
WELCOME TO CS1950U!
Introduction



STAFF
Introduction



GOALS
Introduction



Class Goals
• Build your own 3D game 

engine, from scratch!
• Build games on top of 

your game engine!
• Improve your software 

engineering and design 
skills!



Useful Skills
• C++
• Graphics/OpenGL
• Basic vector math



ASSIGNMENTS
Introduction



Projects
• Two projects split up into 

checkpoints
– Some weeks give you 

choices!

• One open-ended final 
project (individual or in 
groups)



Warmup
• Startup assignment to 

get familiar with 
working in 3D space

• 2 week project (2 
checkpoints)

• Basic engine 
architecture, graphics, 
controls



Platformer
• 4 checkpoints over 6 

weeks
• Topics:

– collisions, rigid body physics
– spatial acceleration
– pathfinding, AI
– UI/HUD
– animation



Final
• 4 week project
• Your choice of engine 

features
• Your choice of game 

features
• Groups encouraged, but 

not required
• More details later

???



Class Roadmap
Week 1 (Basic Engine Architecture) 

Week 2 (Gameworld, ECS, Systems) 

Week 3-4 (Ellipsoid/Triangle, 
Sphere/Cylinder/AAB 

Collisions)

Week 3-4 (GJK, 
EPA Collisions)

+ Rigid Body Physics 
(if you want)



Class Roadmap

Week 6 (Pathfinding, AI) 

Week 7-8 (UI) Week 7-8 (Skeletal 
Animation)

Week 5 (Engine Optimizations – spatial 
subdivision, frustum culling, chunk streaming, 

texture atlases)

Week 9-12 (Final Project) 



GRADING
Introduction



Grading
• Only projects
• Grades and feedback will be given on Canvas
• Handins due on Monday at 11:59 PM, except for 

final, which is due on Sunday 4/18 at 11:59 PM
• Checkpoints are worth 3 points (except for 

collisions checkpoint which is worth 6 points), final 
is worth 9 points



Grading
• For each checkpoint, you have…
• Engine requirements 
• Game Requirements
• You can get extra credit by implementing 

extra features



Final Grades
• No curve!
– Do the work, get an A

• 30 points possible across all projects, not 
counting extra credit

• Need to complete all primary engine 
requirements and a final project



Grading
Points Missing Grade

27+ 0-3 A

24-26 4-6 B

23- 7+ C



Design Checks
• High-level conceptual 

questions
• Gives one standard 

retry, which bring us 
to …



Incomplete Handins
• Standard Retry
– As long as you complete a design check, 

you are allowed to re-hand in a 
checkpoint

• Extra retries
– You have two for the whole class
– Can use to retry a checkpoint that you 

already retried
• You have a week to use each retry 

(from when you get your grade back)



Incomplete Handins
• Minimum requirements cannot be 

retried
• Extra credit can be retried
• No extra credit until all 

requirements are met
• Only your best handin will count 

(retries never hurt your grade)



Out of Retries
• Used the standard retry, out of 

extra retries, now what?
• You can still do well in the class
– Don’t have to get credit for all 

requirements
• You can still pass the class
– Hand in working version of all 

engine requirements by the end of 
the semester



QUESTIONS?
Introduction



CLASS TIMES
Introduction



Class Times
• Class: Tuesday 9am-10:20pm (Zoom)
• Design Checks and Hours: Thursday 9am –

10:20pm (Zoom)
– Optional
– Signmeup for design checks and hours
– more hours TBA

• Website: http://cs.brown.edu/courses/cs195u/ 



OTHER COURSE POLICIES
Introduction



Collaboration Policy
• Full version is on our website
• Short version:
– Can discuss lectures and assignments
– Can play each other’s games
– Cannot look at or give any code
– Can cooperate with other students during TA hours 

(at TA discretion)



CS1950U as a Capstone
• Requirements
– More final project engine features
• Students taking the capstone should get their project 

proposals approved before March 22 so that they can 
start early
• See the final project handout for details

– Capstone form filled out, signed by Daniel Ritchie
– That’s it!



