
CS195V Week 9
GPU Architecture and Other Shading
Languages

GPU Architecture

● We will do a short overview of GPU
hardware and architecture
○ Relatively short journey into hardware, for more in

depth information, check out...
○ http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/lectures/07_gpucore.pdf

○ http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

● We will look in to some old GPU
architectures and how they have evolved
over the years

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.cmu.edu%2Fafs%2Fcs.cmu.edu%2Facademic%2Fclass%2F15869-f11%2Fwww%2Flectures%2F07_gpucore.pdf&sa=D&sntz=1&usg=AFQjCNGsZibA42ZPLWr3Jxh5z1MAZqQ1Aw
http://www.google.com/url?q=http%3A%2F%2Fs08.idav.ucdavis.edu%2Fluebke-nvidia-gpu-architecture.pdf&sa=D&sntz=1&usg=AFQjCNHSH2qQbPsyOAM-qizij0YDnZsPOA

Comparison of rendering pipelines through the ages
(ignore the Larrabee stuff)

Older Architectures

● Fixed function architecture
○ You'll see dedicated units for vertex and fragment

processing
○ In even earlier architectures, you would see more

rigid blocks in vertex and fragment stages because
there were no shaders

● Even at this point, we see notions of
parallelism
○ There are multiples of each of these fixed function

units
○ Vendors would boast the number of "pixel pipelines"

they had

Older Processors

● Fixed function units were implemented either
directly in hardware or hardware-level
instructions

● At this point, you didn't really have to worry
about giving instructions (i.e. programs) to
the individual units on how to operate

Programmable Shading

● With the advent of programmable shading,
the overall structure of the pipeline remains
the same, but programmable units replace
the fixed function units
○ Requires some extra hardware for managing

instruction fetches
○ These programmable units operate much like a

normal processor, with the usual pipeline stages that
you might expect in a processor (fetch, decode,
ALU, memory, etc.)

Old(er) Architecture - Geforce 6 Series

● As OpenGL/Direct3D added more shader
stages (geometry, tessellation), the
architecture needed to expand to include the
necessary hardware

● Add more programmable stages in the
corresponding locations in the pipeline

● At this point, vertex/fragment/geometry units
are programmable, but only with their
respective shader code
○ So you couldn't run vertex shader code on a

fragment unit

Adding More Stages

● With the NVIDIA 8 series cards (and some
AMD card I don't remember), graphics
architecture moved to generic "shader units"
rather than programmable units for each
stage
○ These shader units can run shaders from any stage

● Since these units are generic, what's to say
they can't run arbitrary computations?
○ HMMM?????? MAYBE THAT HAS SOME

APPLICATIONS I DON'T KNOW

Unified Architecture

● Since the units can run any type of shader,
you can maximize use of hardware
regardless of the program's emphasis on a
particular type of operation
○ Previously, if you had an application with

disproportionately many fragment operations, you
would have some vertex processors sitting around
doing nothing

● Allows hardware to balance the workload to
improve performance

Gains from Unified Architecture

Streaming Multiprocessors

● These generic processing units are called
streaming multiprocessors (SM)

● Each SM has its own hardware for fetching
and decoding instructions
○ Scheduling, dispatch, etc.

● It has its own register block
● Various memory and other units

○ The Fermi chips have "special function units" for
things like trig functions and "Load/Store" units for
memory operations

● Also some shared cache

The Cores

● A single SM owns a number of compute
cores (AMD calls them stream processors,
NVIDIA uses both stream processor and
CUDA core)
○ In the Fermi cards, 32 cores per SM, 16 SM, so 512

cores on the card total
● This means that the SM will give the same

program to all of its cores, which will all
execute in parallel
○ Parallelism within parallelism!

High level view of GPU core (right)
View of a single streaming multiprocessor (left)

● So given this architecture, what kind of
applications run well on it?

● Parallelizable ones, obviously, but what
else?

