HHM@@S

S fl) -(|
2, f -1} i | Y

Collisions

So far, we have had to write a new function every time
we wanted to detect collisions between a new pair of
shapes

In this class, we will discuss a general method for
detecting collisions that works for all convex shapes
called the GJK algorithm

We can easily replace our ellipsoid /triangle collisions
with GJK collisions

But first...

Rotations

* Rotations can be represented by Euler angles
(i.e. roll, pitch, yaw), rotation matrices, or
quaternions

* Useful fact: any arbitrary orientation can be
achieved by a single rotation about some axis

by some angle

Euler Angles

* When we talk about Euler angles, we need to define an order of
how the angles are set

— We also need to say whether each angle in the sequence is
measured in the object’s transformed coordinate frame after each
step (intrinsic), or the world coordinate frame (extrinsic angles)

* If the sphere first rotated 65
about the world z axis, then
rotated 6, about the world x
axis, and then rotated 04
about the world z axis, we
would have extrinsic rotations

* We would also have the same
orientation as we did with
the intrinsic rotations
described to the leff!

Here, we have a sphere first
rotating ;1 about the z axis
(up), then rotating 0, the x
axis in its transformed
coordinate frame, then
rotating 65 the z axis in its
transformed coordinate
frame

These are intrinsic rotations

Rotation Matrices

* Rotation matrices are 3x3 orthogonal matrices
with determinant 1

— This means that the columns of the matrix form an
orthonormal basis of R3 (a set of pairwise orthogonal
and normalized vectors that span R3)

* A rotation matrix says “x-axis, turn into my first

column”, “y-axis, turn into my second column”, and

“z-axis, turn into my third column”

Quaternions

* Quaternions are a confusing subject, but it is
helpful to know that there is a formula that
takes in an axis of rotation U and an angle 6
and gives you the quaternion corresponding to
that rotation

(u;lti+uyj+uzk) 9 9

q=-e:2 :cos§+(umi+uyj—|—uzk)sin§

Rotations

* You will need to convert between rotation
matrices and Euler angles in order to implement
advanced collisions (if your transform
component uses Euler angles)

I é[hnﬁ» Algoritimm

v
-

GJK Algorithm

SUPPORT FUNCTIONS

Convex Shapes

* A convex shape satisfies

the requirement that the - .
line segment connecting

any point to any other Convex

point inside the shape
exists entirely inside the
shape

&

Not Convex

Support Functions

v) (red point
* We can define a support function Shape v fv) point)

for a convex shape

* A support function takes in a
direction and then returns the point
on the shape farthest in that
direction

— More precisely, given a direction v,
'rhe support function f of a shape s
8 max VD
* Notice that ’rhe suppor’r function for

the square always returns a corner

— In the middle example, the vector is
pointing slightly to the right, so the
bottom right corner of the square
maximizes the dot product

More Support Function Examples

* Given a direction v, the support functién [of

ashape sis f(v) =maxv:-p
{p€s}

Shape f(v) (red point) .
Note the first example

[]

— The point returned is not
necessary the exact point
that the arrow is pointing to

I ' — Instead, the point returned is

the point that maximizes the
dot product

Support Functions Takeaway

* In a very broad sense, you can think of a support
function as a function that takes in a direction and

returns a point on the boundary of the shape
farthest in that direction

Support Functions for 3D Shapes

Cone
Cylinder

A Cone primitive is a capped cone that is centered at the origin and whose central
axis is aligned with the y-axis. Let A be a Cone with a radius of p at its base, and A Cylinder primitive is a capped cylinder that again is centered at the origin and
with its apex at y = n and its base at y = —n. Then, the for the top angle o we whose central axis is aligned with the y-axis. Let A be a Cylinder with a radius
have sin(a) = p/+ /0?2 + (2n)2. Let 0 = +/x2 + 72, the distance from (x, ¥, Z)T of p, and with its top at y = 5 and its bottom at y = —zn. We find as support
to the y-axis. We choose as support mapping for A, the mapping mapping for A the mapping

©, 7,07 if y > [[(x, y, 2"l sin(@) sa(.y.2)T) = { (5%, sgn(y)n, 22)T if o >0
sa(x, y, Z)T) — (§X, —n, fZ)T else,ifo > 0 (0, sgn(y)n, 0) otherwise.
0, —n,0)T otherwise.

