
Project 6 : Multi-Colony Ant Optimization for

TSP

Due date : May 4, 2012

1 Background

For your second CUDA project, you will implement a variant of the Ant Colony
Optimization (ACO) method using multiple ant colonies instead of just one.
ACO is a probabilistic optimization technique which is based o� of ant behavior
and swarm intelligence. It was �rst proposed by Marco Dorigo in is 1992 PhD
thesis for �nding optimal paths in a graph, but has since been extended to many
other problem domains including protein folding, vehicle routing, and network
routing. Unlike some genetic algorithms and simulated annealing, ACO can
update in realtime to changes in the system (ie. graph), which makes it useful
for realtime routing problems.

In the natural world, ants wander randomly and lay down pheremone trails
as they search the world. The more pheremone on a particular trail, the more
ants which are attracted to it. To allow ants to explore random trails, the
pheremone left by an ant evaporates over time. ACO emulates this behavior by
simulating the ant exploration and pheremone evaporation.

2 Requirements

You must implement a parallel CUDA based multi-colony ACO for solving the
symmetric traveling salesman problem (TSP). Your code should output the path
as a sequence of node numbers and the minimum path length found. You should
do NONE of the compution on the CPU. The only CPU functionality you should
need is maybe print line. All the other functions called in CPU code should be
GPU related (ie. functions beginning with cuda*).

A simpli�ed description of the algorithm for a single colony is below.

1. Initialize all edges to a small initial pheremone level (τ0)

2. Initialize each ant to a randomly chosen city

3. For some number of time steps / iterations:

1

(a) For each ant, build a tour T by applying the probabilistic transition
rule

(b) For each edge E, apply the pheremone update step

Where the probabilistic transition rule determines how an ant chooses its next
city. Each ant, k maintains a tabu list of cities it has already visited an will
never visit again. The probability probability of an ant traveling from city i→ j
at time t is

pki,j(t) =
[τi,j(t)]

α
[ηi,j]

β [
1j /∈Tk

]∑
l∈Jk

i

(
[τi,l(t)]

α
[ηi,l]

β
)

Where α and β are tunable parameters controlling how likely an ant is to
explore or follow a path. τi,j is the amount of pheremone on the path from node
i to j. ηi,j is the visibility heuristic between cities i and j (you can just use the
inverse distance between the two cities). Jki is the set of cities that ant k still
needs to visit (not in the tabu list). And 1j∈Tk is the indicator function, which
has a value of one if city j is not in the tabu list and zero if the city is in the
tabu list.

The pheremone update step simulates pheremone evaporation and is given
by

τi,j(t+ 1) = (1− ρ)τi,j

m∑
k=1

∆τki,j(t)

∆τki,j(t) =

{
Q/Lk(t) for each edge (i, j)visited by ant kin iteration t

0 else

Where ρ ∈ (0, 1) controls the speed of evaporation and Q controls how much
pheremone is put down. Lk(t) is the length of the tour T of ant k at time t. m
is the number of ants in the colony.

For your multi colony con�guration, you only need return the minimum path
found. There are other (better ways) of utilizing multiple colonies (ie. sharing
pheremone after some number of iterations), but these are not required.

You must use muli-thread reduction when performing operations across
threads, ie. the following is NOT ok:

1 // bad code example
__shared__ int cache [] ;
cache [threadIdx . x] = threadIdx . x ;

4 __syncthreads () ;
i f (threadIdx . x == 0)
{

7 for (int i =1; i<blockDim . x ; i++)
{

cache [0] += cache [i] ;
10 }

p r i n t f ("%d\n" , cache [0]) ;
}

2

3 Useful Information

We have download TSPLIB, a library for TSP problems containing several TSP
problems and their solutions. These can be found in /course/cs195v/tsp/tsp/.
You can easily view the best solutions for all the problems at http://comopt.i�.uni-
heidelberg.de/software/TSPLIB95/STSP.html. A good sanity check is to make
sure your implementation never performs better than the optimal solution1.

In the support code, we have provided a barebones parser for reading in the
.tsp �les. It only supports TSP problems which have edge lengths de�ned as
EUC_2D (Euclidean 2D distance) or GEO (geo distance) keep in mind that the
formula for calculating distance will depend on which type of graph it is!

For computing geographical distance, you should use

RRR = 6378.388

q1 = cos(longitude[i]− longitude[j])
q2 = cos(latitude[i]− latitude[j])
q3 = cos(latitude[i] + latitude[j])

dij = RRR(arccos(0.5((1.0 + q1)q2− (1.0− q1)q3))) + 1.0

Don't forget to �ll out TspEdge.dist which is unitialized (you probably need
to write some sort of init kernel).

Support code can be found in /course/cs195v/aco/.

4 Notes

We suggest that you split your colonies into blocks (one thread block per colony),
with each thread corresponding to a single ant.

Be careful when using shared memory, there is only about 48kb of shared
memory available to each SP it's very easy to overrun this limit if you try to
store pheremone data in each SP as shared memory, in which case the GPU will
fail.

It might make it easier if the number of ants / threads per colony / block is
power of two (especially for reductions).

Because the GPU is driving both X and CUDA, a kernel which takes too
long to complete will lock up your display, and may be killed automatically by
the X server.

Be careful with �oating point precision. η, the city visibility can be very
small if cities are relatively far aprart. When raising this to a power greater
than one, you may have precision errors if you're not careful.

1If it does, something is wrong.

3

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

	Background
	Requirements
	Useful Information
	Notes

