
CS195V Week 3

GLSL Programming

Differences in OpenGL and GLSL 4.x
● A lot of changes made to GLSL 4.x spec (see: http://www.

opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf)
● CS123 used OpenGL 2.x and GLSL 1.x
● IMPORTANT: OpenGL 4.x requires a relatively new GPU

(nVidia 400 series or higher, AMD Radeon 5000 series or
higher)

○ Most of the computers in the CS labs should be okay,
but if you are working from home, check your graphics
card

● When writing your shaders you should specify your target
by adding the preprocessor definition (ex. #version 400 core
to specify GLSL version 4 core specification)

○ Instead of core, you can specify compatibility, which
gives you access to the old defined variables (ex.
gl_ModelViewMatrix) - don't use this!

http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf

GLSL 4.x Important Changes
● The user is responsible for

maintaining the matrix stack
(no more gl_ProjectionMatrix)

○ These are passed in
using uniform variables or
buffers

● No more builtin variables
attributes - all values are
specified by the user

○ the in keyword specifies
input variables to a
shader, the out keyword
specifies output
variables inout is a
combination of the two

#version 400 core
uniform mat4 modelviewMatrix;
uniform mat4 projMatrix;

// vertex shader
in vec3 in_Position;
in vec3 in_Normal;
in vec3 in_TexCoord;
void main(void) {
gl_Position = projMatrix *
modelviewMatrix * vec4(in_Position,1.0);
}

// fragment shader
out vec4 out_Color;
void main() {
out_Color = vec4(1.0,1.0,1.0,1.0);
}

GLSL 4.x Important Changes
● Make sure to specify a #version at the top

○ For most of this class, this should be #version 400 core
○ If you do not specify a version, it will assume #version

110 - this is not what you want to do
○ We might make use of extensions later using the

#extension directive
● It is possible to specify the precision of any floating point or

integer declaration by preceding it with �highp mediump
or lowp

○ To set the default position you can use
precision [qualifier] [type]
ex. precision highp float;

● If you use high precision, you probably want to use the
precise qualifier which ensures a specific order of
operations (and thus consistent precision)

Texture Samplers
Texture samplers have changed a bit since GLSL1.x...here are
some of them:

● texture(sampler, tc)
regular texture lookup function (no more texture2D)

● textureLod(sampler, tc, lod)
same as above, but you can choose the lod

● textureOffset(sampler, tc, offset)
same as texture, except adds offset before sampling

● texelFetch(sampler, pos, lod)
same as textureLod, except everything is integer valued
(useful for sampling from specific texels)

Texture Gathers

● New in GL 4.0
● Gather functions take a sampler and texture coordinate and

then determine a set for four texels to sample from
○ Then returns one component from each texel in a 4

component result vector
● textureGather, textureGather, textureGatherOffsets....
● textureGatherOffsets

○ probably the most interesting one for us
○ gvec4 textureGatherOffsets(sampler2D, tc, ivec2 offsets

[4], [int comp])
○ if comp is specified it must be 0,1,2, or 3 specifying

which component to gather from each texel (x,y,z, or w)

Last Word on Sampling
● Texture sampling is a relatively expensive operation - a lot needs

to happen internally for a texture sample to go through
○ Try to minimize # of sampling calls when possible

● How expensive is it?
○ Consider the game of life - we need to sample from the 8

neighboring pixels and ourself - so let's say we do this using
one texture call for each pixel in our fragment shader

○ Thats 9 texture calls per pixel - which means sending 9 u,v
texture coordinates (18 floats) x 4 = 72 bytes

○ Assume we have 1k x 1k grid (texture)
○ So for each pass we process 1 * 72 million bytes
○ Say we want 30fps - thats 1*72*30 = 2.012 GB /s throughput

(just for texture requests!)
● Keep in mind the texture samplers aren't part of the hardware

shader cores - they are separate units on the GPU - so this data
needs to be shuffled back and forth

Last Word on Sampling (Continued)