Box
Sphere

A Box primitive is a rectangular parallelepiped centered at the origin and aligned
with the coordinate axes. Let A be a Box with extents 21),, 21, and 27,. Then, A Sphere primitive is a ball centered at the origin. The support mapping of a
we take as support mapping for A, Sphere A with radius p is

sA(v):{ ﬁv ifvs#0

0 otherwise.

sa((x,y,2)7) = (sgn(x)ny, sgn(y)ny, sgn(@)n,)",

where sgn(x) = —1,if x < 0, and 1, otherwise.

From A Fast and Robust GJK Implementation for Collision Detection of Convex Objects
GINO VAN DEN BERGEN

Minkowski Difference

* The Minkowski difference
of shapes A and B is the
set of points that are the
difference of a point in A
and a point in B

* |n other words, if we
subtract every point in B
from every point in A we
get the Minkowski
difference

Minkowski Difference

* A and B are colliding if and
only if the Minkowski
difference contains the origin

— Think about it this way: if A and

B are colliding then they will
overlap at some point in space

— The Minkowski difference value
resulting from this overlap is the
origin

* We can use this fact to
determine whether two shapes
are colliding

Minkowski Difference and
Support Functions

* |t turns out that the Minkowski
difference of two convex shapes is
also convex

— This means we can define the support
function of the Minkowski difference!

* The support function f,_p of the
Minkowski difference of shapes A
and B with support functions f4 and

fBis fa—-p(v) = fa(v) — fp(—v)

— This identity requires a small proof
that we will omit

GJK Algorithm

THE ALGORITHM

GJK Algorithm

To figure out whether two shapes are
colliding in 3D, we answer the

question: “is the origin in the
Minkowski difference?”

To answer this question, we will try to
create a simplex that contains the
origin
— A simplex is a generalization of a
triangle to arbitrary dimensions
— The O-dimensional simplex is a point, the
1-dimensional simplex is a line, the 2-
dimensional simplex is a triangle, and
the 3-dimensional simplex is a
tetrahedron

— The vertices of the simplex we are
searching for are points returned by
the support function of the Minkowski
difference

GJK Algorithm

To be more concrete, we have a
collision if we can create a simplex
consisting of vertices returned from
the support function of the
Minkowski difference satisfying one
of the following:

— a O-simplex (point) that contains the

origin (the simplex itself is the origin)
— a l-simplex (line segment) that contains

the origin (the origin is on the line
segment)

— a 2-simplex (triangle) that contains the
origin (the origin exists on the triangle
face)

— A 3-simplex (tetrahedron) that contains
the origin (the origin is inside the volume
of the tetrahedron

GJK Algorithm Pseudocode

A = the newest vertex in the simplex

D = the next direction we plug into the Minkowski
difference support function

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -8

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)

if do simplex(simplex, D): return (simplex, D
Pseudocode from — p (fp ! f) (P !)
“Implementing GJK - 2006”

by Casey Muratori do_simplex updates simplex and D

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

1. We first find an arbitrary point in

S = support func(arbitrary direction) . Lo

simplex = [S] the Minkowski difference (S)

b= =S 2. Next, we find the point (A) in the
while True:

A = support func(D) Minkowski difference farthest in
if dot(a, D) < 0: return (false, []) the opposite direction of S
simplex.append(A) .
if do_simplex(simplex, D): return (simplex, D) 3. If dOt(A, D) < O, then we did not
pass the origin when we walked

from vertex S to vertex A

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do _simplex(simplex, D): return (simplex, D)

QD‘
A

1.

2.

We first find an arbitrary point in
the Minkowski difference (S)
Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

If dot(A, D) <0, then we did not
pass the origin when we walked
from vertex S to vertex A

Vertex A did not pass the origin

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)
simplex = [S]
D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do _simplex(simplex, D): return (simplex, D)

D
5) ® O

Vertex A passed the origin

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

We first find an arbitrary point in
the Minkowski difference (S)
Next, we find the point (A) in the
Minkowski difference farthest in
the opposite direction of S

If dot(A, D) <0, then we did not
pass the origin when we walked
from vertex S to vertex A

GJK Algorithm Pseudocode

pair<bool, simplex> gJk(support func): 1. We first find an arbitrary point in
S = support func(arbitrary direction) . Lo
simplex = [S] the Minkowski difference (S)
b= =S 2. Next, we find the point (A) in the
while True: . o)
A = support func(D) Minkowski difference farthest in
if dot(a, D) < 0: return (false, []) the opposite direction of S
simplex.append(A)]
if do_simplex(simplex, D): return (simplex, D) 3. If dOt(A, D) < O, then we did not

pass the origin when we walked
from vertex S to vertex A

4. The Minkowski difference is
convex, so if we did not pass the

origin when we walked from
Pseudocode from vertex S to vertex A, then we

“Implementing GJK - 2006” know that there is no collision
by Casey Muratori

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)

if do _simplex(simplex, D): return (simplex, D)

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

5.

