


Collisions
• So far, we have had to write a new function every time 

we wanted to detect collisions between a new pair of 
shapes

• In this class, we will discuss a general method for 
detecting collisions that works for all convex shapes 
called the GJK algorithm

• We can easily replace our ellipsoid/triangle collisions 
with GJK collisions

• But first…





Rotations
• Rotations can be represented by Euler angles 

(i.e. roll, pitch, yaw), rotation matrices, or 
quaternions

• Useful fact: any arbitrary orientation can be 
achieved by a single rotation about some axis 
by some angle



Euler Angles
• When we talk about Euler angles, we need to define an order of 

how the angles are set
– We also need to say whether each angle in the sequence is 

measured in the object’s transformed coordinate frame after each 
step (intrinsic), or the world coordinate frame (extrinsic angles)

• Here, we have a sphere first 
rotating 𝜃! about the z axis 
(up), then rotating 𝜃" the x 
axis in its transformed 
coordinate frame, then 
rotating 𝜃# the z axis in its 
transformed coordinate 
frame

• These are intrinsic rotations

• If the sphere first rotated 𝜃#
about the world z axis, then 
rotated 𝜃" about the world x 
axis, and then rotated 𝜃!
about the world z axis, we 
would have extrinsic rotations

• We would also have the same 
orientation as we did with 
the intrinsic rotations 
described to the left!



Rotation Matrices
• Rotation matrices are 3x3 orthogonal matrices 

with determinant 1
– This means that the columns of the matrix form an 

orthonormal basis of 𝑅! (a set of pairwise orthogonal 
and normalized vectors that span 𝑅!)

• A rotation matrix says “x-axis, turn into my first 
column”, “y-axis, turn into my second column”, and 
“z-axis, turn into my third column”



Quaternions
• Quaternions are a confusing subject, but it is 

helpful to know that there is a formula that 
takes in an axis of rotation 𝑢 and an angle 𝜃
and gives you the quaternion corresponding to 
that rotation



Rotations
• You will need to convert between rotation 

matrices and Euler angles in order to implement 
advanced collisions (if your transform 
component uses Euler angles)





SUPPORT FUNCTIONS
GJK Algorithm



Convex Shapes
• A convex shape satisfies 

the requirement that the 
line segment connecting 
any point to any other 
point inside the shape 
exists entirely inside the 
shape

Convex

Not Convex



Support Functions
• We can define a support function

for a convex shape
• A support function takes in a 

direction and then returns the point 
on the shape farthest in that 
direction
– More precisely, given a direction 𝑣, 

the support function 𝑓 of a shape 𝑠
is 𝑓 𝑣 = max

!∈#
𝑣 ⋅ 𝑝

• Notice that the support function for 
the square always returns a corner
– In the middle example, the vector is 

pointing slightly to the right, so the 
bottom right corner of the square 
maximizes the dot product

Shape v f(v) (red point)



More Support Function Examples
• Given a direction 𝑣, the support function 𝑓 of 

a shape 𝑠 is 𝑓 𝑣 = max
!∈#

𝑣 ⋅ 𝑝
v

Shape v f(v) (red point) • Note the first example
– The point returned is not 

necessary the exact point 
that the arrow is pointing to

– Instead, the point returned is 
the point that maximizes the 
dot product



Support Functions Takeaway
• In a very broad sense, you can think of a support 

function as a function that takes in a direction and 
returns a point on the boundary of the shape
farthest in that direction



Support Functions for 3D Shapes

From A Fast and Robust GJK Implementation for Collision Detection of Convex Objects 
GINO VAN DEN BERGEN 



Minkowski Difference

• The Minkowski difference 
of shapes A and B is the 
set of points that are the 
difference of a point in A 
and a point in B

• In other words, if we 
subtract every point in B
from every point in A we 
get the Minkowski
difference



Minkowski Difference
• A and B are colliding if and 

only if the Minkowski
difference contains the origin
– Think about it this way: if A and 