● Yeah ok, thats a lot of memory bandwidth - but what
happens when the request reaches the sampler?
1. Calculate texture gradients
2. Calculate mip level
3. Apply address modes (wrap / clamp...)
4. Convert the [0..1] coordinates to sample form needed by

the hardware (fixed point)
5. Compute the address to read texels from
6. Filter - this is 4 memory accesses for bilinear :(
7. Ok it's more like about 1.25 accesses because of

caching
8. Finally send back up to 4 texture values

Uniform Buffers
● It is possible to set uniform variables in one block instead of

one at time
○ Switching one block is faster than switching several

different uniforms separately
○ Buffer blocks can also be shared between programs
○ Note that each shader stage has a limit on the number

of block locations (GL_MAX_[stage]_BLOCKS)

layout(shared) uniform BlockName {
 vec3 blockMember1, blockMember2;
 float blockMember3;
};

● In GL, use glGetUniformBlockIndex and
glUniformBlockBinding

Uniform Block Layout Qualifiers
● Because uniform buffers are defined by you, GL doesn't

know the layout
○ layout tells GL to access and load each component

within the block and must be either std140, packed, or
shared

● packed tells the implementation how to layout the fields and
therefore you must query GL for the byte offsets of each
block when you upload the data

○ if you want to share data between programs don't use
this, use shared instead (duh) - why?

● if you want to specify your own layout use std140 - you
probably won't need to do this for this class

Multiple Render Targets
● At times, it may be useful to write to more than one color

buffer in one fragment pass - in old GLSL, this was
accomplished with gl_FragData[idx]

● Now you must bind your output locations (similar to how you
bind the vertex attributes)
void glBindFragDataLocation
(GLuint program, GLuint colorNumber, const char
* name);

● The support code provides ShaderProgram::
setFragDataLocation which simply wraps around this call

● Don't forget to bind a framebuffer with multiple color
attachments when using MRT

○ Easily done by changining nColorAttachments in
FramebufferObjectParams

Input Layout Qualifiers
● Remember from last class when we had to query our shader to determine

the IDs of our vertex attributes (ie. what's the id of in_Normal?)
● It's possible to explicitly specify this in the shader

○ For example:
layout(location = 3) in vec3 in_Normal;
layout(location = 4) in vec4 colors[3];

● Why would you do this?
○ You don't need to ask GL for their locations anymore...

● In GL4.2 (which was revealed at SIGGRAPH 2011) you can also specify
the location of a unform block index

○ Slight caveat: I don't think the cs gfx drivers support 4.2 yet...so you
need to use #extension

#version 420 //#extension
GL_ARB_shading_language_420pack
layout(std140, binding=5) uniform SomeBlock { ... };

Instanced Drawing

● Say you want to draw a whole bunch of one kind of primitive
○ Array of cubes, etc.

● You could call draw() on the primitive a whole bunch of
times, but it is faster to call glDrawInstanced(int n)

● This will draw the given primitive n times
● In the vertex shader, you will have access to gl_InstanceID,

which goes from 0 to n - 1
● You can use this to transform different primitives in different

ways
● This might be useful for visualizing something like a Life

simulation...

Geometry Shaders
● Shader stage that operates on entire primitives (points,

lines, triangles)
● Can create new primitives (as opposed to vertex shaders

which cannot)
● Even in situations where you don't want to make new

primitives, being able to see all vertices in a primitive can
yield useful computations

● Examples
○ nVidia Fermi hair demo: simulates hair as line segments,

then draws them using triangles
○ Useful for particle simulations where you want to do

calculations on points but draw something else
○ Various games use geometry shaders for motion blur

and depth of field effects

A Trivial Geometry Shader (Triangles)

layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
void main() {
 for(int i = 0; i < gl_in.length(); i++) {
 gl_Position = gl_in[i].gl_Position;
 EmitVertex();
 }
EndPrimitive();
}

Tessellation Shaders
● Adds two new programmable stages to

the shader pipeline: Tessellation Control
and Tessellation Evaluation

○ Called Hull Shader and Domain
Shader in D3D

● In between them is a fixed function unit
called a Tessellator which generates new
vertices

● Tessellation Control is similar to a vertex
shader but has knowledge of the entire
primitive

○ It sets up input parameters which
tell the Tessellator how to generate
new vertices

● Tessellation Evaluation then operates on
the output vertices of the Tessellator

● This addition has been put into use in
dynamic level of detail on complex
models

● Can also be used to do frustum culling

Tessellation Shaders

● To use tessellation shaders, there is a new primitive type -
GL_PATCHES, unlike other primitive types
(GL_TRIANGLES), you can specify the number of vertices
// tell OpenGL that every patch has 16 verts
glPatchParameteri(GL_PATCH_VERTICES, 16); // draw a bunch of patches
glDrawArrays(GL_PATCHES, firstVert, vertCount);

● Layout
○ In the shader, you must define how many vertices in a

tessellation primitive (3 for triangle, 4 for quad, etc)

Tessellation Control
● Important variables:

gl_TessLevelInner and
gl_TessLevelOuter

● Specifics differ depending on
what kind of primitive you are
using

● In general, inner defines how
many "nested primitives" to
generate and outer defines how
many times to subdivide each
edge

● These parameters will determine
what the Tessellator outputs

● This is how you control LoD!

