INTRODUCTION TO DATA SCIENCE

PageRank
OUTLINE

• Introduction

• The Basic Idea

• The Initial PageRank Model

• The Human Surfer Model

• Advanced Aspects

• Alternative Model
WHY PAGERANK?

- The major challenge of web search engines is to rank the retrieved pages.
- Most users don’t go beyond the 1-2 first pages of search results.
- First generation search engine (AltaVista) ranked results based on keywords and relevance measures.
- Easy to manipulate.
- Google introduced “link analysis” as a tool for evaluating page “quality”.
- Hyperlink-Induced Topic Search (HITS) - hubs and authorities.
PageRank is an example of **unsupervised** learning—it evaluates page quality without a training set.

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td></td>
</tr>
<tr>
<td>classification or categorization</td>
<td>PageRank</td>
</tr>
<tr>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>regression</td>
<td>dimensionality reduction</td>
</tr>
</tbody>
</table>
THE WEB AS DIRECTED GRAPH

Back link of u
Forward link of u

Link from i to m

Page i → Page m → Page u → Page y
Page n → Page u
Page w → Page v

Set B_u
Rank of page u is R(u)
Set F_u
Amount N_u = |F_u|
BACK LINKS AS INITIAL IDEA

• Citation analysis as basis
• Idea: Pages with a lot of back links are more important
• Intuitive approach
 \[R(u) = \sum_{v \in B_u} 1 \]
• Extension: Each page has a “vote” of 1
 \[R(u) = c \sum_{v \in B_u} \frac{1}{N_v} \]
• c normalizing factor (here c=1)
FROM ANALYZING **BACK LINKS** TO **PAGERANK**

Back links

- Easy to calculate
- Suitable for well-controlled documents such as scientific articles
- For web pages: manipulation is easy
- Not in line with the common sense notion of “relevance”

PageRank

- Extension of the simple analysis of *back links*
- Idea: Include the relevance of the referring (*back-link*) pages in the calculations of the ranks
- Manipulations are more difficult
OUTLINE

- Introduction
- The Basic Idea
- The Initial PageRank Model
- The Human Surfer Model
- Advanced Aspects
- Alternative Model
INTUITIVE DEFINITION OF PAGERANKS

\[R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} \]

- Rank spread evenly among the forward links
- Recursive calculation of \(R(u) \) until there is convergence
- Factor \(c \)
 - For normalization
 - Usually \(c > 1 \), as there are pages without links
MATHEMATICALLY, THIS IS AN EIGENVECTOR PROBLEM

- Web as matrix A
 - if there is an edge between u and v (i.e., a link from u to v)
 \[A_{u,v} = \frac{1}{N_u} \]
 - else
 \[A_{u,v} = 0 \]

\[
A = \begin{bmatrix}
0,0 & 0,5 & 0,5 \\
0,0 & 0,0 & 1,0 \\
1,0 & 0,0 & 0,0 \\
\end{bmatrix}
\]

\[R = (0,4 \ 0,2 \ 0,4) \]

- R vector of page ranks
- This is the left eigenvector of A to the eigenvalue c
 - $R = RA_c$
EIGENVECTORS AND EIGENVALUES

Definitions

Consider the square matrix A.

We say that c is an **eigenvalue** of A if there exists a non-zero vector x such that $Ax = cx$.

In this case, x is called a (right) **eigenvector** (corresponding to c), and the pair (c, x) is called an **eigenpair** for A.

Right eigenvectors satisfy the equation $Ax = xc$.

c_1 is called the **dominant** eigenvalue if

$$
|c_1| \geq |c_2| \geq |c_3| \geq \ldots \geq |c_n|
$$

Example

The matrix; $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ has two eigenvectors:

$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

with eigenvalues 1 and 3 respectively.
SOLVING THE EIGENVALUE PROBLEM

Algebraic Approaches

• Various Methods

• Example: calculate the determinant

\[
\text{det}(A-cI) = 0
\]
\[
I = \text{Identity Matrix}
\]
\[
A = \begin{pmatrix}
0,0 & 0,5 & 0,5 \\
0,0 & 0,0 & 1,0 \\
1,0 & 0,0 & 0,0
\end{pmatrix}
\]
\[
\text{det}(A-cI)\]
\[
= -c^3 + 0,5 + 0 + 0,5c - 0 - 0 = 0
\]
\[
c = 1
\]

Power Iterations

• Principle

\[
x = \text{any vector with } ||x|| = 1
\]
\[
\text{eps} = \text{any value } < 1
\]
while(\text{psi} > \text{eps} < 1)
\[
\text{xTemp} = x
\]
\[
x = x \times A \quad \text{// multiply } A
\]
\[
x = x / ||x|| \quad \text{// normalise}
\]
\[
c = x^T \times A \times x \quad \text{// eigenvalue}
\]
\[
\text{psi} = ||x - \text{xTemp}||_2
\]
wend

where \(||\bullet||_2 \) = Euclid norm

• In case of a stochastic matrix \(A \)
PROBLEMS WITH "IMPERFECT" GRAPHS

Perfect Graph

Graph with Rank Sink

Graph with dangling link (Rank Leak)

