Cache tradeoffs and
metxics

oooooo

e O e e & e

What options do we have when designing a
memory hierarchy?

N

of levels in
hierarchy block size cache size

data,
instruction, or
unified

private or associativity

shared cache replacement
policy

behavior on write
(through/back;
allocate; buffers)

how to find a
block

Review of associativity

One-way set associative
(direct mapped)
Block Tag Data

? Two-way set associative
> Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0
1

P&H fig. 5.15

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Pick a design space and evaluate how it impacts:

e Miss rate
e Miss penalty
e Hittime

e Other potential consequences?

(block size

Decreases miss rate
Increases miss
penalty
Affects whole
hierarchy

finding a

associativity/]

,
cache size] (write through

vs. back

Decreases miss rate
Increases hit time
Increases

$$/area/energy

\

Decreases miss rate
Increases hit time
Increases
$$/area/energy

= Complicates miss

penalty
Through: increases

hit time
Complexity of write

buffer

®

Associativity + performance

. 15%
Direct-mapped caches
aren't really used anymore 12% - e
(gains from even a little bit ke
of associativity are high) - R
(]
Fully associative caches are S 6%
costly to implement at large
sizes (why fully assoc. TLBs Ol . R
' B4KB . 128KiB
are tiny) . " . : :
One-way Two-way Four-way Eight-way

Associativity P&H fig. 5.35

Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is a fully
associative cache, where any main memory location can map anywhere within the cache. However,
building such a cache is impractical for anything other than very small caches, for example, those

associated with MMU TLBs. In practice, performance improvements are minimal for above 8-way, with

source

16-way associativity being more useful for larger L2 caches.

https://developer.arm.com/documentation/den0024/a/Caches/Cache-terminology/Set-associative-caches-and-ways

Intel i7

Source
(Bryant & O’Hallaron)

Processor package

S S

L2 unified cache
256 KB, 8-way

Core x4
: Instruction MMU
REGISICE fetch (addr translation)
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

L2 unified TLB
512 entries, 4-way

A

YvY

QuickPath interconnect

v

L3 unified cache
8 MB, 16-way
(shared by all cores)

A 4 A4

DDR3 Memory controller

A

(shared by all cores)

JV A\ 4

Main memory

+ To other
E cores

+iTo 1/0

'bridge

https://csapp.cs.cmu.edu/3e/figures.html

Thinking back to everything we've learned so
far (CPUs, memory): how has “throwing
hardware” at the design helped us?

Desigh tradeoffs

We designed single-stage CPU for correctness
We designed pipelined CPUs for performance (w/ some complexity tradeoffs)
With memory hierarchy, we encountered the space of performance tradeoffs

Sometimes the answer is to compromise (multiple cache levels; n-way
associativity)

Sometimes the answer is to innovate (TLBs, write buffers, VIPT)
Throwing hardware at the problem has limits and costs ($$, energy, area)

Using advanced tools like gemb5 helps us navigate tradeoffs (with a giant
caveat!)