If we succeeded in passing the
origin, then we add vertex A to
the simplex

Next, we run the do_simplex
function, which decides if we are
done. If not, the function finds the
next direction D that we should
plug into the support function.
The support function will then
give us the next vertex we will add
to the simplex.

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)

if do _simplex(simplex, D): return (simplex, D)

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

We can see that the main GJK
algorithm is not too complicated
The function do_simplex is doing
most of the heavy lifting here
do_simplex does the following:

* Decide if the current simplex
contains the origin (if so, GJK
returns true and the simplex)

e |f the current simplex does
not contain the origin, find
the optimal direction to
search and update simplex
and D accordingly

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do simplex(simplex, D):
if contains origin(simplex): return true
return handle simplex(simplex, D)

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

GJK Algorithm Pseudocode

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)

simplex = [S]

D = -S

while True:
A = support func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

bool do simplex(simplex, D):
if contains origin(simplex): return true
return handle simplex(simplex, D)

Pseudocode from
“Implementing GJK - 2006”
by Casey Muratori

When we call
handle_simplex, the
simplex will have 2, 3, or
4 vertices

We need to figure out the
optimal way to change
the simplex in each case

The optimal way to
change the simplex will
capture the origin in a
simplex in the minimum
number of iterations

Updating the Simplex

* The content here is adapted from “Implementing GJK -
2006”, a video by Casey Muratori

* This video points out the important insight that the position
of the vertex that was last added to the simplex gives us
hints about which direction we should plug into the
Minkowski support function in the next iteration (to get
the next vertex of the simplex)

* In the following slides, the vertex that was last added to the
simplex will be called A
Pseudocode from

“Implementing GJK - 2006”
by Casey Muratori

Handling the 1-Simplex (Line)

Newest Vertex
« Remember that every vertex in the

simplex is a point on the boundary of
the Minkowski difference

* We need to find a new direction to
plug into the support function of the
Minkowski difference

Handling the 1-Simplex (Line)

® Newest Vertex

 How did the simplex become a line? \

A

Handling the 1-Simplex (Line

Let’s look at the pseudocode again...

pair<bool, simplex> gjk(support func):

S = support func(arbitrary direction)
simplex = [S]
D = -S
while True:
A = support_ func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

Newest Vertex

Handling the 1-Simplex (Line)

Newest Vertex
* First, we add some point (S) to simplex

pair<bool, simplex> gjk(support func):
S = support func(arbitrary direction)
simplex = [S]
D = -S
while True:
A = support_ func(D)
if dot(A, D) < 0: return (false, []) /\
simplex.append(A)
if do_simplex(simplex, D): return (simplex, D)

Handling the 1-Simplex (Line)

* Then, we plug =S into the support
function

 Remember that we only got to this
point in the algorithm because we
passed the origin when we walked
fromSto A

pair<bool, simplex> gjk(support func):
S = support func(arbitrary direction)
simplex = [S]
D = -S
while True:
A = support_ func(D)
if dot(A, D) < 0: return (false, [])
simplex.append(A)

if do_simplex(simplex, D): return (simplex, D)

Newest Vertex

Handling the 1-Simplex (Line)
Since we know that we passed the
origin, we know that the origin exists
somewhere in the orange area between
S and A (extending out to infinity) ° Newest Vertex
The origin cannot be behind S or behind
A

pair<bool, simplex> gjk(support func):
simplex = [S]

while True:

= support_ func(arbitrary direction)
= -S

A = support_ func(D)

if dot(A, D) < 0: return (false, [])
simplex.append(A)

if do_simplex(simplex, D): return (simplex, D)

Handling the 1-Simplex (Line)

* So, the new direction D is the vector S
perpendicular to the line segment SAin g
the direction of the origin!

* We don’t need to adjust the simplex at
all in this case before adding
support_function(D) to the

e The 1-simplex case is solved!

