CS195V Week 9

GPU Architecture and Other Shading
Languages

GPU Architecture

e \We will do a short overview of GPU

hardware and architecture

o Relatively short journey into hardware, for more in
depth information, check out...

O http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/lectures/07 gpucore.pdf

O http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

e We will look in to some old GPU
architectures and how they have evolved
over the years

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.cmu.edu%2Fafs%2Fcs.cmu.edu%2Facademic%2Fclass%2F15869-f11%2Fwww%2Flectures%2F07_gpucore.pdf&sa=D&sntz=1&usg=AFQjCNGsZibA42ZPLWr3Jxh5z1MAZqQ1Aw
http://www.google.com/url?q=http%3A%2F%2Fs08.idav.ucdavis.edu%2Fluebke-nvidia-gpu-architecture.pdf&sa=D&sntz=1&usg=AFQjCNHSH2qQbPsyOAM-qizij0YDnZsPOA

Graphics Rendering Pipelines

Frame Buffer

Pre-1980’s
Customized
Software

Rendering Frame Buffer
[Blend _ Frame Buffer

‘Blend

Frame Buffer Frame Buffer Erame Buffer

Pre 2001 DX8-DX10 Larrabee

Comparison of rendering pipelines through the ages
(ignore the Larrabee stuff)

1

Frame Buffer

Alternative
Larrabee:
Customized
Pipeline

Older Architectures

e Fixed function architecture
o You'll see dedicated units for vertex and fragment
processing
o |n even earlier architectures, you would see more
rigid blocks in vertex and fragment stages because
there were no shaders

o Even at this point, we see notions of

parallelism
o There are multiples of each of these fixed function
units

o Vendors would boast the number of "pixel pipelines"
they had

Older Processors

e Fixed function units were implemented either
directly in hardware or hardware-level
Instructions

e At this point, you didn't really have to worry
about giving instructions (i.e. programs) to
the individual units on how to operate

Programmable Shading

e With the advent of programmable shading,
the overall structure of the pipeline remains
the same, but programmable units replace

the fixed function units
o Requires some extra hardware for managing

instruction fetches

o These programmable units operate much like a
normal processor, with the usual pipeline stages that
you might expect in a processor (fetch, decode,

ALU, memory, etc.)

Vertex Processing

1

=

Cull / Clip / Setup
i

=—= Hasterization

+

I-Compare
and Blend

Old(er) Architecture - Geforce 6 Series

Adding More Stages

e As OpenGL/Direct3D added more shader
stages (geometry, tessellation), the
architecture needed to expand to include the
necessary hardware

e Add more programmable stages in the
corresponding locations in the pipeline

e At this point, vertex/fragment/geometry units
are programmable, but only with their

respective shader code

o So you couldn't run vertex shader code on a
fragment unit

Unified Architecture

e \With the NVIDIA 8 series cards (and some
AMD card | don't remember), graphics
architecture moved to generic "shader units"
rather than programmable units for each
stage
o These shader units can run shaders from any stage

e Since these units are generic, what's to say
they can't run arbitrary computations?

APPLICATIONS | DON'T KNOW

Gains from Unified Architecture

e Since the units can run any type of shader,
you can maximize use of hardware
regardless of the program's emphasis on a

particular type of operation
o Previously, if you had an application with
disproportionately many fragment operations, you

would have some vertex processors sitting around
doing nothing

e Allows hardware to balance the workload to
Improve performance

Streaming Multiprocessors

e These generic processing units are called
streaming multiprocessors (SM)

e Each SM has its own hardware for fetching
and decoding instructions
O Scheduling, dispatch, etc.

e It has its own register block

e \arious memory and other units

O The Fermi chips have "special function units" for
things like trig functions and "Load/Store" units for
memory operations

e Also some shared cache

The Cores

e A single SM owns a number of compute
cores (AMD calls them stream processors,

NVIDIA uses both stream processor and
CUDA core)

o |In the Fermi cards, 32 cores per SM, 16 SM, so 512
cores on the card total

e This means that the SM will give the same

program to all of its cores, which will all
execute in parallel
o Parallelism within parallelism!

