Intfroduction

WELCOME TO CS$1950U!

Intfroduction

STAFF

Intfroduction

GOALS

Class Goals

* Build your own 3D game
engine, from scratchl!

* Build games on top of
your game enginel

* Improve your software
engineering and design
skills!

Useful Skills

. C++
* Graphics/OpenGL

* Basic vector math

Intfroduction

ASSIGNMENTS

Projects

* Two projects split up into

checkpoints

— Some weeks give you
choices!

* One open-ended final

project (individual or in
groups)

Warmup

e Startup assignment to T
get familiar with
working in 3D space

* 2 week project (2
checkpoints)

* Basic engine

architecture, graphics,
controls

Platformer

* 4 checkpoints over 6
weeks

* Topics:
— collisions, rigid body physics
— spatial acceleration
— pathfinding, Al
— UI/HUD

— animation

Final

4 week project

Your choice of engine
features

Your choice of game
features

Groups encouraged, but
not required

More details later

PP7

Class Roadmap

Week 1 (Basic Engine Architecture)

Week 2 (Gameworld, ECS, Systems)

Week 3-4 (EIIiRsoid/TriqngIe, Week 3-4 (GJK,
Spherec/jgs'i'ggsr/ AAB EPA Collisions)

+ Rigid Body Physics
(if you want)

Class Roadmap

Week 5 (Engine Optimizations — spatial
subdivision, frustum culling, chunk streaming,
texture atlases)

l

Week 6 (Pathfinding, Al)

/\

Week 7-8 (Ul) Week 7-8 (Skeletal

\ Animation)
_ _

Week 9-12 (Final Project)

Intfroduction

GRADING

Grading

Only projects
Grades and feedback will be given on Canvas

Handins due on Monday at 11:59 PM, except for
final, which is due on Sunday 4/18 at 11:59 PM

Checkpoints are worth 3 points (except for
collisions checkpoint which is worth 6 points), final
is worth @ points

Grading

For each checkpoint, you have...
Engine requirements
Game Requirements

You can get extra credit by implementing
extra features

Final Grades

* No curvel

— Do the work, get an A

* 30 points possible across all projects, not
counting extra credit

* Need to complete all primary engine
requirements and a final project

Grading

Design Checks

* High-level conceptual
questions

e Gives one standard
retry, which bring us
to ...

Incomplete Handins

* Standard Retry

— As long as you complete a design check,

you are allowed to re-hand in a Refry thic ctage”
checkpoint yee- _np-
* Extra retries nay

— You have two for the whole class

124 x©

— Can use to retry a checkpoint that you
already retried

* You have a week to use each retry
(from when you get your grade back)

Incomplete Handins

Minimum requirements cannot be
retried Retry thic ctage?

Extra credit can be retried ues o

No extra credit until all b,

requirements are met

124 x©

Only your best handin will count
(retries never hurt your grade)

Out of Retries

* Used the standard retry, out of
extra retries, now what?
* You can still do well in the class

— Don’t have to get credit for all
requirements

* You can still pass the class

— Hand in working version of all
engine requirements by the end of
the semester

3AME OVER

Intfroduction

QUESTIONS?

Intfroduction

CLASS TIMES

Class Times

* Class: Tuesday 2am-10:20pm (Zoom)

* Design Checks and Hours: Thursday Qam —
10:20pm (Zoom)
— Optional
— Signmeup for design checks and hours

— more hours TBA
* Website: hitp://cs.brown.edu/courses/cs195u/

Intfroduction

OTHER COURSE POLICIES

Collaboration Policy

* Full version is on our website

* Short version:
— Can discuss lectures and assignments
— Can play each other’s games
— Cannot look at or give any code

— Can cooperate with other students during TA hours
(at TA discretion)

CS1950U as a Capstone

* Requirements

— More final project engine features

* Students taking the capstone should get their project
proposals approved before March 22 so that they can
start early

* See the final project handout for details

— Capstone form filled out, signed by Daniel Ritchie
— That’s it!