Newest Vertex

Aside: Voronol Diagrams

* A Voronoi diagram shows a partition of
the plane where the ”Voronoi region”
of a seed s (a black dot in the figure) is
the set of points that are closerto s
than any other seed

e Itis useful to think about this type of
diagram when dealing with the 2-
simplex case

Handling the 2-Simplex (Triangle)

* There are 8 (Voronoi) regions B
where we might want to search ‘

[
for the origin / |
Ca

Handling the 2-Simplex (Triangle)

* There are 8 (Voronoi) regions B
where we might want to search
for the origin \

The region closest Ca
to the vertex C '

Handling the 2-Simplex (Triangle)

* There are 8 (Voronoi) regions B
where we might want to search
for the origin \

The region closest ™~ L4
to the line CA 7A

Handling the 2-Simplex (Triangle)

* There are 8 (Voronoi) regions B
where we might want to search
for the origin \

The region closest
to the vertex A

Handling the 2-Simplex (Triangle)

* There are 8 (Voronoi) regions B
where we might want to search
for the origin \

\ The region closest
Ce to the line AB

/ Newest Vertex

Handling the 2-Simplex (Triangle)

~ The region closest

* There are 8 (Voronoi) regions g to the vertex B
where we might want to search
for the origin \

* There are 8 (Voronoi) regions B

Handling the 2-Simplex (Triangle)

where we might want to search
for the origin

* There are 8 (Voronoi) regions B

Handling the 2-Simplex (Triangle)

where we might want to search
for the origin

The region above
the triangle

* There are 8 (Voronoi) regions B

Handling the 2-Simplex (Triangle)

where we might want to search
for the origin

The region below
the triangle

Handling the 2-Simplex (Triangle)

There are 8 (Voronoi) regions
where we might want to search S

for the origin \
Keep in mind that, if this triangle
were on the XY plane, then these

regions would extend straight
forward and backward in the z-

direction

Handling the 2-Simplex (Triangle)

* Qur taskis to find B
the region .
containing the |
origin

e When we find that
region, we will
send our new

direction D into Newest Vertex
that region!

AY
Cwa
7
7
U

Handling the 2-Simplex (Triangle)

« But we don’t have B
to check every "
region!

* We have ruled out
some of these
regions in previous

Ca
iterations! ’

Handling the 2-Simplex (Triangle)

* Remember that B

the newest vertex o
YA ‘

* When our simplex
was CB, we
decided the origin
was in the

direction of A Newest Vertex
* Therefore, the CB
region does not

contain the origin TOA

Handling the 2-Simplex (Triangle)

/ .‘
Ca
\ / Newest Vertex

1
TA
1
1
1

e Consider the 1-

Handling the 2-Simplex (Triangle)

QO 1
e TheCandB |
regions also do not
contain the origin!
Ce

simplex case to see

why! / Newest Vertex

Handling the 2- Slmplex (Triangle)
et O

CA, A, AB, above ® ®
the triangle, and . |

below the

triangle!
* We use a bunch Co

of dot and cross

products to Newest Vertex
decide which ' /
region the origin

isin. e

2-Simplex Pseudocode

simplex2 case(simplex, D):
A = simplex[2] // newest vertex in the simplex
B = simplex[1]
C = simplex[0]

// let's arbitrarily say this normal points “above” the triangle (in the previous slides, this normal would point at us)
// this way, we don’t have to maintain a winding order

normal = cross(B-A,C-A)

if dot(cross(normal, C-A), -A) > 0: // true if origin is in CA region or A region
if dot(C-A, -A) > 0: // true if origin is in CA region
simplex = [C,A]
D = cross(cross(C-A, -A), C-A)
return

else: // executes if origin is in A region
simplex = [A]

D = -A
return
else:
if dot(cross(B-A, normal), -A) > 0: // true if the origin is in BA region or A region

if dot(B-A, -A) > 0: // true if origin is in BA region
simplex = [B,A]
D = cross(cross(B-A, -A), B-A)
return

else: // executes if origin is in A region
simplex = [A]
D = -A
return

else: // executes if origin is above or below the triangle
if dot(normal, -A) > 0: // true if origin is above triangle
simplex = [A,B,C]
D = normal

return PseUdOCOde fl’0m

else: // executes if origin is below triangle

simplex = [A,B,C] “Implementing GJK - 2006”

D = -normal

return by Casey Muratori

Handling the 3-Simplex

* Remember that we want a simplex with at most 4
vertices!