Slack
• We are using Slack instead of Piazza this semester
• Email course staff if you have not been invited to the 

Slack workspace
• There is a public “help” channel
• You can DM me for private questions
– I’ll paste questions and answers into the help channel if I 

think they would be helpful to others (question asker will 
remain anonymous)



Style Guide
• We expect you to have a reasonable style, but 

don’t require any specific style guide
• If you’re unsure of what counts as reasonable 

style, pick your favorite style guide from a 
course you’ve taken and follow it



Test Your Code
• Your code needs to compile and run on

department machines
– Let me know if there is a problem with FastX

• We can’t grade it if we can’t run it
• Should run at 20+ FPS



ABOUT REGISTRATION
Introduction



Registering for CS1950U
• If you can’t register for CS1950U because you 

don’t meet the prerequisites
– Don’t panic
– Request an override in Courses@Brown



Registering for CS1950U
• If you can’t register for CS1950U because 

you’re a RISD student
– Don’t panic
– Email our professor (Daniel Ritchie)



QUESTIONS?
Introduction



Introductions!
• Please share
– Your name
– Your pronouns
– A video game you enjoy!



WHAT IS A GAME ENGINE?
Basic Engine Architecture



What is a game engine?
• The things that games are built on
• Games tend to have a ton of functionality in common
• Create engines that abstract out common functionality



What is a game engine?
• Usable by many games
– It should be able to easily 

create a game without 
modifying engine code

• Should be general
– No game-specific logic!

Warmup Platformer

Dungeon
Crawler

Engine



What does this look like?
• Sample hierarchy
– src/
• engine/

– Screen.cpp
– Screen.h

• warmup/
– WarmupScreen.cpp
– WarmupScreen.h



What does this look like?
• Engine code should never #include game files



AN ESSENTIAL INTERFACE
Basic Engine Architecture



A game generally needs…
• Timed updates (ticks)
• To render to the screen 

(draws)
• Input events
• Resize events



Ticks
• General contract:
– void tick(float seconds)

• Tells the game that a given amount of time has 
elapsed since the previous tick
– Nearly all logic takes place during ticks
– No drawing should take place during ticks



Draws
• General contract:
– void draw(Graphics *g);
– void draw();

• Tells the game to draw itself
– Convert game state into viewable form
– No side effects from draw calls

• More information coming up in Graphics section



Input Events
• Most APIs provide input events rather than making you 

manually poll mouse and keyboard
• Exact contract differs depending on type, but usually of the 

form:
– void onDDDEEE(QDDDEvent *event);
– DDD = device type (e.g. mouse, key)
– EEE = event type (e.g. moved, pressed)

• Tells the game that an event has occurred
– Event object contains information about the event

• e.g. how far the mouse moved; what key was pressed...



• The Application class
class Application {
public:

void tick(float seconds);
void draw(Graphics *g);
void onKeyPressed(QKeyEvent *event);
// more device and event types here...
void onMouseDragged(QKeyEvent *event);

}

Putting it Together



Putting it Together
• Application represents an instance of a game
• You will implement an Application class in 

Warmup1



QUESTIONS?
The Most Basic Interface



SCREEN MANAGEMENT
Basic Engine Architecture



We have an Application
• But how do we build a 

game around that?
• Drawing/ticking/event 

handling is very different 
depending on what’s 
going on!
– Menu system
– The actual game
– Minigames within game



Screens within Application

• Rather than keeping track of “modes”, separate 
each “mode” into a dedicated Screen subclass
– MenuScreen, GameScreen, etc.

• A Screen has similar methods to the Application
– tick
– draw
– input event methods



Keeping track of Screens
• Simplest way:

– Single Screen in 
Application at a time

– Application forwards all 
events to this screen

• Alternatively:
– Map of Screens maintained 

by the Application
– Screens can consume events 

or pass them to a different 
screen

Screen map
Game screen

Application

Events



What are Screens good for?
• For Warmup1, Screens may
– Draw the entire game
– Handle all of the game logic

