

Collisions
• So far, we have had to write a new function every time

we wanted to detect collisions between a new pair of
shapes

• In this class, we will discuss a general method for
detecting collisions that works for all convex shapes
called the GJK algorithm

• We can easily replace our ellipsoid/triangle collisions
with GJK collisions

• But first…

Rotations
• Rotations can be represented by Euler angles

(i.e. roll, pitch, yaw), rotation matrices, or
quaternions

• Useful fact: any arbitrary orientation can be
achieved by a single rotation about some axis
by some angle

Euler Angles
• When we talk about Euler angles, we need to define an order of

how the angles are set
– We also need to say whether each angle in the sequence is

measured in the object’s transformed coordinate frame after each
step (intrinsic), or the world coordinate frame (extrinsic angles)

• Here, we have a sphere first
rotating 𝜃! about the z axis
(up), then rotating 𝜃" the x
axis in its transformed
coordinate frame, then
rotating 𝜃# the z axis in its
transformed coordinate
frame

• These are intrinsic rotations

• If the sphere first rotated 𝜃#
about the world z axis, then
rotated 𝜃" about the world x
axis, and then rotated 𝜃!
about the world z axis, we
would have extrinsic rotations

• We would also have the same
orientation as we did with
the intrinsic rotations
described to the left!

Rotation Matrices
• Rotation matrices are 3x3 orthogonal matrices

with determinant 1
– This means that the columns of the matrix form an

orthonormal basis of 𝑅! (a set of pairwise orthogonal
and normalized vectors that span 𝑅!)

• A rotation matrix says “x-axis, turn into my first
column”, “y-axis, turn into my second column”, and
“z-axis, turn into my third column”

Quaternions
• Quaternions are a confusing subject, but it is

helpful to know that there is a formula that
takes in an axis of rotation 𝑢 and an angle 𝜃
and gives you the quaternion corresponding to
that rotation

Rotations
• You will need to convert between rotation

matrices and Euler angles in order to implement
advanced collisions (if your transform
component uses Euler angles)

SUPPORT FUNCTIONS
GJK Algorithm

Convex Shapes
• A convex shape satisfies

the requirement that the
line segment connecting
any point to any other
point inside the shape
exists entirely inside the
shape

Convex

Not Convex

Support Functions
• We can define a support function

for a convex shape
• A support function takes in a

direction and then returns the point
on the shape farthest in that
direction
– More precisely, given a direction 𝑣,

the support function 𝑓 of a shape 𝑠
is 𝑓 𝑣 = max

!∈#
𝑣 ⋅ 𝑝

• Notice that the support function for
the square always returns a corner
– In the middle example, the vector is

pointing slightly to the right, so the
bottom right corner of the square
maximizes the dot product

Shape v f(v) (red point)

More Support Function Examples
• Given a direction 𝑣, the support function 𝑓 of

a shape 𝑠 is 𝑓 𝑣 = max
!∈#

𝑣 ⋅ 𝑝
v

Shape v f(v) (red point) • Note the first example
– The point returned is not

necessary the exact point
that the arrow is pointing to

– Instead, the point returned is
the point that maximizes the
dot product

Support Functions Takeaway
• In a very broad sense, you can think of a support

function as a function that takes in a direction and
returns a point on the boundary of the shape
farthest in that direction

Support Functions for 3D Shapes

From A Fast and Robust GJK Implementation for Collision Detection of Convex Objects
GINO VAN DEN BERGEN

Minkowski Difference

• The Minkowski difference
of shapes A and B is the
set of points that are the
difference of a point in A
and a point in B

• In other words, if we
subtract every point in B
from every point in A we
get the Minkowski
difference

Minkowski Difference
• A and B are colliding if and

only if the Minkowski
difference contains the origin
– Think about it this way: if A and

B are colliding then they will
overlap at some point in space

– The Minkowski difference value
resulting from this overlap is the
origin

• We can use this fact to
determine whether two shapes
are colliding

Minkowski Difference and
Support Functions

• It turns out that the Minkowski
difference of two convex shapes is
also convex
– This means we can define the support

function of the Minkowski difference!
• The support function 𝑓!"# of the

Minkowski difference of shapes 𝐴
and 𝐵 with support functions 𝑓! and
𝑓# is 𝑓!"# 𝑣 = 𝑓! 𝑣 − 𝑓#(−𝑣)
– This identity requires a small proof

that we will omit

THE ALGORITHM
GJK Algorithm

GJK Algorithm
• To figure out whether two shapes are

colliding in 3D, we answer the
question: “is the origin in the
Minkowski difference?”

