
CSCI 1950-F Homework 9:

EM for Factor Analysis & Regression

Brown University, Spring 2012

Homework due at 12:00pm on May 3, 2012

Question 1:

The MovieLens dataset (http://movielens.org) contains ratings for M movies, recorded as
integers between 1 and 5, for a community of U users. Most users have only rated a small
subset of the total movie library, so the data is stored as a sparse M×U matrix X , where M
is the number of movies and U is the number of users. For this assignment we have extracted
a small subset of the overall database, containing M = 500 movie titles and U = 943 users.
The rows of the training and test data represent the same users, but with the ratings split
between the two matrices.

Your job is to predict user ratings for the entries in the test rating matrix given the
training rating matrix. To accomplish this you’ll first find a low-dimensional representation
of the ratings by learning a factor analysis model. Letting xi ∈ R

M denote the ratings for
user i, and xij the rating that user i gives to movie j, we have:

zi ∼ N(0, IK),

xi ∼ N(Wzi + µ,Ψ).

Here, zi ∈ R
K is the latent vector specifying the low-dimensional representation of movie

rating vector xi, where K ≪ M . The movie ratings are related to this low-dimensional
space by the factor loading matrix W ∈ R

M×K . The mean rating of each movie is encoded
in µ ∈ R

M , and Ψ ∈ R
M×M is an unknown diagonal noise covariance matrix. To simplify

the later derivations, we can rewrite the model in terms of the following modified variables:

z̃i =

[
zi
1

]
∈ R

K+1

W̃ =
[
W µ

]
∈ R

M×K+1

The movie rating likelihood can then be equivalently expressed as

xi ∼ N(W̃ z̃i,Ψ)

We have used an extra constant dimension in the latent space to encode the mean µ.
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To learn the factor analysis model we will use the Expectation Maximization (EM) al-
gorithm. Let xo

i denote the sparse subset of movie ratings for user i that are available for
training. We can encode the rating pattern via a set of binary variables:

rij =

{
1 if xij ∈ xo

i

0 otherwise

Because the covariance matrix Ψ is diagonal in the factor analysis model, the likelihood
distribution factorizes. Letting W̃ T

j denote row j of W̃ , we have

p(xi | zi,W, µ,Ψ) = N(xi | W̃ z̃i,Ψ) =

M∏

j=1

N(xij | W̃
T
j z̃i,Ψjj)

The log-likelihood of the observed ratings for user i, given all the parameters and their
low-dimensional coordinates zi, is then

log p(xo
i | zi, W̃ ,Ψ) = C ′ −

1

2

M∑

j=1

rij

(
logΨjj +Ψ−1

jj (xij − W̃ T
j z̃i)

2
)

where C ′ is some log-normalization constant, independent of the parameters. The complete
data log-likelihood, including the observed ratings xo

i and low-dimensional coordinates zi for
all U users, and using C to collect log-normalization constants, is then

log p(xo, z | W̃ ,Ψ) = C −
1

2

U∑

i=1

[
z̃Ti z̃i +

M∑

j=1

rij

(
logΨjj +Ψ−1

jj (xij − W̃ T
j z̃i)

2
)]

The following questions walk you through the steps of deriving the EM algorithm. You
might find it helpful to refer to the textbook sections on EM for dense factor analysis.

a) Derive the expected value of the complete data log likelihood with respect to some distribu-
tion q(z̃). Simplify the form of your answer as much as possible. The final result should
depend on only two sufficient statistics of z̃i, E[z̃i] and E[z̃iz̃

T
i ].

b) Determine the M-step update of the error variance Ψjj for movie j. Calculate the partial
derivative of the expected complete data log-likelihood with respect to Ψjj, set to zero, and
solve for the optimal estimate.

c) Determine the M-step update of the factor loading weights W̃j for movie j. Calculate the

gradient of the expected complete data log-likelihood with respect to W̃j, set to zero, and
solve for the optimal estimate. Hint: The form of your solution should be similar to the
least squares estimates in a linear regression model.

d) Determine explicit formulas for E[z̃i] and E[z̃iz̃
T
i ], the E-step expectations needed to com-

pute the M-step parameter updates. To perform these calculations, it can be helpful to
revert to the original factor analysis formulation using zi, µ, and W . First, note that

E[z̃i] =

[
E[zi]
1

]
, E[z̃iz̃

T
i ] =

[
E[ziz

T
i ] E[zi]

E[zi]
T 1

]
,
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and the joint distribution of zi and xo
i is a multivariate normal:

[
zi
xo
i

]
∼ N

([
0
µo
i

]
,

[
A B

BT C

])

Here, µo
i contains the entries of µ corresponding to the observed ratings xo

i . If there are
Mi observations for user i, the submatrices A ∈ R

K×K, B ∈ R
K×Mi, and C ∈ R

Mi×Mi.
Determine formulas for A, B, and C using the basic definition of covariance in terms of
expected values. Then, solve for E[zi] and E[ziz

T
i ] using standard identities for conditional

distributions of multivariate normals (see textbook).