Slack

We are using Slack instead of Piazza this semester

Email course staff if you have not been invited to the
Slack workspace

There is a public “help” channel

You can DM me for private questions

— I'll paste questions and answers into the help channel if |
think they would be helpful to others (question asker will
remain anonymous)

Style Guide

* We expect you to have a reasonable style, but
don’t require any specific style guide
* |f you're unsure of what counts as reasonable

style, pick your favorite style guide from a
course you've taken and follow it

Test Your Code

* Your code needs to compile and run on
department machines

— Let me know if there is a problem with FastX
* We can’t grade it if we can’t run it
* Should run at 20+ FPS

Intfroduction

ABOUT REGISTRATION

Registering for CS1950U

* If you can’t register for CS1950U because you
don’t meet the prerequisites
— Don’t panic

— Request an override in Courses@Brown

Registering for CS1950U

* If you can’t register for CS1950U because
you’re a RISD student

— Don’t panic

— Email our professor (Daniel Ritchie)

Intfroduction

QUESTIONS?

Intfroductions!

* Please share
— Your name
— Your pronouns

— A video game you enjoy!

Basic Engine Architecture

WHAT IS A GAME ENGINE?

What is a game engine?¢

* The things that games are built on
* Games tend to have a ton of functionality in common

* Create engines that abstract out common functionality

N . ;
b - & e) ‘;\! g ’ / Lv,\ 5 o Y: ‘.\
e # E] = £\ A
N i b 4
o A
e : A s

What is a game engine?¢

* Usable by many games

— It should be able to easily
create a game without
modifying engine code

* Should be general
— No game-specific logic!

What does this look like?¢

Sample hierarchy

— src/

* engine/
— Screen.cpp
— Screen.h
* warmup/
— WarmupScreen.cpp

— WarmupScreen.h

What does this look like?¢

* Engine code should never #include game files

Basic Engine Architecture

AN ESSENTIAL INTERFACE

Timed updates (ticks)

To render to the screen

(draws)

Input events

Resize events

Ticks

* General contract:
— void tick(float seconds)

* Tells the game that a given amount of time has
elapsed since the previous tick
— Nearly all logic takes place during ticks

— No drawing should take place during ticks

Draws

* General contract:
— void draw(Graphics *g);
— void draw();
* Tells the game to draw itself
— Convert game state into viewable form

— No side effects from draw calls

* More information coming up in Graphics section

INput Events

Most APls provide input events rather than making you
manually poll mouse and keyboard

Exact contract differs depending on type, but usually of the
form:

— void onDDDEEE(*event);

— DDD = device type (e.g. mouse, key)

— EEE = event type (e.g. moved, pressed)
Tells the game that an event has occurred

— Event object contains information about the event
* e.g. how far the mouse moved; what key was pressed...

Putting it Together

* The Application class

class Application {

public:
void tick(float seconds);
void draw(Graphics *g);
void onKeyPressed(QKeyEvent *event);
// more device and event types here...
void onMouseDragged(QKeyEvent *event);

Putting it Together

* Application represents an instance of a game

* You will implement an class in
Warmup |

The Most Basic Interface

QUESTIONS?

Basic Engine Architecture

SCREEN MANAGEMENT

We have an Application

T
o T
gl

* But how do we build a
game around that?

* Drawing/ticking/event
handling is very different
depending on what’s
going on!

— Menu system

— The actual game ’
— Minigames within game S

Screens within Application

* Rather than keeping track of “modes”, separate
each “mode” into a dedicated Screen subclass

— MenuScreen, GameScreen, etc.

* A Screen has similar methods to the Application
— tick
— draw

— input event methods

Keeping track of Screens

Events
* Simplest way:

Application at a time l

— Single Screen in

 oplication forwards ol et

events to this screen

* Alternatively:

— Map of Screens maintained
by the Application

— Screens can consume events gereen map —
or pass them to a different
screen

What are Screens good fore

* For Warmup1, Screens may
— Draw the entire game
— Handle all of the game logic

* In general, screens shouldn’t
do this

— Results in serious spaghetti
code

e Solution: GameWorld
— Covered next week...

Application Management

QUESTIONS?

Camera and Graphics

CAMERA

Cameras

[] [J -
* Physical camera will From Compuser Dasianp Encyoloped

1998 Intergraph Computer Systems

render a “film” — a 2D
representation of the
3D space

* For virtual cameras,
goal is similar
— Render by squashing

VieW VOIUme (or Viewling / e | |
frustum) onto 2D plane TS viewplane . ewpoint

Camerasin 3

* Camera is not very useful
unless we know
— Where it is (position)

— What its orientation is (pitch,
roll, yaw)

Camera Orientation

Yaw

— Stick a pin in the top of the
camera and rotate it
around it by this angle

Pitch

— The camera looking up and
looking down by this angle

Roll

— Only really used in flight
simulators

Yaw
‘ Odchylenie
=
{ Pitch
R Pochylenie
oll y
Przechylenie (\ } \ .)
o v

MakeAGIF.com

Camera Orientation

Camera (2/3)

* Alternatively...