• In general, Screens shouldn’t 
do this
– Results in serious spaghetti 

code
• Solution: GameWorld
– Covered next week…



QUESTIONS?
Application Management



CAMERA
Camera and Graphics



Cameras
• Physical camera will 

render a “film” – a 2D 
representation of the 
3D space

• For virtual cameras, 
goal is similar
– Render by squashing 

view volume (or 
frustum) onto 2D plane



Cameras in 3D Space
• Camera is not very useful 

unless we know
– Where it is (position)
– What its orientation is (pitch, 

roll, yaw)



Camera Orientation
• Yaw

– Stick a pin in the top of the 
camera and rotate it 
around it by this angle

• Pitch
– The camera looking up and 

looking down by this angle
• Roll

– Only really used in flight 
simulators



Camera Orientation
• Alternatively…
• Specify direction the 

camera is facing as a 
vector
– Called the “look vector”



Camera position
• Position of camera in the 

world
• For Warmup 1, in order to 

achieve first person…
– Make camera position same as 

player position
– Update camera position to 

make the same as player 
position 



Other Camera Parameters
• Field of view angle
– How wide is the view 

volume?

• Aspect ratio
– Ratio of the width of screen 

to the height of the screen



Our Camera Class
• Default Camera class provided
– src/engine/graphics/Camera.h(cpp)

• Allows you to specify all of the above 
attributes
– Most likely will only modify position, pitch, yaw



QUESTIONS?
First Person Camera



BASIC GRAPHICS
Camera and Graphics



Motivation
• Certain graphics calls are common to many games

– Setting up a camera
– Drawing shapes
– Setting material properties for shapes
– Drawing text

• We can store all of our shapes, materials, fonts, etc. in one 
centralized object
– Helps us not load them into memory more than once
– Helps us keep track of them and delete them

• Encapsulated in a “Graphics” object



Graphics Object
• Default Graphics object provided
– src/engine/graphics/Graphics.h(cpp)

• Methods for …
– Setting the active camera

• This camera will be used for rendering
– Drawing shapes

• Rectangles (quads), cylinders, and spheres for now
– Setting materials

• Change color, texture, lighting of shapes
– More!



Other Classes
• src/graphics/Shape.h(cpp)
– Describes the geometry of a shape

• src/graphics/Material.h(cpp)
– Describes material properties of a shape

• More!



Doing it Yourself
• Feel free to modify 

graphics support code!
• Feel free to write your 

own graphics code!



QUESTIONS?
Basic Graphics



PLAYER MOVEMENT
Controls



Coordinate systems
• Different game engines 

define 3D coordinate 
systems differently

• Most commonly:
• “Horizontal plane”

– Plane parallel to the ground 
(the xz-plane)

• “Up-axis”
– Axis perpendicular to 

horizontal plane (the y-axis)

z
x

y



Horizontal Movement
• Keep track of your player position
• Forward movement:

– Use the horizontal component of the look vector
– forward_speed = some positive constant
– dir = normalize(look.x, 0, look.y)
– pos = pos + forward_speed * dir

• Strafing
– Use the perpendicular of the horizontal direction
– sideways_speed = some positive constant
– perp = normalize(dir.z, 0, -dir.x)
– pos = pos + sideways_speed * perp



Vertical Movement
• Keep track of the player’s vertical position and velocity
• Jump

– Assign some positive velocity when the player jumps
– Make sure the player is on the ground (pos.y == 0) before jumping

• Apply gravitational acceleration each tick
– dt = time since last tick
– g = some negative constant
– velocity = velocity + g * dt
– pos.y = pos.y + velocity

• Collision with ground
– After moving the player, set pos.y = max(pos.y, 0)



CS195U SUPPORT CODE



Support Code Overview
• Qt Framework

– main.cpp – starts up program, toggles 
fullscreen

– mainwindow.h/.ui/.cpp – sets up window
– view.h/.cpp – basic even framework, where 

your Application class should reside
• Vector math – glm (important!)