B are colliding then they will 
overlap at some point in space

– The Minkowski difference value 
resulting from this overlap is the 
origin

• We can use this fact to 
determine whether two shapes 
are colliding



Minkowski Difference and 
Support Functions

• It turns out that the Minkowski
difference of two convex shapes is 
also convex
– This means we can define the support 

function of the Minkowski difference!
• The support function 𝑓!"# of the 

Minkowski difference of shapes 𝐴
and 𝐵 with support functions 𝑓! and 
𝑓# is 𝑓!"# 𝑣 = 𝑓! 𝑣 − 𝑓#(−𝑣)
– This identity requires a small proof 

that we will omit



THE ALGORITHM
GJK Algorithm



GJK Algorithm
• To figure out whether two shapes are 

colliding in 3D, we answer the 
question: “is the origin in the 
Minkowski difference?”

• To answer this question, we will try to 
create a simplex that contains the 
origin
– A simplex is a generalization of a 

triangle to arbitrary dimensions
– The 0-dimensional simplex is a point, the 

1-dimensional simplex is a line, the 2-
dimensional simplex is a triangle, and 
the 3-dimensional simplex is a 
tetrahedron

– The vertices of the simplex we are 
searching for are points returned by 
the support function of the Minkowski
difference



GJK Algorithm
• To be more concrete, we have a 

collision if we can create a simplex 
consisting of vertices returned from 
the support function of the 
Minkowski difference satisfying one 
of the following:
– a 0-simplex (point) that contains the 

origin (the simplex itself is the origin) 
– a 1-simplex (line segment) that contains 

the origin (the origin is on the line 
segment)

– a 2-simplex (triangle) that contains the 
origin (the origin exists on the triangle 
face)

– A 3-simplex (tetrahedron) that contains 
the origin (the origin is inside the volume 
of the tetrahedron



GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

A = the newest vertex in the simplex 
D = the next direction we plug into the Minkowski
difference support function

do_simplex updates simplex and D

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in 
the Minkowski difference (S)

2. Next, we find the point (A) in the 
Minkowski difference farthest in 
the opposite direction of S 

3. If dot(A, D) < 0, then we did not 
pass the origin when we walked 
from vertex S to vertex A



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in 
the Minkowski difference (S)

2. Next, we find the point (A) in the 
Minkowski difference farthest in 
the opposite direction of S 

3. If dot(A, D) < 0, then we did not 
pass the origin when we walked 
from vertex S to vertex A

S
0

D

A
Vertex A did not pass the origin



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in 
the Minkowski difference (S)

2. Next, we find the point (A) in the 
Minkowski difference farthest in 
the opposite direction of S 

3. If dot(A, D) < 0, then we did not 
pass the origin when we walked 
from vertex S to vertex A

S
0

D
A

Vertex A passed the origin



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

1. We first find an arbitrary point in 
the Minkowski difference (S)

2. Next, we find the point (A) in the 
Minkowski difference farthest in 
the opposite direction of S 

3. If dot(A, D) < 0, then we did not 
pass the origin when we walked 
from vertex S to vertex A

4. The Minkowski difference is 
convex, so if we did not pass the 
origin when we walked from 
vertex S to vertex A, then we 
know that there is no collision



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

5. If we succeeded in passing the 
origin, then we add vertex A to 
the simplex 

6. Next, we run the do_simplex 
function, which decides if we are 
done. If not, the function finds the 
next direction D that we should 
plug into the support function. 
The support function will then 
give us the next vertex we will add 
to the simplex.



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• We can see that the main GJK 
algorithm is not too complicated

• The function do_simplex is doing 
most of the heavy lifting here

• do_simplex does the following:
• Decide if the current simplex 

contains the origin (if so, GJK 
returns true and the simplex)

• If the current simplex does 
not contain the origin, find 
the optimal direction to 
search and update simplex 
and D accordingly



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do_simplex(simplex, D):
if contains_origin(simplex): return true 
return handle_simplex(simplex, D)



GJK Algorithm Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:

A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do_simplex(simplex, D):
if contains_origin(simplex): return true 
return handle_simplex(simplex, D)

• When we call 
handle_simplex, the 
simplex will have 2, 3, or 
4 vertices

• We need to figure out the 
optimal way to change 
the simplex in each case

• The optimal way to 
change the simplex will 
capture the origin in a 
simplex in the minimum 
number of iterations



