MAPREDUCE & HADOOP

INTRODUCTION TO DATA SCIENCE

CARSTEN BINNIG

BROWN UNIVERSITY
WHAT IF WE HAVE TOO MUCH DATA?

Computations that need the power of many computers

To analyze large datasets

Using nodes (i.e. servers) in a cluster in parallel
WHAT IS MAPREDUCE?

Simple programming model for data-intensive computing on large commodity clusters

Pioneered by Google

• Processes PB’s of data of per day (e.g., process user logs, web crawls, …)

Popularized by Apache Hadoop project (Yahoo)

• Used by Yahoo!, Facebook, Amazon, …

Many other MapReduce-based frameworks today
WHAT IS MAPREDUCE USED FOR?

• **At Google:**
 – Index building for Google Search
 – Analyzing search logs (Google Trends)
 – Article clustering for Google News
 – Statistical language translation

• **At Facebook:**
 – Data mining
 – Ad optimization
 – Machine learning (e.g., spam detection)

...
EXAMPLE: GOOGLE TRENDS

https://www.google.com/trends/
WHAT ELSE IS MAPREDUCE USED FOR?

In research:

• Topic distribution in Wikipedia (PARC)
• Natural language processing (CMU)
• Climate simulation (UW)
• Bioinformatics (Maryland)
• Particle physics (Nebraska)
• <Your application here>
MAPREDUCE GOALS

• **Scalability to large data volumes:**
 – Scan 100 TB on 1 node @ 50 MB/s = 24 days
 – Scan on 1000-node cluster = 35 minutes

• **Cost-efficiency:**
 – Commodity nodes (cheap, but unreliable)
 – Commodity network (low bandwidth)
 – Automatic fault-tolerance (fewer admins)
 – Easy to use (fewer programmers)
ARCHITECTURE & PROGRAMMING MODEL

MAPREDUCE & HADOOP
HADOOP 1.0: ARCHITECTURE

Open-Source MapReduce System:

High-level Programming
- Hive ("SQL")
- Pig (Data-Flow)
- Others (Mahout, Giraph)

Distributed Execution
- MapReduce (Programming Model and Runtime System)

Distributed Storage
- Hadoop Distributed Filesystem (HDFS)
MAIN HADOOP COMPONENTS

HDFS = Hadoop Distributed File System

• Single namespace for entire cluster
• Replicates data 3x for fault-tolerance

MapReduce framework

• Runs jobs submitted by users
• Manages work distribution & fault-tolerance
• Co-locates work with file system
TYPICAL HADOOP CLUSTER

- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 Gbps bandwidth in rack, 8 Gbps out of rack
- Node specs (Facebook): 8-16 cores, 32 GB RAM, 8×1.5 TB disks, no RAID
TYPICAL HADOOP CLUSTER
CHALLENGES OF COMMODITY CLUSTERS

Cheap nodes fail, especially when you have many
- Mean time between failures for 1 node = 3 years
- MTBF for 1000 nodes = 1 day
- **Solution**: Build fault tolerance into system

Commodity network = low bandwidth
- **Solution**: Push computation to the data

Programming in a cluster is hard
- Parallel programming is hard
- Distributed parallel programming is even harder
- **Solution**: Restricted programming model: Users write data-parallel “map” and “reduce” functions, system handles work distribution and failures
HADOOP DISTRIBUTED FILE SYSTEM

- Files split into 64 MB blocks
- Blocks replicated across several datanodes (often 3)
- **Namenode** stores metadata (file names, locations, etc)
- Optimized for **large files**, sequential reads
- Files are **append-only**
Data type: key-value records

Map function:

\((K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter})\)

Reduce function:

\((K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out})\)
def mapper(line):
 foreach word in line.split():
 emit(word, 1)

def reducer(key, values): //values={1,1,1,...}
 emit(key, count(values))
WORD COUNT EXECUTION

Input:
- the quick brown fox
- the fox ate the mouse
- how now brown cow

Map:
- the, 1
- brown, 1
- fox, 1
- the, 1
- fox, 1
- the, 1
- how, 1
- now, 1
- brown, 1

Shuffle & Sort:
- brown, {1,1}
- fox, {1,1}
- ...
- ate, {1}
- cow, {1}
- ...
- now, 1
- the, 3

Reduce:
- brown, 2
- fox, 2
- how, 1
- now, 1
- the, 3

Output:
- brown, 2
- fox, 2
- how, 1
- now, 1
- the, 3
AN OPTIMIZATION: THE COMBINER

Local reduce function for repeated keys produced by same map
- For associative operations like sum, count, max
- Decreases amount of intermediate data

Example: local counting for Word Count:

```python
def combiner(key, values):
    output(key, sum(values))

def reducer(key, values):
    output(key, sum(values))
```
WORD COUNT WITH COMBINER

Input
- the quick brown fox
- the fox ate the mouse
- how now brown cow

Map
- the, 2
- brown, 1
- fox, 1

Shuffle & Sort

Reduce
- the, {2,1}

Output
- brown, 2
- fox, 2
- how, 1
- now, 1
- the, 3
- ate, 1
- cow, 1
- mouse, 1
- quick, 1
CLICKeR QUESTION

You want to implement the dot product $a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n$ of two large vectors $a=[a_1, a_2, \ldots, a_n]$ and $b=[b_1, b_2, \ldots, b_n]$. The input to the mapper is a pair (a_i, b_i).