* When we have a 3-simplex (tetrahedron), we just
reduce the problem back to the 2-simplex case

— Given a tetrahedron where vertex A is the newest vertex,
we calculate which of the planes of faces ABC, ABD, and

ACD is closest to the origin
— Make sure the closest plane is actually facing the origin
— Then we just run our 2-simplex code on that face!

Veritying the Simplex

We know we are done running GJK if we
fail to pass the origin or if the simplex
contains the origin

A 2-simplex contains the origin if the
origin exists on the face of the triangle
— We should first verify whether the origin

exists in the plane of the triangle

— If the origin exists in the plane of the
triangle, then the simplex contains the origin
if, when we take any edge of the simplex,
the origin is on the same side of the edge as
the vertex of the simplex opposite the edge

A 3-simplex contains the origin if, when
we take any face of the simplex, the
origin is on the same side of the face as
the vertex of the simplex opposite the
face

Evaluating the Minkowski
Difference Support function

The Minkowksi difference is in world space

The support functions for our objects are in object
space

The direction D is in world space

Then how do we calculate the Minkowski difference?

Evaluating the Minkowski
Difference Support function

. We have objects 1 and 2

. Convert D into the object space of objects 1 and 2

to get D; and D,

. Evaluate the support function of object 1 using D,
and evaluate the support function of object 2 using
D, to get points p; and p,

. Convert p; and p, to world space to get P, and P,
and then return the difference of P; and P,

Are we done yete

So, we have everything we need to implement the
GJK algorithm!

But the GJK algorithm gives us a boolean indicating
whether there was collision (and a simplex containing
the origin if there was a collision)

Don’t we want a minimum translation vector (MTV)?

— We need to know how to resolve the collision once we know
it is occurring

Introducing...

Expanding Polytope Algorithm

If there was a collision, then we must resolve it (i.e. stop the objects from
intersecting)

— We get a simplex containing the origin from the GJK algorithm if there was a collision
It turns out that the minimum translation vector (MTV) is the vector connecting
the origin to the point on the Minkowski difference closest to the origin

— In other words, if point A is the point on the Minkowski difference closest to the origin, then the
MTV is Al

— The goal of the Expanding Polytope Algorithm is to find the point on the Minkowski difference
closest to the origin, so that we can use the MTV
Note that it does not make sense to use the Expanding Polytope Algorithm if there
was not a collision, because in that case there is no need for an MTV

In fact, the Expanding Polytope Algorithm (EPA) only works when we have a
simplex of points in the Minkowski difference and this simplex contains the
origin

Expanding Polytope Algorithm

* Let the blue shape be the Minkowski difference, the
orange shape be the simplex, and the red point be
the origin

T
\L /

Expanding Polytope Algorithm

* We can see that the MTV is the green vector below

Expanding Polytope Algorithm

* We can see that the MTV is the green vector below

Expanding Polytope Algorithm

* EPA iteratively expands the simplex, adding more

points on the boundary of the Minkowski difference
to find the MTV

T
\L /

Expanding Polytope Algorithm

To find the next point on the boundary of the Minkowski difference,
we find the point on the boundary of the simplex (which we will
now call a polytope) closest to the origin (the purple point)

At iteration i, call this point v;

/N \
L\

¢

Expanding Polytope Algorithm

We plug v; into the support function of the Minkowski difference to get w;

We terminate the algorithm and return v; when the projection of w; onto v; is equal to v; (within
some tolerance)

When the projection of w; onto v; is equal to V;, we know that the v; is on the boundary of the
Minkowski difference

In this iteration, we see that this termination condition is not met, so we add w; to the polytope by
splitting the edge/face that v, belonged to

/N\v

® Vo

LN

Expanding Polytope Algorithm

Expanding Polytope Algorithm

* Next, we carry out another iteration

* We find the point on the boundary of the polytope
closest to the origin (vq)

Expanding Polytope Algorithm

Then, we plug V4 into the support function of the Minkowski
difference to get wy

The projection of w; onto vy is not equal to V4, so we add w4
to the polytope by splitting the edge V1 belonged to

Expanding Polytope Algorithm

* We find the point on the polytope closest to the

origin (v,)

Expanding Polytope Algorithm

* Then we plug v, into the support function of the
Minkowski difference to get w,

* The projection of of W, onto v, is equal to V,, so we
return V,, which is the MTV!