Updating the Simplex

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

• The content here is adapted from “Implementing GJK -
2006”, a video by Casey Muratori

• This video points out the important insight that the position 
of the vertex that was last added to the simplex gives us 
hints about which direction we should plug into the 
Minkowski support function in the next iteration (to get 
the next vertex of the simplex)

• In the following slides, the vertex that was last added to the 
simplex will be called A



Handling the 1-Simplex (Line)

A

S

• Remember that every vertex in the 
simplex is a point on the boundary of 
the Minkowski difference

• We need to find a new direction to 
plug into the support function of the 
Minkowski difference

Newest Vertex



Handling the 1-Simplex (Line)

• How did the simplex become a line?

A

Newest Vertex
S



Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Let’s look at the pseudocode again…

A

S



Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• First, we add some point (S) to simplex

A

S



Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Then, we plug –S into the support 
function 

• Remember that we only got to this 
point in the algorithm because we 
passed the origin when we walked 
from S to A

A

S



Handling the 1-Simplex (Line)

Newest Vertex

pair<bool, simplex> gjk(support_func):
S = support_func(arbitrary_direction)
simplex = [S]
D = -S
while True:
A = support_func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

• Since we know that we passed the 
origin, we know that the origin exists 
somewhere in the orange area between 
S and A (extending out to infinity)

• The origin cannot be behind S or behind 
A

A

S



Handling the 1-Simplex (Line)

Newest Vertex
• So, the new direction D is the vector 

perpendicular to the line segment SA in 
the direction of the origin!

• We don’t need to adjust the simplex at 
all in this case before adding 
support_function(D) to the 

• The 1-simplex case is solved!

A

S



Aside: Voronoi Diagrams

• A Voronoi diagram shows a partition of 
the plane where the ”Voronoi region” 
of a seed s (a black dot in the figure) is 
the set of points that are closer to s
than any other seed

• It is useful to think about this type of 
diagram when dealing with the 2-
simplex case



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region closest 
to the vertex C



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region closest 
to the line CA



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region closest 
to the vertex A



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region closest 
to the line AB



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region closest 
to the vertex B



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin The region closest 

to the line CB



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region above 
the triangle



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

The region below 
the triangle



Handling the 2-Simplex (Triangle)

A

S

Newest Vertex

B• There are 8 (Voronoi) regions 
where we might want to search 
for the origin

• Keep in mind that, if this triangle 
were on the XY plane, then these 
regions would extend straight 
forward and backward in the z-
direction



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• Our task is to find 
the region 
containing the 
origin

• When we find that 
region, we will 
send our new 
direction D into 
that region!



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• But we don’t have 
to check every 
region!

• We have ruled out 
some of these 
regions in previous 
iterations!



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B• Remember that 
the newest vertex 
is A

• When our simplex 
was CB, we 
decided the origin 
was in the 
direction of A

• Therefore, the CB 
region does not 
contain the origin



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B

• The C and B 
regions also do not 
contain the origin!

• Consider the 1-
simplex case to see 
why!



Handling the 2-Simplex (Triangle)

A

C

Newest Vertex

B
• So, we have 5 

regions to check: 
CA, A, AB, above 
the triangle, and 
below the 
triangle!

• We use a bunch 
of dot and cross 
products to 
decide which 
region the origin 
is in 



2-Simplex Pseudocode

Pseudocode from 
“Implementing GJK - 2006” 
by Casey Muratori

simplex2_case(simplex, D):
A = simplex[2] // newest vertex in the simplex
B = simplex[1] 
C = simplex[0]

// let’s arbitrarily say this normal points “above” the triangle (in the previous slides, this normal would point at us) 
// this way, we don’t have to maintain a winding order
normal = cross(B-A,C-A)

if dot(cross(normal, C-A), -A) > 0: // true if origin is in CA region or A region
if dot(C-A, -A) > 0: // true if origin is in CA region

simplex = [C,A]
D = cross(cross(C-A, -A), C-A)
return

else: // executes if origin is in A region
simplex = [A]
D = -A
return

else:
if dot(cross(B-A, normal), -A) > 0: // true if the origin is in BA region or A region

if dot(B-A, -A) > 0: // true if origin is in BA region
simplex = [B,A]
D = cross(cross(B-A, -A), B-A)
return

else: // executes if origin is in A region
simplex = [A]
D = -A
return

else: // executes if origin is above or below the triangle
if dot(normal, -A) > 0: // true if origin is above triangle

simplex = [A,B,C]
D = normal 
return

else: // executes if origin is below triangle
simplex = [A,B,C]
D =  -normal
return