● What kind of programming conventions
cross over well? What kinds of operations
are more or less costly for this versus a
traditional CPU?

Writing Applications for GPUs

Branching

● Say we have one of our streaming
multiprocessors from above
○ Instructions and memory are shared between the

compute cores
● If our program has branching, some of the

cores may take the branch, while some do
not

● In this case, some cores may finish
execution before others, and will have to
wait since the SM as a whole has to finish all
of its operations before moving on

More Branching

● In the worst case, one thread lags behind
the others, makes them wait
○ Can lead to significant performance losses

● In general, we do not branch as often in our
GPU code, though you can certainly do it
○ Especially if the time to complete both branches is

roughly equal

Computation versus Memory

● As we know, the GPU has lots of memory
and lots of memory bandwidth
○ Has to deal with lots of operations on large textures

quite often
● However, the actual memory bandwith is

only 6-8 times larger than CPU
○ But there are hundreds of cores which may want to

use this bandwidth
○ In contrast, 20+x the raw computational power

● Thus, memory usage is perhaps one of the
most important considerations in writing
GPU programs

Memory Operations, cont.

● There are many operations both in software
and hardware to minimize memory accesses
and make them fast
○ This is part of why images are so gimmicky
○ Texture fetches in batches, reordering of memory

operations, cache coherency
● Memory bandwidth is a precious commodity

in GPU programs, so use it well...
● Also important from a power perspective

○ Moving data across the GPU die uses significantly
more power than a single arithmetic operation

Compute-heaviness

● If you look at your average shader, you will
probably see many more compute
operations than memory operations

● Since we have so much raw compute power
available, we favor applications that have a
large compute/memory ratio

● However, precomputing some parameters
may lead to performance gains as well

● Balancing what to do when is also an
important skill

Some other stuff...

● Warps(NV) and Wavefronts(AMD): groups of
parallel threads that execute the same
instruction
○ These would be assigned to a single streaming

multiprocessor
● A single SM can interleave between many of

these Warps/Wavefronts, allowing for
parallel execution of thousands of threads
○ ex. the Fermi chips interleave 48 warps per SM
○ 16 SM x 48 warps x 32 threads/warp = 24576

threads

Shading Languages

● Cook and Perlin were the first to develop
languages for running shader computations
○ Perlin computed noise functions procedurally,

introducing control constructs
○ Cook developed shade trees

● These ideas led to the development of
Renderman at Pixar (Hanrahan et. al) in
1988

● Most shader languages today are similar - all
C like languages
○ This is good - once you know one, you pretty much

know them all

Real-time Shading Languages
● ARB Assembly

○ Standardized in 2002 as a low level instruction set for
programming GPUs

○ Higher level shader languages (HLSL/Cg) compile to
ARB for loading and execution

● GLSL
○ Shading language for OpenGL programs (hopefully you

know what this is)
● HLSL

○ Probably GLSL's main competitor, High Level Shader
Language (HLSL) is essentially DirectX's version of GLSL

● Cg
○ "C for graphics" shader language developed by NVIDIA

which can be compiled for both DirectX and OpenGL
programs

Offline Shading Languages

● RSL
○ Renderman shading language, probably the most

common offline shading language
○ One of the first higher level shading langauges

● Houdini VEX
● Gelato

RenderMan Shading Language

● Six shader types
○ Lights, surfaces, displacements, deformation,

volume, imager
● Key idea: separate surface shader from light

source shaders

Displacement

Surface

Atmosphere

External Volume

Internal Volume

Lights

Reflected ray color Attenuated reflection

Attenuated
transmission

Light color

Transmitted ray color
Surface color

Apparent surface color

Renderman Shading Language

Some built in variables
P - surface position
N - shading normal
E - eye point
Cs - surface color
Os - surface opacity
L, Cl - light vector and color

Renderman Shading Language
(Light Shader)

