

https://developer.arm.com/documentation/den0024/a/ARMv8-Registers
https://developer.arm.com/documentation/den0024/a/ARMv8-Registers

x86-64 ADD

ADD—Add
Opcode Instruction Op/ |64-bit Compat/ |Description
En |Mode Leg Mode
04 ib ADD AL, imm8 | Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 | Valid Valid Add imm16 to AX.
05id ADD EAX, imm32 | Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 | Valid NE. Add imm32 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8, imm8 Ml |Valid Valid Add imm8 to r/m8.
REX+80/0ib ADD r/m8 , imm8 Ml |Valid N.E. Add sign-extended imm8 to r/m8.
81/0iw ADD r/m16, imm16 Ml |Valid Valid Add imm16 to r/m16.
81/0id ADD r/m32, imm32 Ml |Valid Valid Add imm32 to r/m32.
REX.W +81/0id ADD r/m64, imm32 Ml |Valid N.E. Add imm32 sign-extended to 64-bits to
r/m64.
83/0ib ADD r/m16, imm8 Ml |Valid Valid Add sign-extended imm8 to r/m16.
83/0ib ADD r/m32, imm8 Ml |Valid Valid Add sign-extended imm8 to r/m32.
REXW +83/0ib ADD r/m64, imm8 Ml |Valid NE. Add sign-extended imm8 to r/m64.
00 /r ADD r/m8, r8 MR |Valid Valid Add r8 to r/m8.
REX +00 /r ADD r/m8 , r8 MR |Valid N.E. Add r8 to r/m8.
o1 /r ADD r/m16,r16 MR |Valid Valid Add r16 to r/m16.
01/r ADD r/m32, r32 MR |Valid Valid Add r32 to r/m32.
REX.W +01 /r ADD r/m64, r64 MR | Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 RM |Valid Valid Add r/m8 to r8.
REX+02 /r ADD r8 , r/m8 RM | Valid N.E. Add r/m8 to r8.
03 /r ADDr16, r/m16 RM | Valid Valid Add r/m16 tor16.
03/r ADD r32, r/m32 RM | Valid Valid Add r/m32 to r32.
REXW +03 /r ADD r64, r/m64 RM | Valid NE. Add r/m64 to r64.
NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

RISC vs CISC

RISC-V, MIPS, Arm are RISC (Reduced Instruction Set Computer)
architectures

x86 is CISC (Complex Instruction Set Computer) architecture
Allows register-memory instrs
Allows variable-length instruction encodings
Allows instructions that take longer than 1 cycle

Excepit... this distinction is becoming less useful

Choose whether each of the following
statements corresponds more to RISC or CISC
e Codesizeis larger
e Decoder is more complicated
e Pipelining is harder
e Single instruction takes more work

(control, energy)
e Fewer general-purpose registers are
available

What would be necessary to implement x86
add instruction variations in the
microarchitecture?

Micro-ops

Translation of complex machine instruction (macro-op) to multiple steps

Microarchitecture dependent (Intel doesn’t provide documentation on
this)

For example, addq 8(%rdi) %rax might be translated into:
add 8 to rdi
load that address from memory
add that value to rax
store the result in rax

We will come back to this for out-of-order

Why does x86 have so many instructions?

Why might a variable-length instruction
encoding be useful?

RISC-V C extension

Sometimes used for embedded applications

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

the immediate or address offset is small, or

one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack
pointer (x2), or

the destination register and the first source register are identical, or

the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension
allows 16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able
to start on any 16-bit boundary. With the addition of the C extension, JAL and JALR instructions
will no longer raise an instruction misaligned exception.

Why were new ISAs after about 1982 mostly
RISC?

®

Arm vs. Intel: market incentives

Arm claims 99% of premium smartphones use their chips

Prioritizes low energy over performance

Licenses chips + gets royalties instead of manufacturing chips
Apple’s switch from x86 to Arm driven by need for flexibility

Already were making Arm-based chips for iPhones and iPads

Don't need to rely on manufacturing issues (deadlines, quality
control) of other company

Intel used to power through based on market dominance
IBM’s adoption of Intel in the 80s fueled rise

Intel in turn was able to spend more $$ on R&D

https://www.arm.com/markets/consumer-technologies/smartphones