» Perspective Projection Center of Scene

i S p e C i f y d i r e Cll-i 0 n ll-h e) (used to compute LookAt Direction)
Projection of
Up Direction)

camera is facing as o
Up Direction
VeCTor 9 FOV in y-direction

- quled ll.he “IOOk VeCfor" |.L Far-Plane — |

Distance

n® 3D Graphics using OpenGL-9/11/2014

Camera position

Position of camera in the
world

For Warmup 1, in order to
achieve first person...

— Make camera position same as
player position

— Update camera position to
make the same as player
position

Other Camera Parameters

* Field of view angle

— How wide is the view
volume?

* Aspect ratio

— Ratio of the width of screen
to the height of the screen

Qur Camera Class

* Default Camera class provided

— src/engine /graphics /Camera.h(cpp)

* Allows you to specify all of the above
attributes

— Most likely will only modify position, pitch, yaw

First Person Camera

QUESTIONS?

Camera and Graphics

BASIC GRAPHICS

Motivation

Certain graphics calls are common to many games

— Setting up a camera

— Drawing shapes

— Setting material properties for shapes

— Drawing text

We can store all of our shapes, materials, fonts, etc. in one
centralized object

— Helps us not load them into memory more than once

— Helps us keep track of them and delete them

Encapsulated in a “Graphics” object

Graphics Object

* Default Graphics object provided
— src/engine /graphics /Graphics.h(cpp)
* Methods for ...

— Setting the active camera
* This camera will be used for rendering
— Drawing shapes
* Rectangles (quads), cylinders, and spheres for now

— Setting materials
* Change color, texture, lighting of shapes

— Morel

Other Classes

* src/graphics/Shape.h(cpp)
— Describes the geometry of a shape

* src/graphics/Material.h(cpp)

— Describes material properties of a shape

* Morel

Doing it Yourself

* Feel free to modify
graphics support codel

* Feel free to write your
own graphics codel

asic Gra phics

QU ESTIONS?

Controls

PLAYER MOVEMENT

Coordinate systems

Different game engines
define 3D coordinate
systems differently

Most commonly:

“Horizontal plane”

— Plane parallel to the ground
(the xz-plane)

“Up-axis”

— Axis perpendicular to
horizontal plane (the y-axis)

Horizontal Movement

* Keep track of your player position
* Forward movement:
— Use the horizontal component of the look vector
— forward_speed = some positive constant
— dir = normalize(look.x, 0, look.y)
— pos = pos t+ forward_speed * dir
* Strafing
— Use the perpendicular of the horizontal direction
— sideways_speed = some positive constant
— perp = normalize(dir.z, 0, -dir.x)
— pos = pos t+ sideways_speed * perp

Vertical Movement

Keep track of the player’s vertical position and velocity
Jump

— Assign some positive velocity when the player jumps

— Make sure the player is on the ground (pos.y == 0) before jumping
Apply gravitational acceleration each tick

— dt = time since last tick

— g = some negative constant

— velocity = velocity + g * dt

— pos.y = pos.y + velocity
Collision with ground

— After moving the player, set pos.y = max(pos.y, 0)

CS195U SUPPORT CODE

Support Code Overview

* Qt Framework

— main.cpp — starts up program, toggles
fullscreen

— mainwindow.h/.ui/.cpp — sets up window

— view.h/.cpp — basic even framework, where
your Application class should reside

* Vector math — glm (important!)
— 2,3,4 dimensional vectors and matrices
— Tons of math — see online documentation

* QRC files

— Allows for easy access of external resources
— Can use to load your own resources

12
e
14
15
16
17
18
19
20
21
22
7
pL
25
26
27
28
29
30
31
32

‘ Viéw(OWidget *parent) ;

~View();

A4dTihe time;

QTimer timer;

void initializeGL();
void paintGL();
void resizeGL(int w, int h);

void mousePressEvent(QMouseEvent xevent);
void mouseMoveEvent (QMouseEvent xevent);
void mouseReleaseEvent(QMouseEvent xevent);

void keyPressEvent(QKeyEvent xevent);
void keyReleaseEvent(QKeyEvent xevent);

private slots:

void tick();