Host Interface
GPC
Raster Engine
= E = =

SM SMm SM SM

.| I I ||

L1 1 1 e & I 1 _§m | B | & I I J] |

. | I N |||
_ ;
8 3
o =g =g =g =il 3
‘E = = - [}
° '2
O O
2 S
o =
E S
= 5

I | Y | D |

I | T ||| _

I || | P |
- | I | N |
2 . =
[3
- o | e S e e e e e e — e 0 [«}
S 11 3
O (2]
> ' | , 3
o =
E S
= =

I || T | N ||

64 KB Shared Memory / L1 Cache I S E— — I — —
_ _
Uniform Cache 2t <
Raster Engine
Fermi Streaming Multiprocessor (SM) =: Eg:,'ﬁ,';,“;‘::.'.‘. i

High level view of GPU core (right)
View of a single streaming multiprocessor (left)

Writing Applications for GPUs

e So given this architecture, what kind of
applications run well on it?

e Parallelizable ones, obviously, but what
else?

e \What kind of programming conventions
cross over well? What kinds of operations

are more or less costly for this versus a
traditional CPU?

Branching

e Say we have one of our streaming

multiprocessors from above
o |Instructions and memory are shared between the
compute cores

e |f our program has branching, some of the
cores may take the branch, while some do
not

e In this case, some cores may finish
execution before others, and will have to
wait since the SM as a whole has to finish all
of its operations before moving on

More Branching

e In the worst case, one thread lags behind

the others, makes them wait
o Can lead to significant performance losses

e |n general, we do not branch as often in our
GPU code, though you can certainly do it

o Especially if the time to complete both branches is
roughly equal

Computation versus Memory

e As we know, the GPU has lots of memory

and lots of memory bandwidth

o Has to deal with lots of operations on large textures
quite often

e However, the actual memory bandwith is
only 6-8 times larger than CPU

o But there are hundreds of cores which may want to
use this bandwidth
o In contrast, 20+x the raw computational power

e Thus, memory usage is perhaps one of the
most important considerations in writing
GPU programs

Memory Operations, cont.

e There are many operations both in software
and hardware to minimize memory accesses

and make them fast

o This is part of why images are so gimmicky

o Texture fetches in batches, reordering of memory
operations, cache coherency

e Memory bandwidth is a precious commodity
in GPU programs, so use it well...

e Also important from a power perspective
o Moving data across the GPU die uses significantly
more power than a single arithmetic operation

Compute-heaviness

e |f you look at your average shader, you will
probably see many more compute
operations than memory operations

e Since we have so much raw compute power
available, we favor applications that have a
large compute/memory ratio

e However, precomputing some parameters
may lead to performance gains as well

e Balancing what to do when is also an
important skill

Some other stuff...

e Warps(NV) and Wavefronts(AMD): groups of

parallel threads that execute the same
Instruction

O These would be assigned to a single streaming
multiprocessor

e A single SM can interleave between many of
these Warps/Wavefronts, allowing for
parallel execution of thousands of threads

O ex. the Fermi chips interleave 48 warps per SM

o 16 SM x 48 warps x 32 threads/warp = 24576
threads

Shading Languages

e Cook and Perlin were the first to develop

languages for running shader computations

o Perlin computed noise functions procedurally,
iIntroducing control constructs
o Cook developed shade trees

e These ideas led to the development of
Renderman at Pixar (Hanrahan et. al) in
1988

e Most shader languages today are similar - all

C like languages

o This is good - once you know one, you pretty much
know them all

Real-time Shading Languages

e ARB Assembly
o Standardized in 2002 as a low level instruction set for
programming GPUs
o Higher level shader languages (HLSL/Cg) compile to
ARB for loading and execution
e GLSL
o Shading language for OpenGL programs (hopefully you
know what this is)
e HLSL
o Probably GLSL's main competitor, High Level Shader
Language (HLSL) is essentially DirectX's version of GLSL
e Cg
o "C for graphics" shader language developed by NVIDIA
which can be compiled for both DirectX and OpenGL
programs

Offline Shading Languages

e RSL

o Renderman shading language, probably the most
common offline shading language
o One of the first higher level shading langauges

e Houdini VEX
e Gelato

®rixaArRs
RenderMan

RenderMan Shading Language

e Six shader types
o Lights, surfaces, displacements, deformation,
volume, imager

o Key idea: separate surface shader from light
source shaders

Reflected ray color Attenuated reflection
External Volume Displacement

Transmitted ray color Attenuatec * Apparent surface color
Internal Volume @"s™ss" ~ Surface Surface color - Atmosphere
Lights