EPA Pseudocode

EPA(simplex):
polytope = simplex
while (true)
face = getClosestFaceToOrigin(polytope)
v = projectionOfOriginOnFace(face)
w = minkowskiSupport(v)
if projection(w,v) == v:
return v
else
simplex.add(w)

Exira Detaills

* We have looked at an EPA example in 2D

e There are a few details that we need to consider
when we transition to 3D

Representing the Polytope

We have looked at an EPA example in 2D

There are a few details that we need to consider
when we transition to 3D

First, the polytope in 3D is defined as a set of
triangles forming a convex 3D shape
— We can represent the polytope like a mesh, by having a

list of vec3s defining the vertex positions, and a list of
triplets of integers representing the faces

Expanding the Polytope in 3D

If we need to expand the polytope, we can'’t just split the face containing v; into 3
faces that contain w;

If we do this, we will get a non-convex shape, as shown in the video below (the
sphere represents w;)

Expanding the Polytope in 3D

To handle this problem, we need to make sure every
face of the polytope that “sees” w; is changed so
that face has w; as a vertex

A face with normal n and a vertex t “sees” w; if

Wi
Here, the / \n
blue face

t

"sees” W;

Expanding the Polytope in 3D

* To handle this problem, we need to make sure every
face of the polytope that “sees” w; is changed so
that face has w; as a vertex

* A face with normal n and a vertex t “sees” w; if

Here, the n
blue face

d t
oes no ~

”See” Wl Wl

Expanding the Polytope in 3D

* The video below provides a demonstration of this
process

Expanding the Polytope in
Pseudocode

edges = []
for face in polytope:
if face.sees(w):
polytope.remove (face)
for edge in face:
if edge in edges:
edges.remove (edge)
else:
edges.append(edge)
for edge in edges:
polytope.addTriangle(Triangle(edge.start, edge.end, w))

Pseudocode from GJK + Expanding Polytope Algorithm —
Implementation and Visualization by Andrew Smith

Expanding the Polytope
Pseudocode

The pseudocode says that any face that does not see
w; will be in the new polytope

Any face that does see w; will be removed

For each edge of a face that sees w; but is not
shared between two faces that see w; create a face
using that edge and w;

This process results in a convex polytope

Expanding the Polytope
Pseudocode

* You don’t need to maintain a winding order for the
triangles in your polytope

* The origin must be inside the polytope, which means
that the normal of a face of the polytope is always
pointing away from the origin
— The normal n of a face with a vertex t must satisfy t - m > 0

— If the normal you calculated using a cross product does not
satisfy this requirement, just multiply the normal by -1!

Start with a 3-simplex

* You may have to deal with special cases if you start
EPA with a simplex that is not a 3-simplex
(tetrahedron)

* It is fine to force GJK to output a 3-simplex even if a
2-simplex containing the origin was found

Numerical Instabllity

* It is common for the origin to be very close to the edge
of the Minkowski difference, which may cause
numerical instability

* As aresult, 1ength(projection(w,v) — v) might not
become as small as we want it to

* We can deal with this by keeping track of the smallest
length(projection(w,v) — v) and returning the
corresponding v if we run more than 10 iterations

Exira Detaills

What if we want the point of contact between the two
objects?

We need the two points on each of the objects whose
difference is the MTV!

We know that the MTV is the point v on the polytope that
we return from EPA

Recall that if we have two objects A and B, then the
Minkowski difference is M, ; = p, — pg for all points p, in
object A and all points p; in object B

Exira Detaills

Recall that the point v on the polytope that we return exists on a triangle
whose vertices are points on the boundary of the Minkowski difference
— Call these vertices M;, M,, and M,

Given two colliding objects A and B, we want two points A, on object A
and B, on object B such that A, — B, = v

We can define either A, or B, in world space as the point of collision

Call these vertices M, M,, and M,
— Using barycentric coordinates, we can say that v = ¢;M; + ¢, M, + c3M3, where
c;tec,+c3=1
— Each M; = A; — B; where 4; is a point on object A and B; is a point on object B
— This means that we can say 4, = ¢;A; + ¢;A, + ¢c3A; and B, = ¢;B; + ¢,B, +
C3B3