Which of the following implementations is correct?

A)
```python
def mapper(a, b):
    emit(a*b, 1)

def reducer(key, values):
    emit(key, sum(values))
```

B)
```python
def mapper(a, b):
    emit(1, a+b)

def reducer(key, values):
    emit(key, sum(values))
```

C)
```python
def mapper(a, b):
    emit(1, a*b)

def reducer(key, values):
    emit(key, mult(values))
```

D)
```python
def mapper(a, b):
    emit(1, a*b)

def reducer(key, values):
    emit(key, sum(values))
```
MAPREDUCE EXECUTION DETAILS

Mappers preferentially scheduled on same node or same rack as their input block

- Minimize network use to improve performance

Mappers save outputs to local disk before serving to reducers

- Allows recovery if a reducer crashes

Reducers save outputs to HDFS
1. If a task crashes:

- Retry on another node
 - OK for a map because it had no dependencies
 - OK for reduce because map outputs are on disk
- If the same task repeatedly fails, fail the job or ignore that input block

➢ Note: For the fault tolerance to work, user tasks must be deterministic and side-effect-free
2. If a node crashes:

- Relaunch its current tasks on other nodes
- Relaunch also any maps the node previously ran
 - Necessary because their output files were lost along with the crashed node
3. If a task is going slowly (straggler):
 • Launch second copy of task on another node
 • Take the output of whichever copy finishes first, and kill the other one

Critical for performance in large clusters (many possible causes of stragglers)
TAKEAWAYS

By providing a restricted data-parallel programming model, MapReduce can control job execution in useful ways:

• Automatic division of job into tasks
• Placement of computation near data
• Load balancing
• Recovery from failures & stragglers
MAPREDUCE & HADOOP

SAMPLE APPLICATIONS
1. SEARCH

Input: (lineNumber, line) records
Output: lines matching a given pattern

Map:

\[
\text{if(line matches pattern):} \\
\text{output(line)}
\]

Reduce: identity function
- Alternative: no reducer (map-only job)
2. SORT

Input: (key, value) records
Output: same records, sorted by key

Map: identity function
Reduce: identity function

Trick: Pick partitioning function p such that $k_1 < k_2 \Rightarrow p(k_1) < p(k_2)$
3. INVERTED INDEX

Input: (filename, text) records
Output: list of files containing each word

Map:

```
foreach word in text.split():
    output(word, filename)
```

Combine: uniquify filenames for each word

Reduce:

```
def reduce(word, filenames):
    output(word, sort(filenames))
```
INVERTED INDEX EXAMPLE

hamlet.txt
 to be or not to be

12th.txt
 be not afraid of greatness

be, hamlet.txt
 to, hamlet.txt
 or, hamlet.txt

afraid, (12th.txt)
 be, (12th.txt, hamlet.txt)
 not, (12th.txt, hamlet.txt)

be, 12th.txt
 not, 12th.txt

afraid, 12th.txt
 of, 12th.txt

greatness, 12th.txt
 of, 12th.txt

not, (12th.txt, hamlet.txt)
 or, (hamlet.txt)

of, (12th.txt)
 to, (hamlet.txt)
4. MOST POPULAR WORDS

Input: (filename, text) records
Output: the 100 words occurring in most files

Two-stage solution:

• **MapReduce Job 1:**
 Create inverted index, giving (word, list(file)) records

• **MapReduce Job 2:**
 Map each (word, list(file)) to (count, word)
 Sort these records by count as in sort job
5. NUMERICAL INTEGRATION

Input: (start, end) records for sub-ranges to integrate

Output: integral of $f(x)$ over entire range

Map:

```python
def map(start, end):
    sum = 0
    for x = start; x < end; x += step):
        sum += f(x) * step
    emit(1, sum)
```

Reduce:

```python
def reduce(key, values):
    emit(key, sum(values))
```
HADOOP APIS
INTRODUCTION TO HADOOP

Download from hadoop.apache.org

To install locally, unzip and set JAVA_HOME

Docs: hadoop.apache.org/common/docs/current

Three ways to write jobs:

• Java API
• Hadoop Streaming (for Python, Perl, etc.): Uses std.in and out
• Pipes API (C++)
public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable ONE = new IntWritable(1);

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 output.collect(new Text(itr.nextToken()), ONE);
 }
 }
}
public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}
public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 conf.setMapperClass(MapClass.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);

 FileInputFormat.setInputPaths(conf, args[0]);
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class); // out keys are words (strings)
 conf.setOutputValueClass(IntWritable.class); // values are counts

 JobClient.runJob(conf);
}
import sys
for line in sys.stdin:
 for word in line.split():
 print(word.lower() + "\t" + 1)

import sys
counts = {}
for line in sys.stdin:
 word, count = line.split("\t")
 dict[word] = dict.get(word, 0) + int(count)
for word, count in counts:
 print(word.lower() + "\t" + 1)
MOTIVATION

MapReduce is powerful: many algorithms can be expressed as a series of MR jobs.

