
I/O



? ? ?
Besides the cache/memory managemen unit, 
what sorts of things does the processor need 

to talk to?



Abstraction of I/O

BUS

image source: flaticon.com



History of I/O: Plugboard computers (ENIAC, <1946)



History of I/O: UNIVAC 1 (1951)

image source

image source

https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/UNIVAC_I


History of I/O: IBM System/360 (>=1964)

image source
image source

https://www.computerhistory.org/revolution/mainframe-computers/7/161/565
https://en.wikipedia.org/wiki/IBM_System/360


History of I/O: PDP-8 (>=1965)

image source

image source

https://en.wikipedia.org/wiki/PDP-8
https://www.pdp8online.com/pdp8i/pics/pdp8ibackplane.shtml?small


History of I/O: Intel 4004/MCS-4 (1971)

image source

https://en.wikichip.org/wiki/intel/mcs-4


History of I/O: IBM PC (1981)



Motherboards

image source

Motherboard: printed circuit 
board (PCB) that holds 
computer components

Chipset: (usually on mobo) 
circuit that manages 
connection of CPU w/ 
memory and peripherals

https://en.m.wikipedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg


Chipsets (1990s-2000s)
Northbridge: connects CPU, RAM, GPU

Southbridge: slower, connects I/O

image source

image source

https://en.wikipedia.org/wiki/Northbridge_(computing)
https://en.wikipedia.org/wiki/Chipset


Evolution of chipsets (Intel)

image source

image source

https://www.intel.com/content/www/us/en/products/docs/chipsets/desktop-chipsets/z790-chipset-brief.html
https://www.intel.com/content/www/us/en/products/platforms/details/skylake-u-y.html


There are many ways to transfer data

Different bus standards are used for different applications

SATA is used for storage (also NVME)

PCI/e is used for many things (GPU, sound, ethernet…)

SPI is used for serial embedded communication

We’re not going to memorize these technologies – just know that there 
are different protocols for them

Buses



? ? ?
How should an I/O event (such as a keyboard 

key press) be detected and handled by the 
computer?



Process of checking the status of an I/O device to determine the need to 
service the device (P&H chapter 6)

Contrast with interrupts (in a few slides), which detect change in status 
and automatically disrupt execution

Real-world example: checking app vs. push notification

Polling



? ? ?
How do we check the status/change the state 

of an I/O device?



Memory-mapped I/O: translation of some memory addresses to I/O status 
and control registers

CPU writes/reads that address as usual, gets info about device

Kernel-space (not user-space) addresses

Cumbersome idea: use processor to transfer data from user space to 
memory-mapped I/O space

More efficient idea: Direct Memory Access (DMA), which transfers data to and 
from memory without going through the CPU, using a special controller

Example: transfer page from disk

Memory-mapped I/O and DMA



Exception: an unscheduled event that disrupts program execution (P&H 
chapter 3)

Can come from SW, like the RISC-V ecall/ebreak instructions to invoke 
OS/debugger

Can come from HW, like a divide by 0 or page fault

Interrupt: an exception that comes from outside the CPU (like a DMA I/O 
interrupt!)

Something needs to be responsible for saving processor state when an 
exception/interrupt happens!

Warning: we are following P&H, but this terminology is not always 
consistent (if you took 1600, we said SW/HW interrupts and exceptions)

Interrupts



Need to put cause in SCAUSE register before 
transferring control to OS (by going to 
pre-determined PC)

For HW exceptions: put address of 
exception-causing instr in SEPC register, 
before immediately transferring control to OS

For I/O interrupts: handled asynchronously 
(not caused by instr), so current instr can 
finish and control unit checks for pending 
interrupt in next cycle

RISC-V approach: SEPC and SCAUSE

RISC-V spec v2 Table 4.2



P&H Fig. 4.63