• To answer this question, we will try to
create a simplex that contains the
origin
– A simplex is a generalization of a

triangle to arbitrary dimensions
– The 0-dimensional simplex is a point, the

1-dimensional simplex is a line, the 2-
dimensional simplex is a triangle, and
the 3-dimensional simplex is a
tetrahedron

– The vertices of the simplex we are
searching for are points returned by
the support function of the Minkowski
difference

GJK Algorithm
• To be more concrete, we have a

collision if we can create a simplex
consisting of vertices returned from
the support function of the
Minkowski difference satisfying one
of the following:
– a 0-simplex (point) that contains the

origin (the simplex itself is the origin)
– a 1-simplex (line segment) that contains

the origin (the origin is on the line
segment)

– a 2-simplex (triangle) that contains the
origin (the origin exists on the triangle
face)

– A 3-simplex (tetrahedron) that contains
the origin (the origin is inside the volume
of the tetrahedron

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

A = the newest vertex in the simplex
D = the next direction we plug into the Minkowski
difference support function

do_simplex updates simplex and D

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in
the Minkowski difference (S)

2. Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

3. If dot(A, D) < 0, then we did not
pass the origin when we walked
from vertex S to vertex A

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in
the Minkowski difference (S)

2. Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

3. If dot(A, D) < 0, then we did not
pass the origin when we walked
from vertex S to vertex A

S
0

D

A
Vertex A did not pass the origin

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in
the Minkowski difference (S)

2. Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

3. If dot(A, D) < 0, then we did not
pass the origin when we walked
from vertex S to vertex A

S
0

D
A

Vertex A passed the origin

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in
the Minkowski difference (S)

2. Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

3. If dot(A, D) < 0, then we did not
pass the origin when we walked
from vertex S to vertex A

4. The Minkowski difference is
convex, so if we did not pass the
origin when we walked from
vertex S to vertex A, then we
know that there is no collision

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

5. If we succeeded in passing the
origin, then we add vertex A to
the simplex

6. Next, we run the do_simplex
function, which decides if we are
done. If not, the function finds the
next direction D that we should
plug into the support function.
The support function will then
give us the next vertex we will add
to the simplex.

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• We can see that the main GJK
algorithm is not too complicated

• The function do_simplex is doing
most of the heavy lifting here

• do_simplex does the following:
• Decide if the current simplex

contains the origin (if so, GJK
returns true and the simplex)

• If the current simplex does
not contain the origin, find
the optimal direction to
search and update simplex
and D accordingly

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do_simplex(simplex, D):
if contains_origin(simplex): return true
return handle_simplex(simplex, D)

GJK Algorithm Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do_simplex(simplex, D):
if contains_origin(simplex): return true
return handle_simplex(simplex, D)

• When we call
handle_simplex, the
simplex will have 2, 3, or
4 vertices

• We need to figure out the
optimal way to change
the simplex in each case

• The optimal way to
change the simplex will
capture the origin in a
simplex in the minimum
number of iterations

Updating the Simplex

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

• The content here is adapted from “Implementing GJK -
2006”, a video by Casey Muratori

• This video points out the important insight that the position
of the vertex that was last added to the simplex gives us
hints about which direction we should plug into the
Minkowski support function in the next iteration (to get
the next vertex of the simplex)

• In the following slides, the vertex that was last added to the
simplex will be called A

Handling the 1-Simplex (Line)

A

S

• Remember that every vertex in the
simplex is a point on the boundary of
the Minkowski difference

• We need to find a new direction to
plug into the support function of the
Minkowski difference

Newest Vertex

Handling the 1-Simplex (Line)

• How did the simplex become a line?

A

Newest Vertex
S

Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Let’s look at the pseudocode again…

A

S

Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• First, we add some point (S) to simplex

A

S

Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Then, we plug –S into the support
function

• Remember that we only got to this
point in the algorithm because we
passed the origin when we walked
from S to A

A

S

Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Since we know that we passed the
origin, we know that the origin exists
somewhere in the orange area between
S and A (extending out to infinity)

• The origin cannot be behind S or behind
A

A

S

Handling the 1-Simplex (Line)

Newest Vertex
• So, the new direction D is the vector

perpendicular to the line segment SA in
the direction of the origin!

• We don’t need to adjust the simplex at
all in this case before adding
support_function(D) to the

• The 1-simplex case is solved!

