Cache tradeoffs and
metxics
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What options do we have when designing a
memory hierarchy?
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Review of associativity
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Pick a design space and evaluate how it impacts:

e Miss rate
e Miss penalty
e Hittime

e Other potential consequences?
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Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is a fully
associative cache, where any main memory location can map anywhere within the cache. However,
building such a cache is impractical for anything other than very small caches, for example, those

associated with MMU TLBs. In practice, performance improvements are minimal for above 8-way, with

source

16-way associativity being more useful for larger L2 caches.


https://developer.arm.com/documentation/den0024/a/Caches/Cache-terminology/Set-associative-caches-and-ways
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https://csapp.cs.cmu.edu/3e/figures.html

Thinking back to everything we've learned so
far (CPUs, memory): how has “throwing
hardware” at the design helped us?



Desigh tradeoffs

We designed single-stage CPU for correctness
We designed pipelined CPUs for performance (w/ some complexity tradeoffs)
With memory hierarchy, we encountered the space of performance tradeoffs

Sometimes the answer is to compromise (multiple cache levels; n-way
associativity)

Sometimes the answer is to innovate (TLBs, write buffers, VIPT)
Throwing hardware at the problem has limits and costs ($$, energy, area)

Using advanced tools like gemb5 helps us navigate tradeoffs (with a giant
caveat!)



