
CSCI 1951-W Sublinear Algorithms for Big Data Lee

Homework 5
Due: 23 October, 2020

Each problem is graded on the coarse scale of !+, !, !− and no !. It is also assigned a multiplier,
denoting the relative importance of the problem. Both correctness and presentation are grading
criteria.

Please read and make sure you understand the collaboration policy on the course missive. The
problems for 2000-level credit are clearly marked below: students who are registered for 1000-level
credit are welcome to solve and submit these problems for extra credit (see course missive for
details).

Remember to prove all your (non-elementary) mathematical claims, unless stated otherwise.

Each pair of students should submit only 1 pdf to the corresponding Canvas assignment.

Problem 1

(2 !s)

Here is an argument involving the Johnson-Lindenstrauss lemma, but part of it is wrong. Identify
the part and explain why it is wrong, as motivation for why we had to use Kirszbraun’s extension
theorem.

Consider a set of n points {q1, . . . , qn}, and we wish to estimate the quality of the best
1-median solution: find a point p∗ that minimises the cost, that is the sum of distances
between p and each of the n points. We project the points down to O( logn

ε2
) dimensions

using a random project Π, with the big-O chosen to preserve norms in O(n2) directions,
and find the optimal solution p̂ in the low dimensionality. The goal, as we saw in class,
is to show (incorrectly in this example) that the cost of p∗ and p̂ are within a 1±O(ε)
factor of each other.

First, we claim that the cost of p̂ in the low dimensionality at most 1+O(ε) times the cost
of p∗ (in high dimensionality). The observation is that, by the Johnson-Lindenstrauss
lemma, p∗ will have its distances with qi approximately preserved (with high probabil-
ity) over the projection Π. Thus Πp∗ is a good quality solution in the low dimensionality,
having cost that is no more than 1 + O(ε) times the cost of p∗ in the original dimen-
sionality. As the cost of p̂ is no more than that of Πp∗, it is also upper bounded by the
cost of p∗ up to the same 1 +O(ε) factor.

Second, we claim that the cost of p̂ (in low dimensionality) cannot be more than a
1 − O(ε) factor smaller than the cost of p∗. Observe that p̂ is within the convex hull
of {Πq1, . . . ,Πqn}, and so there must be some point p̃ in the convex hull of {q1, . . . , qn}
such that Πp̃ = p̂. By the Johnson-Lindenstrauss lemma, the distances between p̃ and
the points q1, . . . , qn is preserved (since the set {q1, . . . , qn}∪{p∗, p̃} has size O(n)), and
so the cost of p̂ is within a factor of 1±O(ε) of the cost of p̃. This means that the cost
of p̂ is at least a 1−O(ε) factor of the cost of p̃, which in turn is at least the cost of p∗

by the optimality of p∗.
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Problem 2

(3 !s total)

The Johnson-Lindenstrauss lemma states that random projections preserve norms and distances.
How about other basic geometric quantities?

1. Angles: consider three points defining one angle by two of the line segments. If the projection
preserves the length of the segments by a (1 + ε) factor, does it also preserve the angle to a
(1+f(ε)) factor for some function f that is increasing in ε and tends to 0 as ε → 0? If so, give
a proof. If not, give a counterexample, and also give some reasonably general assumptions
under which we have angle preservation.

2. Triangle area: setting as above.

Problem 3

(1 !)

We define the KL-divergence between distributions p and q as follows:

DKL(p||q) =
!

i

pi log
pi
qi

Be careful that the KL-divergence is not symmetric, and furthermore is not a metric—it does not
satisfy the triangle inequality over the set of distributions.

One important property of the KL-divergence is that it can be used to upper bound the ℓ1 distance
between two distributions. The following inequality is known as Pinsker’s inequality:

Fact 1. Given any two distributions p,q over the same domain, we have

1

2
||p− q||1 = dTV(p,q) ≤

"
1

2
DKL(p||q)

The question is, can there be a converse to Pinsker’s inequality in a qualitative sense, that is, some
monotonic function of the total variation distance that upper bounds the KL-divergence? If so,
state an inequality and prove it (it is ok if it is an “obvious” or uninteresting inequality). If not,
give a proof why not.

(Note: As we saw in class, the Hellinger distance does enjoy having both inequalities upper and
lower bounding the total variation distance.)

Problem 4

In addition to Pinsker’s inequality, another very important property of the KL divergence is that
it is additive under taking products of distributions. Explicitly, for distributions p1,p2,q1,q2:

DKL(p1 ⊗ p2,q1 ⊗ q2) = DKL(p1,q1) +DKL(p2,q2)

2



CSCI 1951-W Homework 5 23 October, 2020

This fact, combined with Pinsker’s inequality, allows us to show lower bounds on the number
of samples needed to distinguish between two distributions, much like how we use the Hellinger
distance to do that as shown in class. Furthermore, the KL-divergence is sometimes a lot easier to
calculate than the Hellinger distance, because of the fraction (inside the logarithm) in its definition.

Consider the geometric distributions Geom(p) and Geom(p+ ε) where p < 1
2 and ε ≪ p.

1. (2 !s) Show that DKL(Geom(p)||Geom(p+ ε)) = O(ε2/p2). Hence show that it takes at least
Ω(p2/ε2) samples to distinguish between the two geometric distributions. (Hint: You will
need to take the second order Taylor expansion of logarithms at some point. You may assume
without proof that because ε ≪ p, the second order expansion is sufficient for this analysis.)

2. (1 !) It is also possible to use the KL-divergence to show high probability lower bounds. The
high probability Pinsker inequality states that, for any pair of distributions p,q and for any
event A (and its complement Ā),

p(A) + q(Ā) ≥ 1

2
e−DKL(p||q)

Use this inequality to show that it takes Ω(p
2

ε2
log 1

δ ) samples to distinguish the two geometric
distributions with probability at least 1− δ.

(Note: The high probability Pinsker inequality is a more versatile tool for lower bounds than the
lower bound discussed in class based on the squared Hellinger distance, particularly in situations
where the sampling is more complicated than a fixed number of i.i.d. samples. As an example,
a KL-divergence+(high probability) Pinsker’s inequality argument can recover the same Bernoulli
mean estimation lower bound we showed in class.)
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