Tessellation Evaluation

● Executes once per vertex output by the Tessellator
● You have access to the original primitive vertices and a

Tessellation Coordinate
○ For triangles, Barycentric coordinates
○ For quads, uv coordinates

● Here is where you would set the final position of the
tessellated vertex

● Important Variables
○ gl_PatchVerticesIn - # of verts in the input patch
○ gl_TessLevelInner/Outer - inner and outer tess values
○ gl_TessCorrd - coordinates in the patch domain space

A Simple Example
-- Vertex
in vec3 in_Position;
out vec3 vPosition;
void main()
{
 vPosition = in_Position;
}

-- TessControl
layout(vertices = 4) out;
in vec3 vPosition[];
out vec3 tcPosition[];
uniform float TessLevelInner;
uniform float TessLevelOuter;

#define ID gl_InvocationID

void main() {
tcPosition[ID] = vPosition[ID];
 if (ID == 0) {
 gl_TessLevelInner[0] = TessLevelInner;
 gl_TessLevelInner[1] = TessLevelInner;
 gl_TessLevelOuter[0] = TessLevelOuter;
 gl_TessLevelOuter[1] = TessLevelOuter;
 gl_TessLevelOuter[2] = TessLevelOuter;
 gl_TessLevelOuter[3] = TessLevelOuter;
 }
}

● gl_InvocationID tells us the current vertex we're on
○ We only need to set patch parameters once per patch

hence the if()

A Simple Example

-- TessEval
layout(quads, fractional_odd_spacing, ccw) in;
in vec3 tcPosition[];
uniform mat4 projMatrix;
uniform mat4 modelviewMatrix;
void main()
{
 float u = gl_TessCoord.x, v = gl_TessCord.y;
 vec3 a = mix(tcPosition[1], tcPosition[0], u);
 vec3 b = mix(tcPosition[2], tcPosition[3], u);
 vec3 tePosition = mix(a, b, v):
 gl_Position = projMatrix * modelviewMatrix * vec4(tePosition, 1);
}

out vec4 out_Color;
void main()
{
 out_Color = vec4(1.0);
}

Note that since we are doing quad subdivision, the
gl_TessCoord corresponds to u, v coordinates, as opposed
to barycentric coordinates for triangle subdivision

Quads vs Triangles

A Simple Example

● Note that more complex tessellation schemes are possible
● ex. Bezier smoothing / interpolation of vertices

○ Maybe want to created a smoothed surface instead of a
surface with sharp corners

vs

http://developer.download.nvidia.
com/presentations/2010/gdc/Tessellation_Performance

.pdf

http://developer.download.nvidia.com/presentations/2010/gdc/Tessellation_Performance.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Tessellation_Performance.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Tessellation_Performance.pdf

Input Layout Qualifiers for TC and TE

● You may have noticed input layout qualifiers for tessellation
shaders are somewhat different from everything else

● For the TC stage:
layout(vertices = [#]) out;

● For the TE stage:
layout([type], [spacing], [order]) in;

○ recall [type] specifies primitive type (ex. quads, triangles,
or isolines)

○ spacing - see next slide
○ order specifies vertex ordering (cw or ccw)

Tessellation Shader Details

● Given a single triangle or quad, a natural way to tessellate it
would look like this:

Tessellation Shader Details

● But graphics is never that easy. Instead the GPU spits out
out something like this:

What's going on?

● The weird looking tessellation arises because of the way
transitions between patches at different tessellations are
handled (recall the inner and outer tess levels)

● When tessellating geometry, it is important that if two
patches share an edge, they should compute the same
tessellation factors along that edge (the outer tess level)

○ Otherwise you will get holes in your mesh
○ This can get very annoying at times

● The GPU doesn't care if your mesh has holes or not - if you
did it right, you won't

● If you did it wrong, you will and it's now your problem
● All that this weird ordering guarantees is that it is possible to

create a watertight mesh...