Dangling Link
RANK SOURCE SOLVES RANK SINKS

Introduction to Rank Source

- **E(u): vector of web pages**

 \[R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u) \]

- where \(c \rightarrow \text{max} \)

 \[\|R'\|_1 = \sum_i |x_i| = 1 \]

- **As eigenvalue problem:**

 \[R' = c(A + E \otimes 1)R' \]

 where \(l = (1,1,...,1) \)

- **Simplified Version:**
 - Same Rank Source for all pages
 - Normalisation to 1
 - New formula:

 \[R''(u) = d \sum_{v \in B_u} \frac{R''(v)}{N_v} + \frac{(1-d)}{\# \text{ Pages}} \]
DANGLING LINKS

- Reduce “distributable” PageRank
- Rather frequent
 - Pages without links
 - Pages not yet indexed by Google
 - PDFs etc.

- Removed prior to calculation
- Added with the immediate page rank after the final iteration

- Result hardly affected
OUTLINE

• Introduction
• The Basic Idea
• The Initial PageRank Model
• The Human Surfer Model
• Advanced Aspects
• Alternative Model
MARKOV CHAIN

- **Homogeneous discrete stochastic process** with transition matrix P
 - Transitions depend only on the current state (Markov property)
 - Transitions from node i to node k happen at discrete points of time $t=1,2,…$
 - Transition from node i to node k happens with probability P_{ik}
 - The transition probability is independent of the time t (homogeneous)
 - The initial node is selected arbitrarily based on a distribution q^0 over V
 - q^t: row vector, whose k-th entry gives the likelihood of being in state k after transition t

- It holds:

$$q^{t+1} = q^t P \Leftrightarrow q^{t+1} = qP^t$$

\[
P = \begin{pmatrix}
0.0 & 0.5 & 0.5 \\
0.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0
\end{pmatrix}
\]

\[
q^0 = \begin{pmatrix}
1.0 & 0.0 & 0.0
\end{pmatrix}
\]

\[
q^1 = q^0 P = \begin{pmatrix}
0.0 & 0.5 & 0.5
\end{pmatrix}
\]
Limit Distribution

\[\lim_{n \to \infty} q^0 P^n = \lim_{n \to \infty} q^n P \]

- Intuition:
 Both states equally likely

- \(q^0 = (1,0) \) leads to
 - \(q^{2n} = (0,1) \)
 - \(q^{2n+1} = (1,0) \)

- does not always exist
- can depend on the initial distribution
- is not necessarily unique
PROPERTIES OF MARKOV CHAINS

• **Irreducibility:**
 - Any node of a Markov Chain can be reached from any node (in a finite number of steps).

• **Aperiodicity:**
 - The greatest common divisor of the length of all „round-trips“ is 1.
Wanted

- Stationary distribution such that: \(q^\infty = q^\infty P \)
- i.e., the eigenvector to the eigenvalue 1

Theorem

- Assume that \(P \) is
 - irreducible
 - aperiodic
 - finite
- Then there is a unique stationary distribution \(q^\infty \)
- Let \(N(i,t) \) be the number of visits that a random surfer pays to page \(i \) until the point in time \(t \). Then

\[
\lim_{t \to \infty} \frac{N(i,t)}{t} = q^\infty_i
\]
The web surfer starts at a randomly selected page
At each period the surfer chooses between the following alternatives:
- Follow a randomly selected link on the current page (probability \(d \))
- Jump to another page of the web without following a link (probability \((1-d)\))

\[
A' = dA + (1-d) \frac{1}{\text{Pages}} \times 1 \times 1
\]
TRANSITION MATRIX

\[A' = \begin{pmatrix}
0 & 0.4 & 0.4 & 0 & 0 \\
0 & 0 & 0.4 & 0.4 & 0 \\
0.8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.8 \\
0 & 0 & 0 & 0.8 & 0 \\
\end{pmatrix} \]

\[A = \begin{pmatrix}
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix} \]

\[d = 0.8 \]

\[A' + (1-d) \frac{1}{\text{# Pages}} \]

\[(1-d) \frac{1}{\text{# Pages}} \]

\[1 \times 1 \]
• *Steady State* is a distribution vector satisfying

\[R = RA' \]

• Can be regarded as a special form of

\[R' = cR'(A + E \otimes 1) \]

 – Normalised to 1
 – *Rank of Source* same for all pages

• *Dangling Links*

 – Can either be removed
 – Or be treated as a page linking to all other pages
THE ROLE OF D

- \(d = 0.85 \)
- E equally distributed
- *Dangling Links* added for final iteration

- \(d = 0 \)
- E equally distributed
- *Dangling Links* added for final iteration

- \(d \leq 1 \)
- E only for one page, e.g. private home page
- *Dangling Links* added for final iteration

- \(d = 0.85 \) reportedly used by Google (at least initially)
- Probably what Google does
- Additional adaptations are applied, algorithm is optimized

- Extreme case: All pages are equally likely
- Assumes that all pages are equally important
- Comparable to the simple search engines

