
CSCI1950-Z Phylogeny Assignment

February 7, 2009

1 Overview

You are presented with a suspected tree topology of the arthropod phylum by none other than Dr. Ben-
jamin J. Raphael, Ph. D. The good doctor has meticulously observed a huge bunch of species to see if there
male and female progeny have wings, no wings, or a partial winged growth. Using unknown and possible
UNKNOWABLE heuristics, Ben has constructed a binary tree with these species as leaves and ancestors as
internal nodes.

Ben wants to know when the winged phenotype emerged in the evolution of the species.
Moreover, did this phenotype emerge/mutate more than once?

However, such plodding arithmetic such as the Sankoff and Felsenstein algorithms bores Ben. Your task
is: for each internal node of the tree Ben gives you, infer the ancestral state of each node, i.e. the vector

(

male wing value

female wing value

)

To do this you will implement both the Sankoff recurrence and the Felsenstein maximum likelihood algo-
rithms over the fixed tree topology.

We have additionally included a DNA-based data set to show you the power of your algorithms, but it
is a toy example not based on data.

2 Sankoff

You will implement the Sankoff algorithm, which is covered in the slides and reading. Note that our data
set will send as a parameter the Fitch-equivalent matrix, but you should code for any general m×m matrix
where there are m possible characters.

The method signature is

public void sankoff(LinkedBinaryTree<PSpeciesNode> tree, HashMap<ZCharacter, Integer>

stateIndices, int[] [] costMatrix, int sequenceLength)

• tree is the fixed tree topology, an instance of net.datastructures.LinkedBinaryTree

• stateIndices is a mapping from the character states to their matrix indices, and it is guaranteed to
have all of the relevant character states and none additional

• costMatrix is your scoring matrix

• sequenceLength is the length of characters in the sequence vector (for convenience)

• The method stores sequences at the PSpeciesNodes (see 5.2). It does not return a value.

In order to get the correct cost for any transition, do the following array lookup:

costMatrix[stateIndices.get(parent)][stateIndices.get(child)]

1



CSCI1950-Z Phylogeny Assignment

3 Felsenstein

Note that this algorithm computes the node labelings such as to get maximum likelihood. The method
signature is

public void felsenstein(LinkedBinaryTree<PSpeciesNode> tree, HashMap<ZCharacter,

Integer> stateIndices, double[] [] transitionProb, int sequenceLength)

• tree is as above

• stateIndices is as above

• transitionProb is the matrix of character state transition probabilities

• sequenceLength is the number of characters in the sequence vector (for convenience)

Note that we are calculating Pr [x | y, t] slightly differently than shown in the slides for Lecture 2. You are
not required to take into consideration the branch lengths t. Thus

Pr [x | y, t] = transitionProb[stateIndices.get(y)][stateIndices.get(x)]

We apologize for the [y][x] convention, but this maintains consistency with [parent][child] in Sankoff.

4 Winged Data Set

Ben’s problem comes from a real study of insects. ant data displays the data set. The leaves of the data
set are labeled <Name> <unique integer> {<CHAR1>, <CHAR2>} where CHAR1 = male phenotype, CHAR2 =
female phenotype. PARTIAL indicates partial wing growth. Note that the male and female phenotypes may
differ, and this may be part of your analysis. Most of the internal nodes are not labeled – except for <unique
integer> – because the species are inferred and not known. However, you may want to refer to nodes by
their identifying integer in your analysis.

Summary: run ant data

2



CSCI1950-Z Phylogeny Assignment

5 Implementation Detail

5.1 Your Code

You need only write your algorithms to src/cs195z/phylogeny/PStudentTreeAlgorithms.java. You may
write anything you want to that directory. No modifications to the support code are necessary, but the
source is included.

5.2 CS195Z Support Code

Five classes make up the cs195.support package. Javadocs are available on the website’s ”Assignments”
page.

• PDataSet generates the data set.

• PSpeciesNode is the main class that you are going to interact with! It stores the sequence represented
by each species. It also includes separate storage arrays for Sankoff costs and Felsenstein likelihoods.
All of the results of your algorithm will reside in this class. The leaf nodes will start with a character
sequence that you getSequence(); at internal nodes you will either add to the back or set the sequence.
It is imperative that you familiarize yourself with the Javadoc of this class first.