Spacing!

● By default, the tessellator will jump from integer to integer
tessellation values

● By specifying a spacing (ex. fractional odd or fractional
even), we can change this behavior - new vertices will
appear at the same position as an existing vertex and
gradually move to their final position

○ Allows for smooth transitions and prevents vertices
popping in and out

○ This is probably what you want to use (it looks cool too)

Output Layout Qualifiers

● Vertex and TE shaders cannot have output layout qualifiers
● TC shaders:

○ specifies # of vertices in the patch output by the TC
shader

○ layout-qualifier-id vertices = [#verts]
○ ex. layout(vertices = 3) out;

● Fragment shaders:
○ you can specify the bind location of each output
○ layout(location = 3) out vec4 out_Color0;

One Last Word about Qualifiers

● When you specify multiple qualifiers, they must follow a
specific order:
[precise] [invariant] [interpolation] [storage] [precision]
[storage] [parameter] [precision]

● Qualifiers are good to know about, but you don't have to use
them for most simple use cases

○ Most only really matter when you really care about
performance

Example : Frustum Culling
layout(vertices = 4) out;
in vec3 vPosition[];
out vec3 tcPosition[];
uniform float TessLevelInner;
uniform float TessLevelOuter;
bool offscreen(vec4 vertex){
 if((vertex.z < 0.0)) return true;
 return any(lessThan(vertex.xy, vec2(-1.0)) ||
 greaterThan(vertex.xy, vec2(1.0)));
}
void main() {
 tcPosition[gl_InvocationID] = vPosition[gl_InvocationID];
 if (gl_InvocationID == 0) {
mat4 pmv = projMatrix*modelviewMatrix;
vec4 ss0 = pmv*vec4(vPosition[0],1.0);
vec4 ss1 = pmv*vec4(vPosition[1],1.0);
vec4 ss2 = pmv*vec4(vPosition[2],1.0);
vec4 ss3 = pmv*vec4(vPosition[3],1.0);
ss0 /= ss0.w;
ss1 /= ss1.w;
ss2 /= ss2.w;
ss3 /= ss3.w;
if(all(bvec4(offscreen(ss0),
 offscreen(ss1),
 offscreen(ss2),
 offscreen(ss3)
))){
 gl_TessLevelInner[0] = 0;
 gl_TessLevelInner[1] = 0;
 gl_TessLevelOuter[0] = 0;
 gl_TessLevelOuter[1] = 0;
 gl_TessLevelOuter[2] = 0;
 gl_TessLevelOuter[3] = 0;
}
else {
 ...
}
 }
}

● Frustum culling is very
easy in the TC shader

● Just check if the vertices
of the patch fall off the
screen

○ Set tessellation level to
zero if they do

Example: Icosahedron

● Say we want to make a sphere (approximated with many
small triangles)

○ However, we don't want to store all of the vertices of the
sphere and we're too lazy to do the whole tessellation
business from CS123 Shapes

● We have a simple icosahedron
○ 20-faced 3D polygon
○ Okay maybe it's harder to generate than the sphere but

still...
○ Starting with a low detail model and tessellating on the

GPU is faster than just using a higher detail model
● We can tessellate the icosahedron into a sphere-like shape

Icosahedron Vertex Shader

#ifdef _VERTEX_
in vec3 in_Position;
in vec3 in_Normal;
in vec3 in_TexCoord;
out vec3 vPosition;

void main() {
 vPosition = in_Position;
}
#endif

Note that we don't do the screen space transformation
(projection * modelview) yet, since we want our tessellated
vertices to be in object space, not screen space

Icosahedron Tessellation Control
#ifdef _TESSCONTROL_
layout(vertices = 3) out;
in vec3 vPosition[];
out vec3 tcPosition[];

#define ID gl_InvocationID

void main() {
 tcPosition[ID] = vPosition[ID];
 if(ID == 0) {
 gl_TessLevelInner[0] = innerTess;
 gl_TessLevelOuter[0] = outerTess;
 gl_TessLevelOuter[1] = outerTess;
 gl_TessLevelOuter[2] = outerTess;
 }
}

Similar to the simple quad example we have from before, but
one inner tessellation level instead of two, and three outer
tessellation levels (one for each side)