Question 2:

Because it can be time-consuming to correctly implement the EM algorithm from Question
1, we have provided an implementation for you. You are encouraged to review the code and
make connections between the update equations and Matlab code.

In this question, we evaluate the empirical performance of several methods for predicting
movie ratings. Note that the training and test sets correspond to the same set of users,
but in the training set only some ratings are observed. When computing test root mean
square error (RMSE) in the questions below, be sure to include only the ratings that were
not observed in the training set. The RMSE is defined as

RMSE =

√√√√√
1

Nh

U∑

i=1

∑

xij∈x
h
i

(xij − x̂ij)2

where xh
i is the set of test ratings for user i, Nh is the total number of ratings in the test

dataset, and x̂ij is the rating predicted by the model under evaluation.

a) We first consider a very simple baseline. For each movie in the corpus, compute the
average of the observed, training ratings. Then for each test item, we simply predict the
mean rating of the corresponding movie. Calculate the test RMSE for this method.

b) Next, we consider a simple heuristic method for dimensionality reduction with sparse
data. First, fill in the missing entries of the training movie rating matrix using the mean
predictions from part (a). Apply principal component analysis (PCA) to this matrix
using Matlab’s princomp function, and consider the top K = {1, 2, . . . , 15} principal
components. Use these low-dimensional representations to reconstruct the missing ratings,
and plot RMSE versus K.

c) For the heuristic dimensionality reduction method of part (b), what should the performance
approach as K → M , the number of movies?

d) Run the provided EM factor analysis code to estimate W , µ, and Ψ for K = {1, 2, . . . , 15}.
For each K, run EM for 100 training iterations, use the equations from Question 1(d)
to calculate E[z̃i | x

o
i ] for each user, and then use these low-dimensional coordinates to

reconstruct the missing ratings. Plot RMSE versus K, and compare to the PCA method
from part (b). What choice of K leads to the best performance?
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Question 3:

We now revisit the Bayesian linear regression model from homework 4. As before, given M

basis functions φj(x), j = 1, . . . ,M , we model the dependence of response variables yi on
input covariates xi as follows:

p(yi | xi, w, β) = N (yi | w
Tφ(xi), β

−1) p(w | α) = N (w | 0, α−1IM)

Rather than searching over a discrete grid of potential values for the hyperparameters α

and β, we will instead estimate them via the EM algorithm. In the E-step, we compute the
expected value of certain statistics of the M-dimensional vector of regression coefficients w.
In the M-step, we use these to produce new estimates of α and β. The previously distributed
solutions for homework 4 may be useful.

a) For the normal distributions assumed above, derive the form of the expected complete-data
log likelihood, E[log p(y, w | x, α, β)], given N observations y = (y1, y2, . . . , yN) of inputs
x = (x1, x2, . . . , xN ). It may be helpful to examine the EM derivation for the factor
analysis model. What particular statistics do we need to determine the expectations of in
the E-step, in order to concretely evaluate this expression?

b) Take the derivative of the expression in part (a) with respect to α, set it to zero, and
determine the M-step update of α.

c) Take the derivative of the expression in part (a) with respect to β, set it to zero, and
determine the M-step update of β.

d) Using the equations from the preceding parts, implement the EM algorithm for this model.
Consider two different families of basis functions, the polynomial and radial basis func-
tions from homework 4, both with order L = 50 (M = L + 1, including the bias feature
φ0(xi) = 1). For each family, initialize α(0) = 0.01, β(0) = 0.0025, and run EM until
changes in the likelihood fall below 10−6. Plot the resulting sequences of parameters α(t)

and β(t), as well as the corresponding likelihoods p(y | α(t), β(t)) (see the formula from
homework 4, problem 3(a)). What is the test accuracy of the resulting models, using the
squared-error loss from homework 4?
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