• PTreeAlgorithms is the interface for your code.

• PTreeVisualizer starts the visualizer for your tree after you label it.

• ZCharacter is an enum of biological characters. The ones used in the Ben’s problem data set are
WING, NO WING, PARTIAL, but any of these characters are valid for a sequence.

5.3 Other Code

5.3.1 NDS4 Data Structures

The LinkedBinaryTree originates in the NDS4 package. Please refer to the link to the Javadoc on the
Assignments page. Use the methods that will make it easiest to code! Each position in the tree holds an
element of type PSpeciesNode. You do not need to modify the tree, but you will use it to get references to
the correct node elements. Your implementation will leave its results in the PSpeciesNodes.

5.3.2 A Tree Viewer (ATV)

You need not worry about ATV, which is a wonderful tree viewer with lots of features. The support code
automatically translates your LinkedBinaryTree into the format for ATV.

6 Running It!

6.1 Code Acquisition

The code and ant script is in the /course/cs195z/pub directory on the CS servers. We recommend the
following, first making yourself a cs195z directory in the place of your choice:

mkdir cs195z

cp -r /course/cs195z/pub/* cs195z/

Once you have the files, you can develop on any system you want. If you object to acquiring the files from
the CS department, apstewar can email them to you (but they will not be posted to the website).

The project requires cs195zlib.jar in your classpath. If you use the included ant script then you do not
need to worry about the classpath. You can omit copying cs195zlib.jar if you work on the department
servers, otherwise just copy it and it will work.

3



CSCI1950-Z Phylogeny Assignment

6.2 Compiling and Running

An Ant build script is included to compile and then run the visualizer. In the directory with the build.xml

file, run one of the following commands:

• ant data Displays the input data set. You can do this first for a flavor of the problem. If you are on
the department servers, this will work even if your code won’t compile.

• ant sankoff Runs the Sankoff algorithm then displays it.

• ant felsenstein Runs the Felsenstein algorithm then displays it.

• ant dataDNA,ant sankoffDNA, and ant felsensteinDNA test the additional DNA data set.

7 Submission

The project is due by 11:59pm on Monday, February 23.

You will submit it by emailing it to cs195ztas@cs.brown.edu – please do not use the headta alias as
it will inundate the staff. Include the following:

1. The minimal source code .java to complete the project. No need to send libraries/support code.

2. A README file with (1) a detailed paragraph answering Ben’s question (see 1, bold) on the winged
datas et, (2) 2-3 sentences about your code structure, (3) 3-4 sentences comparing the results of the
Sankoff and Felsenstein runs with explanation and (4) optionally any bugs or other concerns.

8 Evaluation

Evaluation is performed on the following four bases:

1. Correctness (50%) – The algorithm works on arbitrary (but valid) test data sets and provides in each
case a minimum parsimony score or maximum likelihood assignment solution (objective).

2. Logical adherence to algorithm (30%) – We should be able to clearly identify how your code performs
precisely the expected algorithm. We take into consideration appropriate commenting, good structure,
and no introduced inefficiencies.

3. Generality (15%) – Your implementation of the algorithm should work for the general case of input
and all valid edge cases.

4. README (5%) – Must exist and follow the above specification.

Note that performance is not part of the evaluation, but poor performance could be a result of a problem
with 2.

9 Errata

• There could be multiple labelings that achieve min-parsimony score or max-likelihood, so just choose
one. We will take this into account.

• All the trees you are responsible for have internal nodes with two children and leaves with zero children.

• You don’t have to do null checking ad nauseum - it is guaranteed that your HashMaps will take into
account all of the ZCharacters you need and none you don’t, etc.

• Please, please implement the traceback without using pointers.

• Good luck!

4


	Overview
	Sankoff
	Felsenstein
	Winged Data Set
	Implementation Detail
	Your Code
	CS195Z Support Code
	Other Code
	NDS4 Data Structures
	A Tree Viewer (ATV)


	Running It!
	Code Acquisition
	Compiling and Running

	Submission
	Evaluation
	Errata