A

S

Aside: Voronoi Diagrams

• A Voronoi diagram shows a partition of
the plane where the ”Voronoi region”
of a seed s (a black dot in the figure) is
the set of points that are closer to s
than any other seed

• It is useful to think about this type of
diagram when dealing with the 2-
simplex case

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region closest
to the vertex C

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region closest
to the line CA

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region closest
to the vertex A

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region closest
to the line AB

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region closest
to the vertex B

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin The region closest

to the line CB

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region above
the triangle

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

The region below
the triangle

Handling the 2-Simplex (Triangle)

A

S

Newest Vertex

B• There are 8 (Voronoi) regions
where we might want to search
for the origin

• Keep in mind that, if this triangle
were on the XY plane, then these
regions would extend straight
forward and backward in the z-
direction

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• Our task is to find
the region
containing the
origin

• When we find that
region, we will
send our new
direction D into
that region!

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• But we don’t have
to check every
region!

• We have ruled out
some of these
regions in previous
iterations!

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• Remember that
the newest vertex
is A

• When our simplex
was CB, we
decided the origin
was in the
direction of A

• Therefore, the CB
region does not
contain the origin

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B

• The C and B
regions also do not
contain the origin!

• Consider the 1-
simplex case to see
why!

Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B
• So, we have 5

regions to check:
CA, A, AB, above
the triangle, and
below the
triangle!

• We use a bunch
of dot and cross
products to
decide which
region the origin
is in

2-Simplex Pseudocode

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

simplex2_case(simplex, D):
A = simplex[2] // newest vertex in the simplex
B = simplex[1]
C = simplex[0]

// let’s arbitrarily say this normal points “above” the triangle (in the previous slides, this normal would point at us)
// this way, we don’t have to maintain a winding order
normal = cross(B-A,C-A)

if dot(cross(normal, C-A), -A) > 0: // true if origin is in CA region or A region
if dot(C-A, -A) > 0: // true if origin is in CA region

simplex = [C,A]
D = cross(cross(C-A, -A), C-A)
return

else: // executes if origin is in A region
simplex = [A]
D = -A
return

else:
if dot(cross(B-A, normal), -A) > 0: // true if the origin is in BA region or A region

if dot(B-A, -A) > 0: // true if origin is in BA region
simplex = [B,A]
D = cross(cross(B-A, -A), B-A)
return

else: // executes if origin is in A region
simplex = [A]
D = -A
return

else: // executes if origin is above or below the triangle
if dot(normal, -A) > 0: // true if origin is above triangle

simplex = [A,B,C]
D = normal
return

else: // executes if origin is below triangle
simplex = [A,B,C]
D = -normal
return

Handling the 3-Simplex
• Remember that we want a simplex with at most 4

vertices!
• When we have a 3-simplex (tetrahedron), we just

reduce the problem back to the 2-simplex case
– Given a tetrahedron where vertex A is the newest vertex,

we calculate which of the planes of faces ABC, ABD, and
ACD is closest to the origin

– Make sure the closest plane is actually facing the origin
– Then we just run our 2-simplex code on that face!

Verifying the Simplex
• We know we are done running GJK if we

fail to pass the origin or if the simplex
contains the origin

• A 2-simplex contains the origin if the
origin exists on the face of the triangle
– We should first verify whether the origin

exists in the plane of the triangle
– If the origin exists in the plane of the

triangle, then the simplex contains the origin
if, when we take any edge of the simplex,
the origin is on the same side of the edge as
the vertex of the simplex opposite the edge

• A 3-simplex contains the origin if, when
we take any face of the simplex, the
origin is on the same side of the face as
the vertex of the simplex opposite the
face

Evaluating the Minkowski
Difference Support function

• The Minkowksi difference is in world space
• The support functions for our objects are in object

space
• The direction D is in world space
• Then how do we calculate the Minkowski difference?

Evaluating the Minkowski
Difference Support function

1. We have objects 1 and 2
2. Convert D into the object space of objects 1 and 2

to get D1 and D2

3. Evaluate the support function of object 1 using D1
and evaluate the support function of object 2 using
D2 to get points p1 and p2

4. Convert p1 and p2 to world space to get P1 and P2
and then return the difference of P1 and P2

Are we done yet?
• So, we have everything we need to implement the

GJK algorithm!
• But the GJK algorithm gives us a boolean indicating

whether there was collision (and a simplex containing
the origin if there was a collision)

• Don’t we want a minimum translation vector (MTV)?
– We need to know how to resolve the collision once we know

it is occurring

• Introducing…

Expanding Polytope Algorithm
• If there was a collision, then we must resolve it (i.e. stop the objects from

intersecting)
– We get a simplex containing the origin from the GJK algorithm if there was a collision