Support Code Overview

¢ Ull.ilill-y #ifndef COMMONINCLUDES_ H
fdefine COMMONINCLUDES H
— src/engine /util /Commonlincludes.h /+& file for sny includes or s
finclude "GL/glew.h"
* Includes glm, iostream #include <iostream>

fdefine GLM FORCE_RAD

* Include this anywhere you need gim #include -

* Graphics

#include <

fendif // COMMONINCLUDES H

— src/engine /graphics/* 7|

— Described in previous section

Support Code Overview

* Methods in view.h/.cpp
— DDDEEEEvent(QEEEvent *event) — call app.DDDEEE(event)
— tick(float seconds) — call app.tick(seconds)
— paintGL() — call app.draw(graphics) or app.draw()

— resizeGL(int x, int y) — call app.resize(dimensions)

* Make Application a separate class from View!

— Put instance of Application class in View, so that you can
pass events on to Application

Setup Guide

* If you have time, go through the CS1950U
setup guide! (highly recommended)

— On the Docs page of the website
* It covers ...
— How to set up a camera
— How to draw something using the graphics object

— How to add basic player controls

On Your Own

* Play around with graphics object calls

* Specifically try to move, resize and rotate
shapes

* 3D graphics can be tricky, especially if you
haven’t done it before

— Feel free to email us or come to hours if there’s
something you don’t understand

QT vs. STDLib

* QString — substrings, splitting, hashcodes
* Qlist — type-generic dynamic array

* QHash — type-generic hashtable

* QSet — type-generic set

* QTimer — sets up the game loop

* QThread — easy-to-use threading API

* QPair — great for vector hashcodes

http: / /qt-project.org /doc/qt-4.8 /qtcore.html

Qf vs. C++ STDLib

* QString — std::string

* QlList — std::vector

* QHash — std::unordered_map
e QSet — std::unordered_set

* QPair — std::pair

v

http: / /qt-project.org/doc/qt-4.8 /qtcore.html

C++ Tip of the Week

SMART POINTERS

Raw pointers

* Problems:

— Declaration doesn’t indicate who owns the object
(i.e. who destroys it)

— Must destroy exactly once

— Memory leaks

Smart Pointers

* The solution to all of the problems (and more)

— Most importantly, delete / free object they refer to
automatically if pointer goes out of scope

* 3 types in modern C++
— std: :unique_ptr
— std: :shared ptr
— std: :weak_ptr

Shared Pointers

* In general the one to use

* Same size as raw pointers and perform the
exact same instructions

Creating a Shared Pointer

* Use “std: :make shared<T>(args);”

* More verbose than creating a normal pointer,
but worth it

Creating a Shared Pointer

With shared pointers

#include <memory> // Include header file

std: :shared_ptr<Camera> cam =
std: :make_shared<Camera>();

* Without shared pointers

Camera *cam = new Camera();

delete cam;

Copying a Shared Pointer

* Can make as many copies of a shared pointer as
you want
— std: :make shared<T> s1 = .;
— std: :make shared<T> s2 s1;
— std: :make _shared<T> s3 = s2;

— Each refer to the same object

* Object managed by all shared pointers only
deleted when all shared pointers go out of scope

Avoid Shared Pointer Cycles

* A shared pointer counts how many other objects reference it (i.e. how
many copies of the shared pointer exist)

— When this counter reaches 0, the shared pointer’s destructor is called
* Do not create “cycles” of shared pointers!

— If a shared pointer s1 owns a shared pointer s2 and s2 also owns a
shared pointer of s1, you will get a memory leak!

Avoid Shared Pointer Cycles

Consider an Application a that owns a std::shared_ptr<Screen> s. If s owns
a std::shared_ptr<Application> to q, then a cannot be destroyed without
manually destroying s

— Why? Consider the diagram below. Application a is referenced twice
(by the rest of the program and by s)

— When we destroy the rest of the program, Application a is not
destroyed because its reference counter decreases from 2 to 1 (so the
counter does not reach 0)

P

Rest of program » Application a Screen s

SN—

Avoid Shared Pointer Cycles

* Itis very common for a Screen to want to reference the
Application that owns it

— We can have this behavior and avoid memory leaks by
having the screen own a raw pointer to the application

— This is safe to do because the Application owns the Screen,
but the Screen does not own the application (shared
pointers shown ownership)

* This pattern will be useful when we talk about about
GameWorlds, GameObjects and Components as well!

IN Summary...

* Unique/shared pointers make memory management
easier

* Please don’t have memory leaks in your handin code

Warmup 1 is released! Good luck!

