
Cache tradeoffs and
metrics

? ? ?
What options do we have when designing a

memory hierarchy?

of levels in
hierarchy block size

private or
shared cache

associativity

cache size

replacement
policy

behavior on write
(through/back;

allocate; buffers)

how to find a
block

data,
instruction, or

unified

Review of associativity

P&H fig. 5.15

? ? ?
Pick a design space and evaluate how it impacts:

● Miss rate
● Miss penalty

● Hit time
● Other potential consequences?

block size
associativity/

finding a
block

cache size write through
vs. back

Decreases miss rate
Increases miss

penalty
Affects whole

hierarchy

Decreases miss rate
Increases hit time

Increases
$$/area/energy

Decreases miss rate
Increases hit time

Increases
$$/area/energy

Complicates miss
penalty

Through: increases
hit time

Complexity of write
buffer

Direct-mapped caches
aren’t really used anymore
(gains from even a little bit
of associativity are high)

Fully associative caches are
costly to implement at large
sizes (why fully assoc. TLBs
are tiny)

Associativity + performance

P&H fig. 5.35

source

https://developer.arm.com/documentation/den0024/a/Caches/Cache-terminology/Set-associative-caches-and-ways

Intel i7

Source
(Bryant & O’Hallaron)

https://csapp.cs.cmu.edu/3e/figures.html

? ? ?
Thinking back to everything we’ve learned so

far (CPUs, memory): how has “throwing
hardware” at the design helped us?

Design tradeoffs
We designed single-stage CPU for correctness

We designed pipelined CPUs for performance (w/ some complexity tradeoffs)

With memory hierarchy, we encountered the space of performance tradeoffs

Sometimes the answer is to compromise (multiple cache levels; n-way
associativity)

Sometimes the answer is to innovate (TLBs, write buffers, VIPT)

Throwing hardware at the problem has limits and costs ($$, energy, area)

Using advanced tools like gem5 helps us navigate tradeoffs (with a giant
caveat!)