• It turns out that the minimum translation vector (MTV) is the vector connecting
the origin to the point on the Minkowski difference closest to the origin
– In other words, if point A is the point on the Minkowski difference closest to the origin, then the

MTV is A!
– The goal of the Expanding Polytope Algorithm is to find the point on the Minkowski difference

closest to the origin, so that we can use the MTV
• Note that it does not make sense to use the Expanding Polytope Algorithm if there

was not a collision, because in that case there is no need for an MTV
• In fact, the Expanding Polytope Algorithm (EPA) only works when we have a

simplex of points in the Minkowski difference and this simplex contains the
origin

Expanding Polytope Algorithm
• Let the blue shape be the Minkowski difference, the

orange shape be the simplex, and the red point be
the origin

Expanding Polytope Algorithm
• We can see that the MTV is the green vector below

Expanding Polytope Algorithm
• We can see that the MTV is the green vector below

Expanding Polytope Algorithm
• EPA iteratively expands the simplex, adding more

points on the boundary of the Minkowski difference
to find the MTV

Expanding Polytope Algorithm
• To find the next point on the boundary of the Minkowski difference,

we find the point on the boundary of the simplex (which we will
now call a polytope) closest to the origin (the purple point)

• At iteration 𝑖, call this point 𝑣!

𝑣$

Expanding Polytope Algorithm
• We plug 𝑣! into the support function of the Minkowski difference to get 𝑤!
• We terminate the algorithm and return 𝑣! when the projection of 𝑤! onto 𝑣! is equal to 𝑣! (within

some tolerance)
• When the projection of 𝑤! onto 𝑣! is equal to 𝑣! , we know that the 𝑣! is on the boundary of the

Minkowski difference
• In this iteration, we see that this termination condition is not met, so we add 𝑤! to the polytope by

splitting the edge/face that 𝑣" belonged to

𝑣$

𝑤$

Expanding Polytope Algorithm

𝑤$

Expanding Polytope Algorithm
• Next, we carry out another iteration
• We find the point on the boundary of the polytope

closest to the origin (𝑣,)

𝑣!

Expanding Polytope Algorithm
• Then, we plug 𝑣$ into the support function of the Minkowski

difference to get 𝑤$
• The projection of 𝑤$ onto 𝑣$ is not equal to 𝑣$, so we add 𝑤$

to the polytope by splitting the edge 𝑣$ belonged to

𝑣!
𝑤!

Expanding Polytope Algorithm
• We find the point on the polytope closest to the

origin (𝑣-)

𝑣"

Expanding Polytope Algorithm
• Then we plug 𝑣" into the support function of the

Minkowski difference to get 𝑤"
• The projection of of 𝑤" onto 𝑣" is equal to 𝑣", so we

return 𝑣", which is the MTV!

𝑣"
𝑤"

EPA Pseudocode
EPA(simplex):
polytope = simplex
while (true)
face = getClosestFaceToOrigin(polytope)
v = projectionOfOriginOnFace(face)
w = minkowskiSupport(v)
if projection(w,v) == v:
return v

else
simplex.add(w)

Extra Details
• We have looked at an EPA example in 2D
• There are a few details that we need to consider

when we transition to 3D

Representing the Polytope
• We have looked at an EPA example in 2D
• There are a few details that we need to consider

when we transition to 3D
• First, the polytope in 3D is defined as a set of

triangles forming a convex 3D shape
– We can represent the polytope like a mesh, by having a

list of vec3s defining the vertex positions, and a list of
triplets of integers representing the faces

Expanding the Polytope in 3D
• If we need to expand the polytope, we can’t just split the face containing 𝑣% into 3

faces that contain 𝑤%
• If we do this, we will get a non-convex shape, as shown in the video below (the

sphere represents 𝑤%)

Expanding the Polytope in 3D
• To handle this problem, we need to make sure every

face of the polytope that “sees” 𝑤. is changed so
that face has 𝑤. as a vertex

• A face with normal 𝒏 and a vertex 𝑡 “sees” 𝑤. if
(𝑤. − 𝑡) ⋅ 𝒏 > 0

𝑡

𝑤%
Here, the
blue face
”sees” 𝑤.

