Haxrdware overview

HW1 will keep coming out
TA hours are on website
Moving my hours to Fridays at 11 (next week)
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HWO responses

Excited about: a lot!

Nervous about: low-level details, new course/workload, heard scary things

about the topic, using the simulators

Helps your learning: in-class activities, having access to resources

Community: committed to
welcoming environment + sustained
communication! We want to focus
on everyone’s success and growth
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source [/ another visualization // Babbage’s analytical engine



http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM
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Stored-program computers

Modern computers hinge on two principles:

e Instructions are represented in memory the same way as numbers
e Memory can be altered by programs

First principle means that:

e Instructions live in memory
e The CPU needs to have a way of interpreting an instruction, just as it
would any other data in memory
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®

HW assumptions we'’re working with

CPU can read bits from memory as electrical signals (one “wire” per bit)
Everything is a pure low/high signal, no noise/interference
For now, we're not worried about constraints (space, complexity, power)

Each “step” leaves enough time for circuit to stabilize
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To run a program, CPU HW needs:

A way to extract/rearrange bits - pull out the relevant fields of an
instruction

A way to implement combinational logic — arithmetic/logical, branching

A way to keep track of state - what is the value of the PC at the current
step?
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Data as collections of wires

wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one,
multi-bit signal
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Combinational logic circuits

Examples: adders, logical operators, control signal translation
Work like pure functions (no memory)
Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)
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https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2

Multiplexezxs

Used to select between multiple inputs

n-bit selector signal = select between 2" inputs

Example: 2nd operand for add vs addi So
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Build a 4-input (2-bit selector) mux out of
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logic gates

LOGIC GATE SYMBOLS
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Arithmetic Logic Unit

IIALUII

Takes in two operands and a control signal for the operation, produces
result of applying operation on operands (status input/output signals

optional)
Integer Integer
Operand Operand
A v B
Status
Opcode vy
Integer
Result

By Lambtron - Own work,.CC BY-SA 4.0, link
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https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png

®

Components that have state

How do we express “at each step, increment the PC by 4?” —D QI

Need clock signal to control when state changes

_PC_I_
7% s o s e N e

Memory elements, such as flip flops and latches, have internal state that
updates on clock tick (D flip-flop pictured)

Our abstraction of registers: each bit is stored in a D flip-flop



How do we express “at each clock tick,
increment the PC by 4” using a PC register and
an adder?



Takeaways

Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors,
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we
can start working one level of abstraction higher to implement a CPU
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Hardware description languages

Used to describe circuits (often for synthesis into a circuit, such as on an FPGA)

Examples: Verilog, VHDL

Defines behavior of combinational components and memory components
Updates in a block are done in parallel — Verilog example:

reg a, r;

always @(posedge clk) begin
a <= ~rT;
r<=1 + 1;

end

We won't be working in HDL — but a C++ approximation of it in simulation
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Let’s build a CPU!

What do we need to get started?