But it’s fairly low-level: must think about keys, values, partitioning, etc.

Can we capture common “job patterns”?
PIG

Started at Yahoo! Research

Runs about 50% of Yahoo!’s jobs

Features:

• Expresses sequences of MapReduce jobs
• Data model: nested “bags” of items
• Provides relational (SQL) operators (JOIN, GROUP BY, etc)
• Easy to plug in Java functions
AN EXAMPLE PROBLEM

Suppose you have user data in one file, website data in another, and you need to find the top 5 most visited pages by users aged 18-25.

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt
IN PIG LATIN

Users = load ‘users’ as (name, age);
Filtered = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,
 count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt
Notice how naturally the components of the job translate into Pig Latin.

```
Users = load ...
Filtered = filter ...
Pages = load ...
Joined = join ...
Grouped = group ...
Summed = ... count()...
Sorted = order ...
Top5 = limit ...
```

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt
Notice how naturally the components of the job translate into Pig Latin.

\[
\begin{align*}
\text{Users} &= \text{load } \ldots \\
\text{Filtered} &= \text{filter } \ldots \\
\text{Pages} &= \text{load } \ldots \\
\text{Joined} &= \text{join } \ldots \\
\text{Grouped} &= \text{group } \ldots \\
\text{Summed} &= \ldots \text{count()} \ldots \\
\text{Sorted} &= \text{order } \ldots \\
\text{Top5} &= \text{limit } \ldots
\end{align*}
\]
HIVE

Developed at Facebook

Used for most Facebook jobs

SQL-like interface built on Hadoop

- Maintains table schemas
- SQL-like query language (which can also call Hadoop Streaming scripts)
- Supports table partitioning, complex data types, sampling, some query optimization
MapReduce’s data-parallel programming model hides complexity of distribution and fault tolerance

Principal philosophies:

• *Make it scale*, so you can throw hardware at problems
• *Make it cheap*, saving hardware, programmer and administration costs (but necessitating fault tolerance)

Hive and Pig further simplify programming

MapReduce is not suitable for all problems, but when it works, it may save you a lot of time
RECENT TRENDS
OTHER SYSTEMS

More general execution engines

- **Dryad** (Microsoft): general task DAG
- **S4** (Yahoo!): streaming computation
- **Pregel** (Google): in-memory iterative graph algs.
- **Spark** (Berkeley): general in-memory computing

Language-integrated interfaces

- Run computations directly from host language
- **DryadLINQ** (MS), **FlumeJava** (Google), **Spark**
SPARK MOTIVATION

MapReduce simplified “big data” analysis on large, unreliable clusters

But as soon as organizations started using it widely, users wanted more:

- More complex, multi-stage applications
- More interactive queries
- More low-latency online processing
Complex jobs, interactive queries and online processing all need one thing that MR lacks:

Efficient primitives for data sharing
EXAMPLES

Problem: in MR, only way to share data across jobs is stable storage (e.g. file system) -> slow!
GOAL: IN-MEMORY DATA SHARING

Input

one-time processing

Distributed memory

iter. 1

iter. 2

...

query 1

query 2

query 3

...

10-100× faster than network and disk
SOLUTION: RESILIENT DISTRIBUTED DATASETS (RDDs)

Partitioned collections of records that can be stored in memory across the cluster

Manipulated through a diverse set of transformations (map, filter, join, etc)

Fault recovery without costly replication

- Remember the series of transformations that built an RDD (its lineage) to recompute lost data
EXAMPLE: LOG MINING

Load error messages from a log into memory, then interactively search for various patterns

```scala
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split(\t')(2))
messages.cache()

messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
EXAMPLE: LINEAR REGRESSION

Find best line separating two sets of points

random initial line

target
val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
    val gradient = data.map(p =>
        (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
    ).reduce(_ + _)
    w -= gradient
}

println("Final w: " + w)
LINEAR REGRESSION PERFORMANCE

Running Time (s)

Number of Iterations

127 s / iteration

first iteration 174 s
further iterations 6 s
OTHER PROJECTS

Hive on Spark (SparkSQL): SQL engine

Spark Streaming: incremental processing with in-memory state

MLLib: Machine learning library

GraphX: Graph processing on top of Spark
OTHER RESOURCES

Hadoop: http://hadoop.apache.org/common
Pig: http://hadoop.apache.org/pig
Hive: http://hadoop.apache.org/hive
Spark: http://spark-project.org

Hadoop video tutorials: www.cloudera.com/hadoop-training

Amazon Elastic MapReduce: http://aws.amazon.com/elasticmapreduce/