
CSCI1950V Project 4 : Smoothed Particle

Hydrodynamics

Due Date : Midnight, Friday March 23

1 Background

For this project you will implement a �uid simulation using Smoothed Particle
Hydrodynamics (SPH). The main reference we will use is Lagrangian Fluid
Dynamics Using Smoothed Particle Hydrodynamics by Kellager et al [3]. In
particular, most of the equations below can be found in section four of the
paper.

If you implemented the NBody project before this correctly, this project should
not be too di�cult to write. Essentially the gravitational forces you computed
for the previous project will be replaced by the forces of �uid dynamics. The
hardest part will probably adding in all the extra forces and tracking down any
bugs.

2 Requirements

Your SPH simulation can either be 2D or 3D. As with all other projects, com-
putation should be done in GLSL, however for the 3D visualization we only
require point sprites (for 2D) or spheres (for 3D). You do not need to compute
an explicit �uid surface for this project - a particle visualization is su�cient.
However, we encourage you to color the particles or spheres according to some
metric (ie. pressure).

While doing this in 3D means you have to change less code from your previous
project (and things in 3D are of course cool), with a 2D simulation you will be
able to add more particles per screen space, making the simulation look more
interesting - it's up to you.

You are required to implement all the internal and external forces covered in
the Kelager 2006 paper and presented below, for one type (either liquid or gas).
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Force Expression Liquid / Gas

Mass Density 3.2.1
∑
mjWdefault(r− rj , h) L+G

Surface normal 3.2.2
∑ mj

ρj
∇Wdefault(r− rj , h) L

Pressure 3.2.1 −
∑
j 6=i

pi+pj
2

mj

ρj
∇Wpressure(ri − rj , h) L+G

Viscosity 3.2.1 µ
ρi

∑
j(uj − ui)mj∇2Wviscosity(r− rj , h) L+G

Gravity 3.2.2 ρig L
Buoyancy 3.2.2 b(ρi − ρ0)g G

Surface tension 3.2.2 −σ ni

||ni||
∑ mj

ρj
∇2Wdefault(r− rj , h) L

For example, if you choose to do liquid, you must implement mass, surface
normal, pressure, viscosity, gravity, and surface tension.

Since each kernel W is zero outside of the core radius h, you should use the
spatial hashing from the last project to quickly �nd all the nearest neighbors
within about distance h so that you dont have to loop through every particle.

Your particles should be contained within a box and should properly interact
with the walls and �oor. A ceiling is optional. You must implement rudimentary
collision handling against walls - this can be as simple as checking if the location
of a particle is outside the bounds of a box and if so re�ecting its velocity across
the normal.

For the visualization you should use spheres or point sprites (or other similar
particle-like objects). You should also draw the boundaries of your system (ie.
the walls) - you probably want to make these a wireframe so that the particles are
visible through the walls. We are not requiring any complex graphical shaders
for this project.

You may keep the same integration scheme as the last project (Verlet), but feel
free to experiment with other integration schemes as well.

Finally you should experiment with di�erent �uid types (ie. change the mass
and viscosity), as well as interactions between two or more di�erent types of
�uids.

Your writeup should be contained within a seperate html directory in your
project.

3 Governing Equations

This section simply summarizes the derivation and governing of equations of
your simulation. You can �nd all of these in .

3.1 Smoothed Particle Hydrodynamics (SPH)

SPH is essentially an interpolation method and is based o� of integral inter-
polants which use kernels to approximate the response of a delta function. By
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de�nition, the integral interpolant, AI of a function A(r) over some space Ω is
given by

AI(r) =

ˆ
Ω

A(r′)W (r− r′, h)dr′

where r ∈ Ω, andW is a smoothing kernel with a width, or core radius of h. The
choice of smoothing kernel W is important and careful selection can a�ect the
accuracy of the interpolant. The kernelW satis�es the following four properties

ˆ
Ω

W (r, h)dr = 1

lim
h→0

W (r, h) = δ(r)

W (r, h) ≥ 0

W (r, h) = W (−r, h)

In practice, most kernels are Gaussian like, but the exact choice of kernel largely
depends on what you are trying to interpolate.

The discretized version of the SPH interpolant can be expressed as a summation

AS(r) =
∑
j

AjVjW (r− rj , h)

where the summation is over all particles j, and Vj is the volume or area (in
2D) taken by particle j. Note that this holds only when Aj is close to constant
on Vj (and is the integral as the volume of each particle goes to zero).

Now recall that
V =

m

ρ

Substituting this into gives us

AS(r) =
∑
j

Aj
mj

ρj
W (r− rj , h)

Now suppose we take the partial derivative between two particles, i and j in
some direction, (in this case, the x direction),

∂

∂x
AS(ri) =

∂

∂x

(
Aj
mj

ρj
W (ri − rj , h)

)
Note that the quantity

Aj
mj

ρj

is constant relative to the x direction (or any other direction for that matter),
which means we can treat it as a constant under di�erentiation. Then

∂

∂x
AS(ri) =

(
Aj
mj

ρj

)
∂

∂x
W (ri − rj , h)
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It follows that the gradient of the integral interpolant for is simply

∇AS(r) =
∑
j

Aj
mj

ρj
∇W (r− rj , h)

Similarly,

∇2AS(r) =
∑
j

Aj
mj

ρj
∇2W (r− rj , h)

3.2 Navier Stokes Equations

The classical formulation of an incompressible Newtonian �uid over time is given
by the Navier Stokes (NS) equations.