– 2,3,4 dimensional vectors and matrices
– Tons of math – see online documentation

• QRC files
– Allows for easy access of external resources
– Can use to load your own resources



Support Code Overview
• Utility
– src/engine/util/CommonIncludes.h

• Includes glm, iostream
• Include this anywhere you need glm

• Graphics
– src/engine/graphics/*
– Described in previous section



Support Code Overview
• Methods in view.h/.cpp
– DDDEEEEvent(QEEEvent *event) – call app.DDDEEE(event)
– tick(float seconds) – call app.tick(seconds)
– paintGL() – call app.draw(graphics) or app.draw()
– resizeGL(int x, int y) – call app.resize(dimensions)

• Make Application a separate class from View!
– Put instance of Application class in View, so that you can 

pass events on to Application



Setup Guide
• If you have time, go through the CS1950U 

setup guide! (highly recommended)
– On the Docs page of the website

• It covers …
– How to set up a camera
– How to draw something using the graphics object
– How to add basic player controls



On Your Own
• Play around with graphics object calls
• Specifically try to move, resize and rotate 

shapes
• 3D graphics can be tricky, especially if you 

haven’t done it before
– Feel free to email us or come to hours if there’s 

something you don’t understand



Qt vs. STDLib
• QString – substrings, splitting, hashcodes
• QList – type-generic dynamic array
• QHash – type-generic hashtable
• QSet – type-generic set
• QTimer – sets up the game loop
• QThread – easy-to-use threading API
• QPair – great for vector hashcodes

http://qt-project.org/doc/qt-4.8/qtcore.html



Qt vs. C++ STDLib
• QString – std::string
• QList – std::vector
• QHash – std::unordered_map
• QSet – std::unordered_set
• QPair – std::pair

http://qt-project.org/doc/qt-4.8/qtcore.html



SMART POINTERS
C++ Tip of the Week



Raw pointers
• Problems:
– Declaration doesn’t indicate who owns the object 

(i.e. who destroys it)
– Must destroy exactly once
– Memory leaks



Smart Pointers
• The solution to all of the problems (and more)
– Most importantly, delete / free object they refer to 

automatically if pointer goes out of scope

• 3 types in modern C++
– std::unique_ptr
– std::shared_ptr
– std::weak_ptr



Shared Pointers
• In general the one to use
• Same size as raw pointers and perform the 

exact same instructions



Creating a Shared Pointer
• Use “std::make_shared<T>(args);”
• More verbose than creating a normal pointer, 

but worth it



Creating a Shared Pointer
• With shared pointers • Without shared pointers
#include <memory> // Include header file
…
…

std::shared_ptr<Camera> cam = 
std::make_shared<Camera>();

…
…

…
…
…

Camera *cam = new Camera();
…
…
delete cam;



Copying a Shared Pointer
• Can make as many copies of a shared pointer as 

you want
– std::make_shared<T> s1 = …;
– std::make_shared<T> s2 = s1;
– std::make_shared<T> s3 = s2;
– …
– Each refer to the same object

• Object managed by all shared pointers only 
deleted when all shared pointers go out of scope



Avoid Shared Pointer Cycles
• A shared pointer counts how many other objects reference it (i.e. how 

many copies of the shared pointer exist)
– When this counter reaches 0, the shared pointer’s destructor is called

• Do not create “cycles” of shared pointers!
– If a shared pointer s1 owns a shared pointer s2 and s2 also owns a 

shared pointer of s1, you will get a memory leak!



Avoid Shared Pointer Cycles
• Consider an Application a that owns a std::shared_ptr<Screen> s. If s owns 

a std::shared_ptr<Application> to a, then a cannot be destroyed without 
manually destroying s
– Why? Consider the diagram below. Application a is referenced twice

(by the rest of the program and by s)
– When we destroy the rest of the program, Application a is not 

destroyed because its reference counter decreases from 2 to 1 (so the 
counter does not reach 0)

Rest of program Application a Screen s



Avoid Shared Pointer Cycles
• It is very common for a Screen to want to reference the 

Application that owns it
– We can have this behavior and avoid memory leaks by 

having the screen own a raw pointer to the application
– This is safe to do because the Application owns the Screen, 

but the Screen does not own the application (shared 
pointers shown ownership)

• This pattern will be useful when we talk about about 
GameWorlds, GameObjects and Components as well!



In Summary…
• Unique/shared pointers make memory management 

easier
• Please don’t have memory leaks in your handin code



Warmup 1 is released! Good luck!