Handling the 3-Simplex
• Remember that we want a simplex with at most 4 

vertices!
• When we have a 3-simplex (tetrahedron), we just 

reduce the problem back to the 2-simplex case
– Given a tetrahedron where vertex A is the newest vertex, 

we calculate which of the planes of faces ABC, ABD, and 
ACD is closest to the origin

– Make sure the closest plane is actually facing the origin
– Then we just run our 2-simplex code on that face!



Verifying the Simplex
• We know we are done running GJK if we 

fail to pass the origin or if the simplex 
contains the origin

• A 2-simplex contains the origin if the 
origin exists on the face of the triangle
– We should first verify whether the origin 

exists in the plane of the triangle
– If the origin exists in the plane of the 

triangle, then the simplex contains the origin 
if, when we take any edge of the simplex, 
the origin is on the same side of the edge as 
the vertex of the simplex opposite the edge

• A 3-simplex contains the origin if, when 
we take any face of the simplex, the 
origin is on the same side of the face as 
the vertex of the simplex opposite the 
face



Evaluating the Minkowski
Difference Support function

• The Minkowksi difference is in world space
• The support functions for our objects are in object 

space 
• The direction D is in world space
• Then how do we calculate the Minkowski difference?



Evaluating the Minkowski
Difference Support function

1. We have objects 1 and 2
2. Convert D into the object space of objects 1 and 2 

to get D1 and D2

3. Evaluate the support function of object 1 using D1
and evaluate the support function of object 2 using 
D2 to get points p1 and p2

4. Convert p1 and p2 to world space to get P1 and P2
and then return the difference of P1 and P2



Are we done yet?
• So, we have everything we need to implement the 

GJK algorithm!
• But the GJK algorithm gives us a boolean indicating 

whether there was collision (and a simplex containing 
the origin if there was a collision)

• Don’t we want a minimum translation vector (MTV)?
– We need to know how to resolve the collision once we know 

it is occurring

• Introducing…





Expanding Polytope Algorithm
• If there was a collision, then we must resolve it (i.e. stop the objects from 

intersecting)
– We get a simplex containing the origin from the GJK algorithm if there was a collision

• It turns out that the minimum translation vector (MTV) is the vector connecting 
the origin to the point on the Minkowski difference closest to the origin
– In other words, if point A is the point on the Minkowski difference closest to the origin, then the 

MTV is A!
– The goal of the Expanding Polytope Algorithm is to find the point on the Minkowski difference 

closest to the origin, so that we can use the MTV
• Note that it does not make sense to use the Expanding Polytope Algorithm if there 

was not a collision, because in that case there is no need for an MTV
• In fact, the Expanding Polytope Algorithm (EPA) only works when we have a 

simplex of points in the Minkowski difference and this simplex contains the 
origin



Expanding Polytope Algorithm
• Let the blue shape be the Minkowski difference, the 

orange shape be the simplex, and the red point be 
the origin



Expanding Polytope Algorithm
• We can see that the MTV is the green vector below



Expanding Polytope Algorithm
• We can see that the MTV is the green vector below



Expanding Polytope Algorithm
• EPA iteratively expands the simplex, adding more 

points on the boundary of the Minkowski difference 
to find the MTV



Expanding Polytope Algorithm
• To find the next point on the boundary of the Minkowski difference, 

we find the point on the boundary of the simplex (which we will 
now call a polytope) closest to the origin (the purple point)

• At iteration 𝑖, call this point 𝑣!

