Haxrdware overview

HW1 will keep coming out
TA hours are on website
Moving my hours to Fridays at 11 (next week)

oooooo

e O e e & e

HWO responses

Excited about: a lot!

Nervous about: low-level details, new course/workload, heard scary things

about the topic, using the simulators

Helps your learning: in-class activities, having access to resources

Community: committed to
welcoming environment + sustained
communication! We want to focus
on everyone’s success and growth

StUd e ntS difficult

d MT‘;} material e

v DTS s e n
environment knowledge class;t
constructive backgrounds Cou rSe systems

understandlngupeopIe one

"k f,eel revioss "V ETY O N Gy, pectation

"X create positive interact |earn
welcoming juds

individuals feed baCk

give

reSpethu| especially

“to |Oth ers

source [/ another visualization // Babbage’s analytical engine

http://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=akcRtadpZjY
https://www.youtube.com/watch?v=K6NgMNvK52A
https://www.youtube.com/watch?v=5rtKoKFGFSM

®

Stored-program computers

Modern computers hinge on two principles:

e Instructions are represented in memory the same way as numbers
e Memory can be altered by programs

First principle means that:

e Instructions live in memory
e The CPU needs to have a way of interpreting an instruction, just as it
would any other data in memory

31 25 24 20 19 15 14 12 11 76 0
| funct7 | rs2 [rsl I funct3 | rd | opcode IR—type
| imm[11:0] | rs1 [funct3 | rd | opcode |I-type

| imm[11:5] | rs2 [rsl] funct3 | imm 4:0)] | opcode]S-type

| imm|31:12)] [rd | opcode | U-type

®

HW assumptions we'’re working with

CPU can read bits from memory as electrical signals (one “wire” per bit)
Everything is a pure low/high signal, no noise/interference
For now, we're not worried about constraints (space, complexity, power)

Each “step” leaves enough time for circuit to stabilize

®

To run a program, CPU HW needs:

A way to extract/rearrange bits - pull out the relevant fields of an
instruction

A way to implement combinational logic — arithmetic/logical, branching

A way to keep track of state - what is the value of the PC at the current
step?

31 30 20 19 12 11 10 5 4 1 0
| — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | I-immediate
| — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
| — inst[31] — | inst[7] [inst[30:25] [inst[11:8] [0 | B-immediate
linst[31] [inst[30:20] | inst[19:12] | —f— | U-immediate

| — inst[31] — | inst[19:12] |inst[20] | inst[30:25] |inst[24:21]| O | J-immediate

®

Data as collections of wires

wire/data line: carries a single digital signal (on/off)

bus (P&H definition): a collection of data lines that is treated as one,
multi-bit signal

C;

Combinational logic circuits

Examples: adders, logical operators, control signal translation
Work like pure functions (no memory)
Combinatorial expressions can be automatically synthesized to circuits

Physically, logic gates are implemented using transistors (electrical switches)

+6V

LOGIC GATE SYMBOLS “half adder” (sum and earry output):

DD D D angyt
> > DD o 5D

XNOR

BUFFER .
image source

image source

https://www.autodesk.com/products/fusion-360/blog/you-shall-not-pass-how-logic-gates-work-in-digital-electronics/
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/trangate.html#c2

Multiplexezxs

Used to select between multiple inputs

n-bit selector signal = select between 2" inputs

Example: 2nd operand for add vs addi So
A—(0
1 va\ A—0 5
rsive] u
#_-c, ‘\ Z X
B—>{1
(S'Z.\ru\ g mf B—/1
i aEaasa e s
- S
MW /"
5 P&H Fig. A.3.2

\
& —| o . - .
((\NX —_— By en:User.Cburnett - This W3C-unspecified vector image
was created with Inkscape ., CC BY-SA 3.0, link

https://commons.wikimedia.org/w/index.php?curid=1505575

?

?

P

Build a 4-input (2-bit selector) mux out of

b0 —
bl —
b2 —
b3 —

sl

sO

logic gates

LOGIC GATE SYMBOLS

DD DD

NAND

- D D D

BUFFER XNOR

Arithmetic Logic Unit

IIALUII

Takes in two operands and a control signal for the operation, produces
result of applying operation on operands (status input/output signals

optional)
Integer Integer
Operand Operand
A v B
Status
Opcode vy
Integer
Result

By Lambtron - Own work,.CC BY-SA 4.0, link

Status

[o™ M Ay Bo

A B

R B A B3

v

G%
-

PREY

W

ik

Fo F A=

source

.,_‘
w
ol
o
E
ES
o]

https://commons.wikimedia.org/w/index.php?curid=36975996
https://en.wikipedia.org/wiki/Arithmetic_logic_unit#/media/File:74181aluschematic.png

®

Components that have state

How do we express “at each step, increment the PC by 4?” —D QI

Need clock signal to control when state changes

_PC_I_
7% s o s e N e

Memory elements, such as flip flops and latches, have internal state that
updates on clock tick (D flip-flop pictured)

Our abstraction of registers: each bit is stored in a D flip-flop

How do we express “at each clock tick,
increment the PC by 4” using a PC register and
an adder?

Takeaways

Bits of an instruction = electrical signals CPU uses to execute a program

CPU is just a (very, very) big circuit made up of wires, combinational logic
elements, and memory elements

Can implement modules we need (multiplexers, ALUs, bit selectors,
registers) using these elements

Basically: we have an “existence proof” of the hardware we need, so we
can start working one level of abstraction higher to implement a CPU

®

Hardware description languages

Used to describe circuits (often for synthesis into a circuit, such as on an FPGA)

Examples: Verilog, VHDL

Defines behavior of combinational components and memory components
Updates in a block are done in parallel — Verilog example:

reg a, r;

always @(posedge clk) begin
a <= ~rT;
r<=1 + 1;

end

We won't be working in HDL — but a C++ approximation of it in simulation

g

Let’s build a CPU!

What do we need to get started?