𝑛

Expanding the Polytope in 3D
• To handle this problem, we need to make sure every

face of the polytope that “sees” 𝑤. is changed so
that face has 𝑤. as a vertex

• A face with normal 𝒏 and a vertex 𝑡 “sees” 𝑤. if
(𝑤. − 𝑡) ⋅ 𝒏 > 0

𝑡
𝑤%

Here, the
blue face
does not
”see” 𝑤'

𝑛

Expanding the Polytope in 3D
• The video below provides a demonstration of this

process

Expanding the Polytope in
Pseudocode

edges = []
for face in polytope:

if face.sees(w):
polytope.remove(face)
for edge in face:

if edge in edges:
edges.remove(edge)

else:
edges.append(edge)

for edge in edges:
polytope.addTriangle(Triangle(edge.start, edge.end, w))

Pseudocode from GJK + Expanding Polytope Algorithm –
Implementation and Visualization by Andrew Smith

Expanding the Polytope
Pseudocode

• The pseudocode says that any face that does not see
𝑤. will be in the new polytope

• Any face that does see 𝑤. will be removed
• For each edge of a face that sees 𝑤. but is not

shared between two faces that see 𝑤. create a face
using that edge and 𝑤.

• This process results in a convex polytope

Expanding the Polytope
Pseudocode

• You don’t need to maintain a winding order for the
triangles in your polytope

• The origin must be inside the polytope, which means
that the normal of a face of the polytope is always
pointing away from the origin
– The normal 𝒏 of a face with a vertex 𝑡 must satisfy 𝑡 ⋅ 𝒏 > 0
– If the normal you calculated using a cross product does not

satisfy this requirement, just multiply the normal by -1!

Start with a 3-simplex
• You may have to deal with special cases if you start

EPA with a simplex that is not a 3-simplex
(tetrahedron)

• It is fine to force GJK to output a 3-simplex even if a
2-simplex containing the origin was found

Numerical Instability
• It is common for the origin to be very close to the edge

of the Minkowski difference, which may cause
numerical instability

• As a result, length(projection(w,v) – v) might not
become as small as we want it to

• We can deal with this by keeping track of the smallest
length(projection(w,v) – v) and returning the
corresponding v if we run more than 10 iterations

Extra Details
• What if we want the point of contact between the two

objects?
• We need the two points on each of the objects whose

difference is the MTV!
• We know that the MTV is the point v on the polytope that

we return from EPA
• Recall that if we have two objects A and B, then the

Minkowski difference is MA-B= pA – pB for all points pA in
object A and all points pB in object B

Extra Details
• Recall that the point 𝑣 on the polytope that we return exists on a triangle

whose vertices are points on the boundary of the Minkowski difference
– Call these vertices 𝑀$, 𝑀%, and 𝑀&

• Given two colliding objects A and B, we want two points 𝐴∗ on object A
and 𝐵∗ on object B such that 𝐴∗ − 𝐵∗ = 𝑣

• We can define either 𝐴∗ or 𝐵∗ in world space as the point of collision
• Call these vertices 𝑀', 𝑀(, and 𝑀)

– Using barycentric coordinates, we can say that 𝑣 = 𝑐$𝑀$ + 𝑐%𝑀% + 𝑐&𝑀&, where
𝑐$ + 𝑐% + 𝑐& = 1

– Each 𝑀' = 𝐴' − 𝐵' where 𝐴' is a point on object A and 𝐵' is a point on object B
– This means that we can say 𝐴∗ = 𝑐$𝐴$ + 𝑐%𝐴% + 𝑐&𝐴& and 𝐵∗ = 𝑐$𝐵$ + 𝑐%𝐵% +

𝑐&𝐵&

Extra Details
• The following code calculates the barycentric

coordinates of point p for a triangle with vertices a,
b, and c

Extra Details
• We can test collisions between a convex shape and

a triangle!
– The support function of a triangle is just the vertex of the

triangle farthest in the direction of the input vector!

Hooray!
• Now we have everything we need to implement

basic rigid body physics for arbitrary convex
shapes!