𝑣$



Expanding Polytope Algorithm
• We plug 𝑣! into the support function of the Minkowski difference to get 𝑤!
• We terminate the algorithm and return 𝑣! when the projection of 𝑤! onto 𝑣! is equal to 𝑣! (within 

some tolerance)
• When the projection of 𝑤! onto 𝑣! is equal to 𝑣! , we know that the 𝑣! is on the boundary of the 

Minkowski difference
• In this iteration, we see that this termination condition is not met, so we add 𝑤! to the polytope by 

splitting the edge/face that 𝑣" belonged to

𝑣$

𝑤$



Expanding Polytope Algorithm

𝑤$



Expanding Polytope Algorithm
• Next, we carry out another iteration
• We find the point on the boundary of the polytope 

closest to the origin (𝑣,)

𝑣!



Expanding Polytope Algorithm
• Then, we plug 𝑣$ into the support function of the Minkowski

difference to get 𝑤$
• The projection of 𝑤$ onto 𝑣$ is not equal to 𝑣$, so we add 𝑤$

to the polytope by splitting the edge 𝑣$ belonged to

𝑣!
𝑤!



Expanding Polytope Algorithm
• We find the point on the polytope closest to the 

origin (𝑣-)

𝑣"



Expanding Polytope Algorithm
• Then we plug 𝑣" into the support function of the 

Minkowski difference to get 𝑤"
• The projection of of 𝑤" onto 𝑣" is equal to 𝑣", so we 

return 𝑣", which is the MTV!

𝑣"
𝑤"



EPA Pseudocode
EPA(simplex):
polytope = simplex
while (true)
face = getClosestFaceToOrigin(polytope)
v = projectionOfOriginOnFace(face)
w = minkowskiSupport(v)
if projection(w,v) == v:
return v

else
simplex.add(w)



Extra Details
• We have looked at an EPA example in 2D
• There are a few details that we need to consider 

when we transition to 3D



Representing the Polytope
• We have looked at an EPA example in 2D
• There are a few details that we need to consider 

when we transition to 3D
• First, the polytope in 3D is defined as a set of 

triangles forming a convex 3D shape
– We can represent the polytope like a mesh, by having a 

list of vec3s defining the vertex positions, and a list of 
triplets of integers representing the faces



Expanding the Polytope in 3D
• If we need to expand the polytope, we can’t just split the face containing 𝑣% into 3 

faces that contain 𝑤%
• If we do this, we will get a non-convex shape, as shown in the video below (the 

sphere represents 𝑤%)



Expanding the Polytope in 3D
• To handle this problem, we need to make sure every 

face of the polytope that “sees” 𝑤. is changed so 
that face has 𝑤. as a vertex

• A face with normal 𝒏 and a vertex 𝑡 “sees” 𝑤. if 
(𝑤. − 𝑡) ⋅ 𝒏 > 0

𝑡

𝑤%
Here, the 
blue face 
”sees” 𝑤.

𝑛



Expanding the Polytope in 3D
• To handle this problem, we need to make sure every 

face of the polytope that “sees” 𝑤. is changed so 
that face has 𝑤. as a vertex

• A face with normal 𝒏 and a vertex 𝑡 “sees” 𝑤. if 
(𝑤. − 𝑡) ⋅ 𝒏 > 0

𝑡
𝑤%

Here, the 
blue face 
does not 
”see” 𝑤'

𝑛



Expanding the Polytope in 3D
• The video below provides a demonstration of this 

process



Expanding the Polytope in 
Pseudocode

edges = []
for face in polytope:

if face.sees(w):
polytope.remove(face)
for edge in face:

if edge in edges:
edges.remove(edge)

else:
edges.append(edge)

for edge in edges:
polytope.addTriangle(Triangle(edge.start, edge.end, w))

Pseudocode from GJK + Expanding Polytope Algorithm –
Implementation and Visualization by Andrew Smith



Expanding the Polytope 
Pseudocode

• The pseudocode says that any face that does not see 
𝑤. will be in the new polytope

• Any face that does see 𝑤. will be removed
• For each edge of a face that sees 𝑤. but is not 

shared between two faces that see 𝑤. create a face 
using that edge and 𝑤.