Icosahedron Tessellation Evaluation
#ifdef _TESSEVAL_
layout(triangles, equal_spacing, ccw) in;
in vec3 tcPosition[];
uniform float radius;
out vec3 tePosition;
out vec3 tePatchDistance;

void main() {
 vec3 p0 = gl_TessCoord.x * tcPosition[0];
 vec3 p1 = gl_TessCoord.y * tcPosition[1];
 vec3 p2 = gl_TessCoord.z * tcPosition[2];
 tePatchDistance = gl_TessCoord;
 tePosition = normalize(p0 + p1 + p2) * radius;
 gl_Position = projMatrix * modelviewMatrix * vec4(tePosition, 1);
}
#endif

The gl_TessCoord is a barycentric coordinate that lets you
interpolate between the original triangle vertices
By normalizing and multiplying by radius, you correctly place
your vertices along the curvature of the circle

Icosahedron Geometry Shader
#ifdef _GEOMETRY_
layout (triangles) in;
layout (triangle_strip, max_vertices = 3) out;
in vec3 tePosition[3];
in vec3 tePatchDistance[3];
out vec3 gFacetNormal;
out vec3 gPatchDistance;
out vec3 gTriDistance;

void main(){
 vec3 avg = (tePosition[0] + tePosition[1] + tePosition[2]) / 3;
 gFacetNormal = normalize(avg);

 gPatchDistance = tePatchDistance[0];
 gTriDistance = vec3(1, 0, 0);
 gl_Position = gl_in[0].gl_Position;
 EmitVertex();

 gPatchDistance = tePatchDistance[1];
 gTriDistance = vec3(0, 1, 0);
 gl_Position = gl_in[1].gl_Position;
 EmitVertex();

 gPatchDistance = tePatchDistance[2];
 gTriDistance = vec3(0, 0, 1);
 gl_Position = gl_in[2].gl_Position;
 EmitVertex();

 EndPrimitive();
}

Even though we don't generate
any new geometry here, we can
do useful things like calculate
per-facet normals and add
barycentric coordinates for the
newly tessellated triangle

Icosahedron Fragment Shader
#ifdef _FRAGMENT_
in vec3 gFacetNormal;
in vec3 gPatchDistance;
in vec3 gTriDistance;
out vec4 out_Color;

float edge(float d, float scale, float offset){
 d = scale * d + offset;
 d = clamp(d, 0, 1);
 d = 1 - exp2(-2*d*d);
 return d;
}

void main(){
 float d1 = min(min(gTriDistance.x, gTriDistance.y), gTriDistance.z);
 float d2 = min(min(gPatchDistance.x, gPatchDistance.y), gPatchDistance.z);
 vec3 color = edge(d1, 40, -0.5) * edge(d2, 60, -0.5) * vec3(0.5, 0.5, 0.5);
 out_Color = vec4(color, 1.0);
}
#endif

Fun trick here, add smooth wireframes based on distance from
the edge (check out http://dl.acm.org/citation.cfm?id=1180035)

http://dl.acm.org/citation.cfm?id=1180035

Case Study: Screen Space Ambient Occlusion

Case Study: Screen Space Ambient
Occlusion (SSAO)

● Ambient occlusion: adjusting ambient lighting contribution
based on local geometry

○ Places hard for indirect illumination to reach should have
a smaller ambient component

● Screen Space Ambient Occlusion
○ Approximation of ambient occlusion using only frame

buffer data
○ First used in Crysis in 2007

SSAO

● For true ambient occlusion, you need information about the
local geometry surrounding a particular point

○ Such data is not readily available in the rasterization
pipeline

● In SSAO, use the Z-buffer (depth buffer) to partially recover
some of this information

○ Not a perfect representation of geometry, but cheap and
already implemented for depth testing

SSAO

1. Given your point, sample some additional points in a sphere
around it

○ Tradeoff between speed and effect quality
2. Compare these sampled points to the Z-buffer, more points

behind means more occlusion
3. Calculate the ambient term using these occlusion

measures, taking into account distance from the actual
sample point

Advantages and Disadvantages

● Good
○ Independent of scene complexity/movement
○ No additional memory required
○ Completely on the GPU

● Bad
○ Dependent on view since scene is projected into depth

map
○ Can have noise and odd behavior depending on how

you sample
■ To deal with this, the SSAO results are often blurred

For More details...

http://www.drobot.org/pub/GCDC_SSAO_RP_29_08.pdf

http://www.drobot.org/pub/GCDC_SSAO_RP_29_08.pdf