Inertia (per volume)︷ ︸︸ ︷
ρ︸︷︷︸

Mass density

 ∂u

∂t︸︷︷︸
Unsteady acceleration

+ u · ∇u︸ ︷︷ ︸
Convective acceleration

 =

Divergence of stress︷ ︸︸ ︷
−∇p︸ ︷︷ ︸

Pressure gradient

+µ∇2 · u︸ ︷︷ ︸
Viscosity

+ f︸︷︷︸
Other body forces

Because we assume that density is constant (since the �uid is incompressible),

∇ · u = 0

and the formula simpli�es to

ρ
∂u

∂t
= −∇p+ µ∇2 · u + fexternal

We can rewrite this to become

ρ
∂u

∂t
= f internal + fexternal

∂u

∂t
=

(
f internal + fexternal

)
/ρ

ai =
(
f internali + fexternali

)
/ρi (1)

Where the interal forces are the pressure and viscosity, while the external forces
are things such as gravity. Thus, the acceleration of a particle i is given by the
sum of its forces divided by ρ, the mass-density.

3.2.1 Internal Forces

Mass Density Using the SPH formulation to approximate mass density is
fairly straightforward. The quantity we would like to interpolate, A(r) is simply
the mass density, ρ. Thus,

AS(r) =
∑
j

Aj
mj

ρj
W (r− rj , h)
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becomes

ρS(r) =
∑
j

ρj
mj

ρj
W (r− rj , h)

=
∑
j

mjW (r− rj , h)

Since we are evaluting ρS(r) only at particle locations, for each particle i, this
becomes

ρi =
∑
j

mjWdefault(r− rj , h) (2)

For the kernel, W , [4] suggests

Wdefault(r, h) =
315

64πh9

{
(h2 − ||r||2)3 0 ≤ ||r|| ≤ h
0 ||r|| > h

(3)

Pressure Gradient Recall that the pressure gradient is given by −∇p. Thus
the SPH formulation is simply

−∇pi = −
∑
j

pj
mj

ρj
∇Wpressure(r− rj , h)

Unfortunately, this formulation is not symmetric (consider the case of two par-
ticles where particle 1 is dependent on particle 2 and vice versa - which is clearly
not symmetrical), violating the action-reaction law. SPH has various symmet-
rical formulations, one of which is

−∇pi = −
∑
j 6=i

pi + pj
2

mj

ρj
∇Wpressure(ri − rj , h) (4)

Where p can be calculated using a modi�ed ideal gas state equation (with an
added rest pressure) such that

(p+ p0)V = k

p+ kρ0 = kρ

p = k(ρ− ρ0) (5)

Here, ρ0 corresponds to the rest density. The kernel recommended by [1] and
used in [4] is

Wpressure(r, h) =
15

πh6

{
(h− ||r||)3 0 ≤ ||r|| ≤ h
0 ||r|| > h

Which has a gradient of

∇Wpressure(r, h) =
−45

πh6

r

||r||
(h− ||r||)2 (6)
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Viscosity From the NS equations, viscosity is given by µ∇2 · u, where µ is
the viscosity coe�cient (and controls how viscous the �uid is). Therefore, the
straightforward SPH formulation is

µ∇2 · ui = µ
∑
j 6=i

uj
mj

ρj
∇2W (r− rj , h)

However, like the pressure gradient, we require that viscosity be symmetric,
which the above formulation is not. In this case we can symmetrize the SPH
approximation as

µ∇2 · ui =
µ

ρi

∑
j

(uj − ui)mj∇2Wviscosity(r− rj , h) (7)

[23] suggests a kernel of

Wviscosity(r, h) =
15

2πh3

{
− ||r||3

2h3 + ||r||2
h2 + h

2||r|| − 1 0 ≤ ||r|| ≤ h
0 ||r|| > h

which has a Laplacian of

∇2Wviscosity(r, h) =
45

πh6
(h− ||r||) (8)

3.2.2 External Forces

Gravity The force of gravity on particle i can be computed simply as

fi = ρig (9)

Buoyancy The force of buoyancy on particle i is

fi = b(ρi − ρ0)g (10)

where b > 0 is the buoyancy di�usion coe�cient.

Surface Tension The surface tension of a liquid is given by [4]

fi = −σ∇2ci
ni
||ni||

(11)

Where σ is the surface tension coe�cient and depends on the the �uids that
form the surface, ci is the color�eld of particle i, (which has a value of one at
the particle's location and zero elsewhere) whose smoothed SPH formulation is

ci =
∑
j

mj

ρj
Wdefault(ri − rj , h) (12)
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The normal n can be computed as the gradient of the color �eld, c.

ni = ∇c(ri)

=
∑
j

mj

ρj
∇Wdefault(ri − rj , h)

Keep in mind that ||ni|| may go to zero, and division by zero is bad.

Note that

∇Wdefault(r, h) = − 945

32πh9
r(h2 − ||r||2)2

∇2Wdefault(r, h) = − 945

32πh9
(h2 − ||r||2)(3h2 − 7||r||2)

4 Notes

Note that most of the force calculations depend on mass density (ρ). You
probably need to have at least two stages, the �rst calculating mass density and
storing in a texture. The second stage calculating the rest of the forces.

Good luck.
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