• This process results in a convex polytope



Expanding the Polytope 
Pseudocode

• You don’t need to maintain a winding order for the 
triangles in your polytope

• The origin must be inside the polytope, which means 
that the normal of a face of the polytope is always 
pointing away from the origin
– The normal 𝒏 of a face with a vertex 𝑡 must satisfy 𝑡 ⋅ 𝒏 > 0
– If the normal you calculated using a cross product does not 

satisfy this requirement, just multiply the normal by -1!



Start with a 3-simplex
• You may have to deal with special cases if you start 

EPA with a simplex that is not a 3-simplex 
(tetrahedron)

• It is fine to force GJK to output a 3-simplex even if a 
2-simplex containing the origin was found



Numerical Instability
• It is common for the origin to be very close to the edge 

of the Minkowski difference, which may cause 
numerical instability

• As a result, length(projection(w,v) – v) might not 
become as small as we want it to

• We can deal with this by keeping track of the smallest 
length(projection(w,v) – v) and returning the 
corresponding v if we run more than 10 iterations



Extra Details
• What if we want the point of contact between the two 

objects?
• We need the two points on each of the objects whose 

difference is the MTV!
• We know that the MTV is the point v on the polytope that 

we return from EPA
• Recall that if we have two objects A and B, then the 

Minkowski difference is MA-B= pA – pB for all points pA in 
object A and all points pB in object B



Extra Details
• Recall that the point 𝑣 on the polytope that we return exists on a triangle 

whose vertices are points on the boundary of the Minkowski difference
– Call these vertices 𝑀$, 𝑀%, and 𝑀&

• Given two colliding objects A and B, we want two points 𝐴∗ on object A
and 𝐵∗ on object B such that 𝐴∗ − 𝐵∗ = 𝑣

• We can define either 𝐴∗ or 𝐵∗ in world space as the point of collision
• Call these vertices 𝑀', 𝑀(, and 𝑀)

– Using barycentric coordinates, we can say that 𝑣 = 𝑐$𝑀$ + 𝑐%𝑀% + 𝑐&𝑀&, where 
𝑐$ + 𝑐% + 𝑐& = 1

– Each 𝑀' = 𝐴' − 𝐵' where 𝐴' is a point on object A and 𝐵' is a point on object B
– This means that we can say 𝐴∗ = 𝑐$𝐴$ + 𝑐%𝐴% + 𝑐&𝐴& and 𝐵∗ = 𝑐$𝐵$ + 𝑐%𝐵% +

𝑐&𝐵&



Extra Details
• The following code calculates the barycentric 

coordinates of point p for a triangle with vertices a, 
b, and c



Extra Details
• We can test collisions between a convex shape and 

a triangle!
– The support function of a triangle is just the vertex of the 

triangle farthest in the direction of the input vector! 



Hooray!
• Now we have everything we need to implement 

basic rigid body physics for arbitrary convex 
shapes!





Rigid Body Physics
• When we simulate physics on a computer, we represent 

the system we are simulating with a state vector
• Given this state vector and the forces acting on the system, 

we can calculate the derivative of the state vector and use 
Euler’s method to propagate the system through time (i.e. 
next_state = old_state + derivative * dt)

• Keep in mind that there are other ways to implement the 
basics of rigid body physics
– This presentation is demonstrating a method based on David 

Baraff’s An Introduction to Physically Based Modeling



State Vector
• Here is our state vector for a single rigid body
• x(t) is the world space position of the object’s center of gravity
• R(t) is the 3x3 rotation matrix that transforms the rigid body from 

object space to world space (we will call this the orientation 
matrix)

• P(t) is the object’s linear momentum (which is a vector)
• L(t) is the object’s angular momentum (which is a vector)



Rotations
• We need to discuss the physics of rotations a bit



Angular Velocity
• Angular velocity ω is a vector whose direction 

describes the axis around which an object rotates, 
and whose magnitude describes how fast the object 
is rotating



Angular Velocity
• We can use the angular velocity of an object to 

calculate the derivative the of the orientation 
matrix R



Torque
• If a force is exerted on an object that causes the 

rotation of that object to change, then we say that a 
torque is exerted on the object