● The illuminate statement specifies light cast
be local light sources

● There is also the solar statement for distant
light sources

light pointlight(float intensity = 1;
color lightcolor = 1;
point from = point "shader" (0,0,0);)

{
illuminate(from)

Cl = intensity * lightcolor / (L . L);
}

Renderman Shading Language
surface diffuse(color Kd)
{

Ci = 0;
// integrate light over hemisphere
illuminance (P, Nn, Pi/2)
{

Ci += Kd * Cl * (Nn . normalize(L));
}

}

● The surface shader outputs Ci
● Cl is computed by the light shader

GLSL

● By now you know more than you want to
about GLSL

● GLSL is cross platform - each hardware
vendor includes the compiler in their driver
○ Allows vendor to optimize their compiler for their

hardware
○ GLSL compilers compile your program directly down

to machine code (not true of HLSL / Cg which first
compile to assembly)

○ But causes fragmentation between vendors (and
some things may or may not work on different cards
/ manufacturers)

HLSL

● Developed alongside the NVIDIA Cg shader
language and is very similar

● Tightly integrated with the DirectX framework
● Versions are specified via the shader model

○ ex. Shader Model 1 specifies shader profiles
vs_1_1, and Shader Model 5 (current iteration)
specifies cs_5_0, ds_5_0, etc.

● HLSL has six different shader stages
○ Vertex, Hull, Domain, Geometry, Pixel, Compute
○ Compute shader is the main difference between

GLSL stages vs HLSL stages
● HLSL, unlike GLSL can define states in the shader

HLSL

● HLSL shaders are stored in an "effect" file
● Each effect file can contain multiple

techniques
○ If more than one technique is specified, it will use

other techniques if one technique fails due to
inappropriate hardware

● Each technique can be composed of multiple
passes
○ Each runs through the shader pipeline once
○ Passes can be blended or accumulated into a

framebuffer

HLSL Texture Mapping

struct VS_INPUT // vs input format
{

float4 p : POSITION0;

float2 t : TEXCOORD;

float3 n : NORMAL;
};

struct PS_INPUT // ps input format
{

float4 p : SV_POSITION;

float2 t : TEXCOORD0;
};

matrix World, View, Projection;

Texture2D colorMap;

SamplerState linearSampler // texture
sampler

{

 Filter = min_mag_mip_linear;

 AddressU = Clamp;

 AddressV = Clamp;

 MaxAnisotropy = 16;

};

RasterizerState rsSolid // rasterizer state
{

 FillMode = Solid;

 CullMode = NONE;

 FrontCounterClockwise = false;

};

HLSL Texture Mapping
PS_INPUT VS_SIMPLE(VS_INPUT input)
{

PS_INPUT_PV output;
//transform position to clip space

input.p = mul(input.p, World);

output.p = mul(input.p, View);

output.p = mul(output.p, Projection);

output.t = input.t;

return output;

}

float4 PS_SIMPLE(PS_INPUT input) : SV_Target
{

return colorMap.Sample(linearSampler,
input.t);

}

technique10 SIMPLE {

 pass P0
 {

 SetVertexShader(CompileShader
(vs_4_0, VS_SIMPLE()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0,
PS_SIMPLE()));

 SetRasterizerState(rsSolid);

 }

}

HLSL

● Note how similar this is to GLSL
● The compute shader (CS), is a new shader

stage introduced in DX11
○ I imagine OpenGL / GLSL will come out with

something similar soon - for now you have to switch
into CUDA or OpenCL to run compute

● Also known as DirectCompute techhnology
● Integrated with Direct3D for efficient interop

with the graphics pipeline
● Exposes much more general compute

capability

Cg

● Evolved from RTSL from Stanford
● Platform and card neutral shader language

○ In practice Cg tends to work better on NVIDIA cards
(I wonder why?)

● Interestingly there is an NVIDIA Cg compiler
which can (when configured properly) take
HLSL code and output OpenGL compatible
shader code

● It looks very similar to HLSL