- Mirrors user preferences
- Assumes that the page is representative
- Alternatively one could derive E from historic user behaviour (e.g., using web logs)
NON-UNIFORM TELEPORTATION

Sports

Teleport with 10% probability to a Sports page
OUTLINE

• Introduction
• The Basic Idea
• The Initial PageRank Model
• The Human Surfer Model
• Advanced Aspects
• Alternative Model
CONVERGENCE & RUNTIME OF POWER ITERATION

• Convergence ensured by adapting the transition matrix
• The number of required iterations
 – Depends on the distance to second eigenvalue and thus the value d
 – Is less affected by the number of links
• Google calculates PageRank regularly, updates are released appr. every day

Convergence ($d=0.85$)

![Graph showing convergence and number of iterations]

Source: Brin+: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report, Stanford University, 1999
Artificial creation of back links
- Across domains
- Linked

Purchasing links
- E.g., Banner on a page with high Page Rank

Create Google-tailored pages
- Multiple linked pages
- Links to bad pages using JavaScript

- Theoretically possible
- Anti-Spamming mechanisms exist
 - PageRank 0
 - BadRank

- Possible
- Costs money, so a bit controlled

- To a certain extent feasible
- Too much might lead to exclusion from page rank calculation
AGENDA

• Introduction
• The Basic Idea
• The Initial PageRank Model
• The *Human Surfer* Model
• Advanced Aspects
• *Alternative Model*
Hypertext Included Topic Selection

- Web as directed graph
- Algorithm operates on a part of the graph
- Algorithm runs subject-specific and distinguishes
 - “expert” pages (Authorities) for a topic
 - pages linking to Authorities (Hubs)
- HITS is based on balance of Hubs and Authorities

Salsa

- Extends HITS for probabilities
- undirected graph
- *Hub Walk* and *Authority Walk*
HIGH-LEVEL SCHEME

Extract from the web a base set of pages that could be good hubs or authorities.

From these, identify a small set of top hub and authority pages; iterative algorithm.
BASE SET

Given text query (say soccer), use a text index to get all pages containing soccer.

• Call this the root set of pages.

Add in any page that either

• points to a page in the root set, or
• is pointed to by a page in the root set.

Call this the base set.
ASSEMBLING THE BASE SET

• Root set typically 200-1000 nodes.

• Base set may have up to 5000 nodes.

• How do you find the base set nodes?
 • Follow out-links by parsing root set pages.
 • Get in-links (and out-links) from a \textit{connectivity server}.
 • (Actually, suffices to text-index strings of the form \texttt{href= "URL"} to get in-links to \texttt{URL}.)
DISTILLING HUBS AND AUTHORITIES

Compute, for each page x in the base set, a hub score $h(x)$ and an authority score $a(x)$.

1. Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;

2. Iteratively update all $h(x), a(x)$;

3. After iterations
 1. output pages with highest $h()$ scores as top hubs
 2. highest $a()$ scores as top authorities.
ITERATIVE UPDATE

Repeat the following updates, for all \(x \):

\[
h(x) \leftarrow \sum_{y} a(y)
\]

\[
a(x) \leftarrow \sum_{y} h(y)
\]
SCALING

To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration.

Scaling factor doesn’t really matter:

- we only care about the relative values of the scores.
• Claim: relative values of scores will converge after a few iterations:
 • in fact, suitably scaled, \(h() \) and \(a() \) scores settle into a steady state!
• We only require the relative orders of the \(h() \) and \(a() \) scores - not their absolute values.
• In practice, \(\sim 5 \) iterations get you close to stability.
THINGS TO NOTE

- Pulled together good pages regardless of language of page content.

- Use only link analysis after base set assembled
 - iterative scoring is query-independent.

- Iterative computation after text index retrieval - significant overhead.
PROOF OF CONVERGENCE

$n \times n$ adjacency matrix A:

- each of the n pages in the base set has a row and column in the matrix.
- Entry $A_{ij} = 1$ if page i links to page j, else $= 0$.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 \\
3 & 1 & 0 & 0 \\
\end{array} \]
HUB/AUTHORITY VECTORS

View the hub scores \(h() \) and the authority scores \(a() \) as vectors with \(n \) components.

Recall the iterative updates

\[
h(x) \leftarrow \sum_{y \leftarrow x} a(y)
\]

\[
a(x) \leftarrow \sum_{y \leftarrow x} h(y)
\]
REWRITE IN MATRIX FORM

• $h = Aa$.
• $a = A^t h$.

• Substituting, $h = AA^t h$ and $a = A^t Aa$.

• Thus, h is an eigenvector of AA^t and a is an eigenvector of $A^t A$.

• Further, our algorithm is a particular, known algorithm for computing eigenvectors: the power iteration method.

Guaranteed to converge.
ISSUES

Topic Drift

- Off-topic pages can cause off-topic “authorities” to be returned
 - E.g., the neighborhood graph can be about a “super topic”
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others’ scores
 - Linkage between affiliated pages is not a useful signal
LITERATURE

SLIDES CAN BE FOUND AT:
TEACHINGDATASCIENCE.ORG