• Consider the blue bar secured to the red hinge below



Torque
• If a force is exerted on an object that causes the 

rotation of that object to change, then we say that a 
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This green force 
exerts a torque 
on the bar



Torque
• If a force is exerted on an object that causes the 

rotation of that object to change, then we say that a 
torque is exerted on the object

• Consider the blue bar secured to the red hinge below
This purple force 
exerts a smaller 
torque on the bar, 
even though it is 
equal in magnitude 
to the green force



Torque
• If a force is exerted on an object that causes the 

rotation of that object to change, then we say that a 
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This orange force 
exerts no torque 
on the bar



Torque
• If a force is exerted on an object that causes the 

rotation of that object to change, then we say that a 
torque is exerted on the object

• Consider the blue bar secured to the red hinge below

This orange force 
exerts no torque 
on the bar



Angular Momentum
• Angular momentum is harder to understand than 

linear momentum
• You can think about it as a vector quantity 

describing how an object is rotating, and how 
difficult it is to stop the object from rotating

• Torque is the derivative of angular momentum



State Vector Derivative
• Here is our state vector for a single rigid body
• v(t) is the linear velocity
• ω 𝑡 ∗ 𝑅(𝑡) is the derivative of the orientation matrix, 

as mentioned before
• F(t) is the force acting on the object 
• τ 𝑡 is the torque acting on the object



State Vector Derivative
• We will pretend that the force and torque are given for now (you will probably 

only need to set the force to be gravity, and leave the torque alone)
• Here are the formulas for calculating the angular momentum and the linear 

velocity:

• Wait, what are 𝐼(𝑡) and 𝐼4567?



The Inertia Tensor
• 𝐼 and 𝐼4567 are the inertia tensors in world space 

and object space, respectively
• The inertia tensor is a 3x3 matrix
• The inertia tensor is a generalization of the 

“moment of inertia”
• 𝐼 relates the object’s angular velocity to its angular 

momentum, as shown below



The Inertia Tensor
• Here are inertia tensors in object space for 

different shapes 



The Inertia Tensor
• Here are inertia tensors in object space for 

different shapes



The Inertia Tensor
• You can use these inertia tensors in object space 

along with your object’s orientation matrix to 
calculate the inertia tensor in world space



Euler’s Method
• Now we know how to calculate the derivative of the 

state vector!
• We can use Euler’s method to propagate the 

system through time 
• next_state = old_state + derivative * dt



Euler’s Method
• Just one problem…
• We need the orientation matrix to be a rotation matrix 

(i.e. its columns are unit vectors that are orthogonal to 
each other)

• If we add ω 𝑡 ∗ 𝑅 𝑡 ⋅ 𝑑𝑡 to the orientation matrix, 
we will not end up with a rotation matrix!

• The easiest thing to do is to use the Gram-Schmidt 
process 
– This will turn the columns of 𝑅 t + ω 𝑡 ∗ 𝑅 𝑡 ⋅ 𝑑𝑡 into a 

“close” orthonormal basis
– There are better solutions to this problem 



Gram-Schmidt Process
• This code takes in a matrix (in column-major order) 

and returns a new matrix whose columns are the 
result of applying the Gram-Schmidt process to the 
columns of the original matrix



What Happened to Collisions?
• We still haven’t discussed how we use the MTV and 

collision point to deal with collisions!





Impulse
• Impulse is a change in momentum due to a force
• It is equal to the force times the time interval over 

which it acts
• When a collision happens, we will apply an impulse 

to the colliding objects



Impulse
• Impulse is a change in momentum due to a force
• It is equal to the force times the time interval over which it acts
• When a collision happens, we will apply an impulse to the 

colliding objects using the mtv, the points of collision of the two 
objects, and those two points’ velocities

• We can apply linear and rotational impulse
• Once we have applied the impulse, we use Euler’s method again
• For more info, check out An Introduction to Physically Based 

Modeling: Rigid Body Simulation II—Nonpenetration Constraints by 
David Baraff



Finally!
• We get collisions and rotational physics! Wow!
• Notice that there is no friction here





The GJK Debugger
• We have a debugging tool to help you implement 

the GJK algorithm!



The GJK Debugger