Exira Detaills

* The following code calculates the barycentric
coordinates of point p for a triangle with vertices q,

b, and c

glm: :vec3 Barycentric(glm::vec3 p, glm::vec3 a, glm::vec3 b, glm::vec3 c)
{
glm::vec3 vO = b - a, vi=c -a, v2 =p - a;
float d@@ = glm::dot(v@, v0);
float d@1 = glm::dot(v@, vl);
float dl11 = glm::dot(vl, vl);
float d20 = glm::dot(v2, v@);

float d21 = glm::dot(v2, v1);

float denom = d@@ * dl1 - dol * do1i;

float v = (d11 * d20 - dOl1 * d21) / denom;
float w = (dO@ * d21 - d@l1 * d20) / denom;
return glm::vec3(1.0f - v - w, v, wW);

Exira Detaills

* We can test collisions between a convex shape and
a triangle!

— The support function of a triangle is just the vertex of the
triangle farthest in the direction of the input vector!

Hooray!

* Now we have everything we need to implement
basic rigid body physics for arbitrary convex
shapes!

Rigid Body Physics

* When we simulate physics on a computer, we represent
the system we are simulating with a state vector

* Given this state vector and the forces acting on the system,
we can calculate the derivative of the state vector and use
Euler’s method to propagate the system through time (i.e.
next_state = old_state + derivative * dt)

* Keep in mind that there are other ways to implement the
basics of rigid body physics

— This presentation is demonstrating a method based on David
Baraff’s An Introduction to Physically Based Modeling

State Vector

Here is our state vector for a single rigid body
x(t) is the world space position of the object’s center of gravity

R(t) is the 3x3 rotation matrix that transforms the rigid body from
object space to world space (we will call this the orientation
matrix)

P(t) is the object’s linear momentum (which is a vector)
L(t) is the object’s angular momentum (which is a vector)

Rotations

* We need to discuss the physics of rotations a bit

Angular Velocity

* Angular velocity w is a vector whose direction
describes the axis around which an object rotates,

and whose magnitude describes how fast the object
is rotating

Angular Velocity

* We can use the angular velocity of an object to
calculate the derivative the of the orientation
matrix R

Given the vector a, let us define a* to be the matrix

0 —a; a
a, 0 —a, |.
—ay ay 0

R(t) = w(®)*R(2).

Torque

If a force is exerted on an object that causes the
rotation of that object to change, then we say that a
torque is exerted on the object

Consider the blue bar secured to the red hinge below

Torque

* If a force is exerted on an object that causes the
rotation of that object to change, then we say that a
torque is exerted on the object

* Consider the blue bar secured to the red hinge below

This green force l

exerts a torque
on the bar _

Torque

* If a force is exerted on an object that causes the
rotation of that object to change, then we say that a
torque is exerted on the object

* Consider the blue bar secured to the red hinge below
This purple force
exerts a smaller l
torque on the bar, \
equal in magnitude
to the green force

Torque

* If a force is exerted on an object that causes the
rotation of that object to change, then we say that a
torque is exerted on the object

* Consider the blue bar secured to the red hinge below

This orange force . l
exerts no torque \
on the bar _

Torque

* If a force is exerted on an object that causes the
rotation of that object to change, then we say that a
torque is exerted on the object

* Consider the blue bar secured to the red hinge below

This orange force . l
exerts no torque \
on the bar _

Angular Momentum

* Angular momentum is harder to understand than
linear momentum

* You can think about it as a vector quantity
describing how an object is rotating, and how
difficult it is to stop the object from rotating

* Torque is the derivative of angular momentum

State Vector Derivative

Here is our state vector for a single rigid body
v(t) is the linear velocity

w(t) * R(t) is the derivative of the orientation matrix,
as mentioned before

F(t) is the force acting on the object
T(t) is the torque acting on the object

v(?)
w(t)*R(1)

F(1)
(1)

State Vector Derivative

* We will pretend that the force and torque are given for now (you will probably
only need to set the force to be gravity, and leave the torque alone)

* Here are the formulas for calculating the angular momentum and the linear

I(t) = R() IyoayR(t)T w(t) = I(t)"'L(t)

velocity:

* Wait, what are I(t) and I},4,,2

The Inertia Tensor

I and I},4, are the inertia tensors in world space
and obiject space, respectively

The inertia tensor is a 3x3 matrix

The inertia tensor is a generalization of the
“moment of inertia”

I relates the object’s angular velocity to its angular
momentum, as shown below

w@)=I11)"'L@).

