Virtual memoxry and
TLBs
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What do we know about virtual memory?
e Whatis it used for?
e What are the advantages?
e How is it implemented?



A means of having a different scheme of addressing (some sort of
translation of process view of memory to physical memory)
Virtual address space can be larger than physical address space
(not cap) can take advantage of disk storage to help the memory
hierarchy

provides isolation between processes

implemented: coordination between OS and HW




Physical memoxry
The memory physically available
on a computer

Models how we’ve thought about
memory so far

Allows random access to bytes
using addresses

image source
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Virtual memory

A way of using main memory as a “cache” for disk storage
Exists in modern OS (managed by SW/HW together)
Advantages:

e Allows coordination of memory between processes (less complexity
from process POV)
e Allows process to see larger address space than fits in main memory

Complexities:

e Managing the mapping of physical to virtual memory
e Slow speed of disk
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What determines how many physical pages
our system has? How many virtual pages?



Avoiding page faults

A virtual memory “miss” is called a page fault
Since disk is even slower (100k* slowdown) than main memory, we want:

e Fairly large page sizes
e Fully associative placement of pages in memory (virtual page can
map to any physical page)



Does it make sense for virtual memory
systems to use write-through or write-back?



If virtual addresses can map to any physical
address, how do we efficiently find a physical

page?



Page tables

Live in main memory
(separate from pages
themselves)

One for each process

Map virtual addresses to
physical addresses (not a
cache — why?)

Page faults managed by
OS (why?)

Virtual page
number
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For our running example, how much space
does a single page table take up?



What should happen if our virtual address
space is so big that the page table can't
efficiently fit in main memory?



our page table might be sparsely filled
e multiple levels of page tables
e start with a smaller page table than we need and grow it
e hash into a smaller page table

page your page tables




Address translation in RISC-V

4.1.11 Supervisor Address Translation and Protection (satp) Register

The satp register is an SXLEN-bit read/write register, formatted as shown in Figure 4.14 for
SXLEN=32 and Figure 4.15 for SXLEN=64, which controls supervisor-mode address translation
and protection. This register holds the physical page number (PPN) of the root page table, i.e., its
supervisor physical address divided by 4 KiB; an address space identifier (ASID), which facilitates
address-translation fences on a per-address-space basis; and the MODE field, which selects the
current address-translation scheme. Further details on the access to this register are described in
RISC-V Sidaastih
Section 3.1.6.5.

spec vol. 2
) 31 30 22 21 0
| MODE (WARL) |  ASID (WARL) | PPN (WARL) |
1 9 22
Figure 4.14: Supervisor address translation and protection register satp when SXLEN=32.
SXLEN=32
Value | Name | Description
0 Bare | No translation or protection.
\\ 1 Sv32 | Page-based 32-bit virtual addressing (see Section 4.3).
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Virtual memoxry in RISC-V 32bit

32 bit virtual address space (4kb pages) — 20 bit virtual page numbers (VPNs)
22-bit physical page number (PPN)
Page tables are the size of a page

33 22 21 12 11 0

PPN(1] I PPN[0] [ page offset
12 10 12

Figure 4.17: Sv32 physical address.

31 20 19 109 8 7 6 5 4 3 2 1 0
PPN(1] [ PPN(0] | RSW [DJA[GJU[X|W]|R|[V]
12 10 2 LW ) & ok 4 o N

Figure 4.18: Sv32 page table entry.



Virtual memoxry in RISC-V 64bit

63 62 6160 54 53 28 27 19 18 10 9 ¥ 3 ©® 8 @ 8 2 % @
[N | PBMT | Reserved | PPN2] | PPN[]] | PPNjO] | RSW |D]|A|G|U|X|W]|R ]|V |
1 2 7 26 9 9 2 1 1 1 1 1 1 1 1
Figure 4.21: Sv39 page table entry.

63 62 6160 54 53 37 36 2827 1918 10 9 8§ ¥ .8 § 4 8 B 1 W

[N | PBMT | Reserved | PPN[3] | PPN[2] | PPN[1] | PPN[0] | RSW |[D[A[G[U[X[W[R[V ]
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2 / 17 9 9 9 2 1 1 1 | O | 1 I 3

Figure 4.24: Sv48 page table entry.




In earlier lectures, we said memory is really
slow, which means that virtual memory makes
memory accesses really really slow (looking
up translation in page table + then doing
access). What can be done?
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TLBs: a cache for the page table

For those counting: we have

LT I-cache

L1 D-cache

L2 cache

L3 cache

Main memory acting as a cache

for disk

e TLBs acting as a cache for page
tables (translation of virtual to
physical addresses)

e ??? probably other caches in the

future




TLBs:

Virtual page
number Valid Dirty Ref

does this clear it up?

TLB

Physical page
Tag address

Physical memory

Valid Dirty Ref or disk address
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What is a TLB miss? What happens on a TLB miss?

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
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For an instruction like 1w 10 0(sp), which do
we do first?
e Check Ll cache
e Check main memory
e Check TLB
e Check page table



Interaction of TLB and cache (PIPT)

PIPT (explained on next slide) is physical cache (need -
to know physical address before indexing into cache)
P&H fig. 5.33

Page
EM Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit | Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.
Hit | Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.
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VIPT caches

PIPT (physically indexed, physically tagged) caches come at page
translation cost

VIVT (virtually indexed, virtually tagged) caches cause aliasing issues
(two virtual addresses mapping to same physical address)

VIPT: perform cache lookup + TLB lookup in parallel
both virtual and physical address have the same page offset

cache size now limited to page size

virtual memory virtual page # page offset
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