Rigid Body Physics
• When we simulate physics on a computer, we represent

the system we are simulating with a state vector
• Given this state vector and the forces acting on the system,

we can calculate the derivative of the state vector and use
Euler’s method to propagate the system through time (i.e.
next_state = old_state + derivative * dt)

• Keep in mind that there are other ways to implement the
basics of rigid body physics
– This presentation is demonstrating a method based on David

Baraff’s An Introduction to Physically Based Modeling

State Vector
• Here is our state vector for a single rigid body
• x(t) is the world space position of the object’s center of gravity
• R(t) is the 3x3 rotation matrix that transforms the rigid body from

object space to world space (we will call this the orientation
matrix)

• P(t) is the object’s linear momentum (which is a vector)
• L(t) is the object’s angular momentum (which is a vector)

Rotations
• We need to discuss the physics of rotations a bit

Angular Velocity
• Angular velocity ω is a vector whose direction

describes the axis around which an object rotates,
and whose magnitude describes how fast the object
is rotating

Angular Velocity
• We can use the angular velocity of an object to

calculate the derivative the of the orientation
matrix R

Torque
• If a force is exerted on an object that causes the

rotation of that object to change, then we say that a
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

Torque
• If a force is exerted on an object that causes the

rotation of that object to change, then we say that a
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This green force
exerts a torque
on the bar

Torque
• If a force is exerted on an object that causes the

rotation of that object to change, then we say that a
torque is exerted on the object

• Consider the blue bar secured to the red hinge below
This purple force
exerts a smaller
torque on the bar,
even though it is
equal in magnitude
to the green force

Torque
• If a force is exerted on an object that causes the

rotation of that object to change, then we say that a
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This orange force
exerts no torque
on the bar

Torque
• If a force is exerted on an object that causes the

rotation of that object to change, then we say that a
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This orange force
exerts no torque
on the bar

Angular Momentum
• Angular momentum is harder to understand than

linear momentum
• You can think about it as a vector quantity

describing how an object is rotating, and how
difficult it is to stop the object from rotating

• Torque is the derivative of angular momentum

State Vector Derivative
• Here is our state vector for a single rigid body
• v(t) is the linear velocity
• ω 𝑡 ∗ 𝑅(𝑡) is the derivative of the orientation matrix,

as mentioned before
• F(t) is the force acting on the object
• τ 𝑡 is the torque acting on the object

State Vector Derivative
• We will pretend that the force and torque are given for now (you will probably

only need to set the force to be gravity, and leave the torque alone)
• Here are the formulas for calculating the angular momentum and the linear

velocity:

• Wait, what are 𝐼(𝑡) and 𝐼4567?

The Inertia Tensor
• 𝐼 and 𝐼4567 are the inertia tensors in world space

and object space, respectively
• The inertia tensor is a 3x3 matrix
• The inertia tensor is a generalization of the

“moment of inertia”
• 𝐼 relates the object’s angular velocity to its angular

momentum, as shown below

The Inertia Tensor
• Here are inertia tensors in object space for

different shapes

The Inertia Tensor
• Here are inertia tensors in object space for

different shapes

The Inertia Tensor
• You can use these inertia tensors in object space

along with your object’s orientation matrix to
calculate the inertia tensor in world space

Euler’s Method
• Now we know how to calculate the derivative of the

state vector!
• We can use Euler’s method to propagate the

system through time
• next_state = old_state + derivative * dt

Euler’s Method
• Just one problem…
• We need the orientation matrix to be a rotation matrix

(i.e. its columns are unit vectors that are orthogonal to
each other)

• If we add ω 𝑡 ∗ 𝑅 𝑡 ⋅ 𝑑𝑡 to the orientation matrix,
we will not end up with a rotation matrix!

• The easiest thing to do is to use the Gram-Schmidt
process
– This will turn the columns of 𝑅 t + ω 𝑡 ∗ 𝑅 𝑡 ⋅ 𝑑𝑡 into a

“close” orthonormal basis
– There are better solutions to this problem

Gram-Schmidt Process
• This code takes in a matrix (in column-major order)

and returns a new matrix whose columns are the
result of applying the Gram-Schmidt process to the
columns of the original matrix

What Happened to Collisions?
• We still haven’t discussed how we use the MTV and

collision point to deal with collisions!

Impulse
• Impulse is a change in momentum due to a force
• It is equal to the force times the time interval over

which it acts
• When a collision happens, we will apply an impulse

to the colliding objects

Impulse
• Impulse is a change in momentum due to a force
• It is equal to the force times the time interval over which it acts
• When a collision happens, we will apply an impulse to the

colliding objects using the mtv, the points of collision of the two
objects, and those two points’ velocities

• We can apply linear and rotational impulse
• Once we have applied the impulse, we use Euler’s method again
• For more info, check out An Introduction to Physically Based

Modeling: Rigid Body Simulation II—Nonpenetration Constraints by
David Baraff

Finally!
• We get collisions and rotational physics! Wow!
• Notice that there is no friction here

The GJK Debugger
• We have a debugging tool to help you implement

the GJK algorithm!

The GJK Debugger

