
Virtual memory and 
TLBs



? ? ?
What do we know about virtual memory?

● What is it used for?
● What are the advantages?
● How is it implemented?



A means of having a different scheme of addressing (some sort of 
translation of process view of memory to physical memory)
Virtual address space can be larger than physical address space
(not cap) can take advantage of disk storage to help the memory 
hierarchy
provides isolation between processes
implemented: coordination between OS and HW



The memory physically available 
on a computer

Models how we’ve thought about 
memory so far

Allows random access to bytes 
using addresses

Physical memory

image source

https://pxhere.com/en/photo/1146597


A way of using main memory as a “cache” for disk storage

Exists in modern OS (managed by SW/HW together)

Advantages:

● Allows coordination of memory between processes (less complexity 
from process POV)

● Allows process to see larger address space than fits in main memory

Complexities:

● Managing the mapping of physical to virtual memory
● Slow speed of disk

Virtual memory



P&H Fig. 5.25

Each process 
can have its 
own view of 
virtual 
addresses 
(0-N)

Each block of virtual memory is 
called a “page” (4KB on Intel 
chips, 16KB on Apple silicon)



? ? ?
What determines how many physical pages 
our system has? How many virtual pages?



A virtual memory “miss” is called a page fault

Since disk is even slower (100k* slowdown) than main memory, we want:

● Fairly large page sizes
● Fully associative placement of pages in memory (virtual page can 

map to any physical page)

Avoiding page faults



? ? ?
Does it make sense for virtual memory 

systems to use write-through or write-back?



? ? ?
If virtual addresses can map to any physical 
address, how do we efficiently find a physical 

page?



Page tables
Live in main memory 
(separate from pages 
themselves)

One for each process

Map virtual addresses to 
physical addresses (not a 
cache – why?)

Page faults managed by 
OS (why?)

P&H fig. 5.28



? ? ?
For our running example, how much space 

does a single page table take up?



? ? ?
What should happen if our virtual address 
space is so big that the page table can’t 

efficiently fit in main memory?



our page table might be sparsely filled
● multiple levels of page tables
● start with a smaller page table than we need and grow it
● hash into a smaller page table

page your page tables



Address translation in RISC-V

RISC-V 
spec vol. 2

https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link


Virtual memory in RISC-V 32bit
32 bit virtual address space (4kb pages) → 20 bit virtual page numbers (VPNs)

22-bit physical page number (PPN)

Page tables are the size of a page



Virtual memory in RISC-V 64bit



? ? ?
In earlier lectures, we said memory is really 

slow, which means that virtual memory makes 
memory accesses really really slow (looking 

up translation in page table + then doing 
access). What can be done? 



For those counting: we have

● L1 I-cache
● L1 D-cache
● L2 cache
● L3 cache
● Main memory acting as a cache 

for disk
● TLBs acting as a cache for page 

tables (translation of virtual to 
physical addresses)

● ??? probably other caches in the 
future

TLBs: a cache for the page table



TLBs: does this clear it up?

P&H fig. 5.30



? ? ?
What is a TLB miss? What happens on a TLB miss?



? ? ?
For an instruction like lw 10 0(sp), which do 

we do first?
● Check L1 cache

● Check main memory
● Check TLB

● Check page table



Interaction of TLB and cache (PIPT)

P&H fig. 5.33

PIPT (explained on next slide) is physical cache (need 
to know physical address before indexing into cache)



VIPT caches
PIPT (physically indexed, physically tagged) caches come at page 
translation cost

VIVT (virtually indexed, virtually tagged) caches cause aliasing issues 
(two virtual addresses mapping to same physical address)

VIPT: perform cache lookup + TLB lookup in parallel

both virtual and physical address have the same page offset

cache size now limited to page size

virtual memory

cache

virtual page # page offset

tag index offset