Light color

Renderman Shading Language

Some built in variables
P - surface position
N - shading normal
E - eye point
Cs - surface color
Os - surface opacity
L, CI - light vector and color

Renderman Shading Language

(Light Shader)

light pointliight(float intensity = 1;
color lightcolor = 1;
point from = point '"shader" (0,0,0);)

{

illuminate (from)
Cl = intensity * lightcolor / (L . L);
}

e The illuminate statement specifies light cast
be local light sources

e There is also the solar statement for distant
light sources

Renderman Shading Language

surface diffuse(color Kd)
{
Ci = 0;
// integrate light over hemisphere
illuminance (P, Nn, Pi/2)
{
Ci += Kd * C1 * (Nn . normalize(L));
}
}

e The surface shader outputs Ci
e Clis computed by the light shader

e By now you know more than you want to
about GLSL
e GLSL is cross platform - each hardware

vendor includes the compiler in their driver
o Allows vendor to optimize their compiler for their

O

hardware

GLSL compilers compile your program directly down
to machine code (not true of HLSL / Cg which first
compile to assembly)

But causes fragmentation between vendors (and
some things may or may not work on different cards

/ manufacturers)

HLSL

e Developed alongside the NVIDIA Cg shader
language and is very similar
e Tightly integrated with the DirectX framework
e \ersions are specified via the shader model
o ex. Shader Model 1 specifies shader profiles
vs_1 1, and Shader Model 5 (current iteration)
specifies cs 5 0,ds 5 0O, etc.
e HLSL has six different shader stages
o Vertex, Hull, Domain, Geometry, Pixel, Compute
o Compute shader is the main difference between
GLSL stages vs HLSL stages
e HLSL, unlike GLSL can define states in the shader

HLSL

e HLSL shaders are stored in an "effect" file
e Each effect file can contain multiple

techniques

o If more than one technique is specified, it will use
other techniques if one technique fails due to
iInappropriate hardware

e Each technique can be composed of multiple

pPasSes

o Each runs through the shader pipeline once

o Passes can be blended or accumulated into a
framebuffer

HLSL Texture Mapping

matrix World, View, Projection; struct VS INPUT // vs input format

Texture2D colorMap; {

SamplerState linearSampler // texture floatd p : POSITIONO;
sampler

float2 t : TEXCOORD;
{

float3 n : NORMAL;
Filter = min mag mip linear;

AddressU
AddressV

b

Clamp;

Clamp; struct PS INPUT // ps input format

MaxAnisotropy = 16; {

bi float4 p : SV POSITION;

float2 t : TEXCOORDO;
RasterizerState rsSolid // rasterizer state

{

FillMode Solid;
CullMode = NONE;

FrontCounterClockwise = false;

b

HLSL Texture Mapping

PS_INPUT VS SIMPLE(VS_INPUT input) techniquel0 SIMPLE
{ pass PO
PS_INPUT PV output; {

SetVertexShader (CompileShader
(vs_4 0, VS SIMPLE()));

SetGeometryShader (NULL) ;

. . SetPixelShader (CompileShader (ps 4 O,
output.p = mul (output.p, Projection); PS SIMPLE())) ; - -

//transform position to clip space
input.p = mul (input.p, World);
output.p = mul (input.p, View);

output.t = 1input.t; SetRasterizerState (rsSolid) ;

return output; }

float4 PS SIMPLE(PS INPUT input) : SV Target
{

return colorMap.Sample(linearSampler,
input.t);

}

HLSL

e Note how similar this is to GLSL
e The compute shader (CS), is a new shader

stage introduced in DX11

o | imagine OpenGL / GLSL will come out with
something similar soon - for now you have to switch
into CUDA or OpenCL to run compute

e Also known as DirectCompute techhnology

e |ntegrated with Direct3D for efficient interop
with the graphics pipeline

e EXxposes much more general compute
capabillity

Cg

e Evolved from RTSL from Stanford

e Platform and card neutral shader language

o In practice Cg tends to work better on NVIDIA cards
(I wonder why?)

e [nterestingly there is an NVIDIA Cg compiler
which can (when configured properly) take

HLSL code and output OpenGL compatible
shader code

e [t looks very similar to HLSL

