Introduction to
Machine Learning

Brown University CSCI 1950-F, Spring 2011
Prof. Erik Sudderth

Lecture 17: Support Vector Machines,
Clustering, K-Means

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



2D Gaussian Processes
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Losses for Binary Classification
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Maximum Margin Hyperplanes

If multiple linear classifiers perfectly separate training data,
which should | choose?



Support Vectors & Slack Variables

Support vectors (green) for Linear decision boundary in
data separable by radial feature space, where data
basis function kernels, and violating margin have
non-linear margin boundaries nonzero “slack variables”

C. Bishop, Pattern Recognition & Machine Learning



How Many Support Vectors?

C. Bishop, Pattern Recognition & Machine Learning



Multiclass Support Vector Machines

Complicated by the fact that binary SVM classifiers
are not calibrated probabilistic models

Not C; Not C,

One versus Rest One versus One
(One versus All) (separate each pair of classes)



On to Unsupervised Learning
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« Goal: Infer label/response y given only features x

 Classical: Find latent variables y good for compression of x

* Probabilistic learning: Estimate parameters of joint
distribution p(x,y) which maximize marqginal probability p(x)
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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Test Error versus K

MSE on test vs K for K-means
0.25

| Data from a
mixture of 3
1D Gaussian
0.1} | distributions

0.15F

0.051

For compressing new data, more codewords is always better.
Cross-validation fails for unsupervised learning!