The Inertia Tensor

* Here are inertia tensors in object space for
different shapes

Description Moment of inertia tensor

Solid sphere of radius r and mass m

Hollow sphere of radius r and mass m

Solid ellipsoid of semi-axes a, b, ¢ and mass m —" | == j|

sm(a® +b?)

20

. . . .) 3 : 3 2
Right circular cone with radius r, height h and mass m, about the apex = ;)mh" toogmr® 0

%mh2 + Zmr? 0 0 :|

3 2
0 TR

The Inertia Tensor

* Here are inertia tensors in object space for
different shapes

Solid cuboid of width w, height h, depth d, and mass m
1 5 P
mmw? + h?)

Slender rod along y-axis of length /and mass m about end

Slender rod along y-axis of length /and mass m about center

Solid cylinder of radius r, height h and mass m 117_)771(31'2 + h”)

0

Thick-walled cylindrical tube with open ends, of inner radius rq, outer radius rp, length h and mass m

The Inertia Tensor

* You can use these inertia tensors in object space
along with your object’s orientation matrix to
calculate the inertia tensor in world space

I(t) = R(t) IpoayR(2)"

Euler's Method

Now we know how to calculate the derivative of the

state vector!

We can use Euler’s method to propagate the
system through time

next state = old_state + derivative * dt

Euler's Method

Just one problem...

We need the orientation matrix to be a rotation matrix
(i.e. its columns are unit vectors that are orthogonal to
each other)

If we add w(t) * R(t) - dt to the orientation matrix,
we will not end up with a rotation matrix!

The easiest thing to do is to use the Gram-Schmidt
process

— This will turn the columns of R(t) + w(t) * R(t) - dt into a
“close” orthonormal basis

— There are better solutions to this problem

Gram-Schmidt Process

* This code takes in a matrix (in column-major order)

and returns a new matrix whose columns are the

result of applying the Gram-Schmidt process to the
columns of the original matrix

glm: :mat3 RigidBodyComponent::gramSchmidt(const glm::mat3 m) {

glm:
glm:
glm:

glm:
glm:
glm:

glm:

:vec3 v@ = m[0];
:vec3 vl = m[1];
:vec3 v2 = m[2];

:vec3 W@ = glm::normalize(v@);
:vec3 wl = glm::normalize(vl - glm::dot(v@, v1) / glm::dot(v@, v@) * vO@);
:vec3 w2 = v2 - (glm::dot(v@, v2) / glm::dot(v@, v@) * v@) - (glm::dot(vl, v2) / glm::dot(vl, v1) * v1);

:mat3 ret;

ret[@] = wo;
ret[1] = wl;
ret[2] = w2;

retu

rn ret;

What Happened to Collisions?

* We still haven’t discussed how we use the MTV and
collision point to deal with collisions!

~ Rigid @dv Pﬂmygu@go @@ ision @Spomg
»/))/',\“-’ . .__J ’ .(\ q

Impulse

Impulse is a change in momentum due to a force

It is equal to the force times the time interval over
which it acts

When a collision happens, we will apply an impulse
to the colliding objects

Impulse

Impulse is a change in momentum due to a force
It is equal to the force times the time interval over which it acts

When a collision happens, we will apply an impulse to the
colliding objects using the mtv, the points of collision of the two

objects, and those two points’ velocities
We can apply linear and rotational impulse
Once we have applied the impulse, we use Euler’s method again

For more info, check out An Introduction to Physically Based
Modeling: Rigid Body Simulation l—Nonpenetration Constraints by
David Baraff

Finally!

* We get collisions and rotational physics! Wow!
* Notice that there is no friction here

T[h]@ @ﬂﬂ(l@[@uﬂgg@m 2
/"A) }{:‘{ k ‘(| -’5

-

The GJK Debugger

* We have a debugging tool to help you implement
the GJK algorithm!

The GJK Debugger

CS195U Engine, FPS: 60.000

Object 1

xPos C yPos
roll pitch yaw
xScale yScale zScale

e Cuboid Cylinder Ellipsoid
Object 2
xPos yPos

roll pitch yaw

xScale . yScale zScale

® CollisionMode

e Cuboid Cylinder Ellipsoid ..

PhysicsMode -

HHM@@S

S fl) -(|
2, f -1} i | Y

