
CSCI 1950-F Homework 6: Regularization & Sparsity

Brown University, Spring 2011

Homework due at 11:59pm on March 25, 2011

Question 1:

This problem compares various approaches to regularization and feature selection for binary
classification. Let y ∈ {+1,−1} denote the binary class label we want to predict, and x the
input features. Consider the following binary logistic regression model:

p(y = 1 | x, w) =
1

1 + exp(−wTx)

The Dorothea dataset (http://archive.ics.uci.edu/ml/datasets/Dorothea) contains
100,000 features encoding structural molecular features of chemical compounds, and the
label y indicates whether the compound is active (binding) or inactive. We have split the
dataset into 400 training, 400 validation, and 350 test instances. Each data instance x is a bi-
nary vector of dimension 105. The dataset is available at /course/cs195f/asgn/dorothea.

We will compare three types of regularizations: L2 (Gaussian), L1 (Laplacian), and the
Huber loss which smoothly interpolates between quadratic and linear. Given n training
examples and m features, the MAP estimator minimizes the following objective:

f(w) = −

n
∑

i=1

log p(yi | xi, w) + λ

m
∑

j=1

L(wj)

For the following questions, we use the validation set to choose among ten logarithmically
spaced values of the regularization weight λ:

>> lambda = logspace(-8,1,10);

For either L2 or L1 regularization, we can fit the model via the logregF it function from the
pmtk package. Here is an example for L2 regularization:

>> modelL2 = logregFit(X_train, Y_train, ’regType’, ’L2’, ’lambda’, lambda);

>> Y_est = logregPredict(modelL2, X_val);

The logregPredict method can then be used to predict labels for validation or test data.

a) Train logistic regression models with Gaussian regularization (L2(wj) = w2

j ) on the train
data. Create a plot of the validation error rate as a function of λ.
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b) Select the λ value which results in the smallest L2-regularized validation error. Report
this optimal λ, the number of nonzero weights in this model (see the Matlab command
nnz), and its error rate on the test data.

c) Train logistic regression models with Laplacian regularization (L1(wj) = |wj|) on the
train data. Create a plot of the validation error rate as a function of λ.

d) Select the λ value which results in the smallest L1-regularized validation error. Report
this optimal λ, the number of nonzero weights in this model, and its error rate on the
test data.

e) What happens to the L1-regularized validation error rate when λ = 10? Provide an
explanation for your observation.

f) The Huber loss, with “closeness” parameter δ, is defined as follows:

LH(w, δ) =

{

w2/2 if |w| ≤ δ
δ|w| − δ2/2 if |w| > δ

Derive an expression for the derivative of this loss with respect to w. Is its second deriva-
tive defined everywhere?

g) Implement a gradient-based algorithm for fitting Huber regularized logistic regression, us-
ing the minFunc method, the LogisticLossSimmple method, and the gradients derived
above. The following script provides a starting point.

%Logistic regression loss function from pmtk

nVar = size(X_train,2); % number of variables

loss = @(w) LogisticLossSimple(w, X_train, Y_train, ones(size(X_train,1),1));

%penalizedHuber will be written by you, with inputs:

% w - weight vector to be optimized,

% loss - function handle for logistic regression loss function

% lambdaVec - regularization weights

% delta - "closeness" parameter of the Huber loss function

lambdaVec = lambda*ones(nVar, 1);

penloss = @(w)penalizedHuber(w, loss, lambdaVec, delta);

% minFunc options

opts.Display = ’verbose’;

opts.verbose = false;

opts.TolFun = 1e-3;

opts.MaxIter = 200;

opts.Method = ’lbfgs’; % for minFunc

opts.MaxFunEvals = 2000;

opts.TolX = 1e-3;

w = minFunc(penloss, zeros(nVar,1), opts);
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h) Train logistic regression models with Huber regularization, and closeness δ = 100, on the
train data. Create a plot of the validation error rate as a function of λ. What happens?
Explain your observation.

i) Now set δ to the median of the absolute value of the weights obtained from the logistic
regression model with L2 regularization and λ = 10−8. Create a plot of the validation

error rate as a function of λ. Explain any differences from the result in part (h).

j) Select the λ and δ values which result in the smallest Huber-regularized validation error.
Report these optimal parameters, the number of nonzero weights in this model, and its
error rate on the test data.

k) What is one advantage of Huber regularization compared to L1 regularization? What is
one disadvantage?

Question 2:

Consider maximum likelihood parameter estimates θ̂ for the following binary classifiers:

GaussI A generative classifier, where the class conditional densities are Gaussian, with both
covariance matrices set to identity matrices, i.e. p(x | y = c) = N(x | µc, I).

GaussX As with GaussI, but with unconstrained covariances p(x | y = c) = N(x | µc,Σc).

LinLog A logistic regression model with linear features plus a constant bias feature.

QuadLog A logistic regression model with a constant bias feature, linear features, and
quadratic features (encoding the product of all pairs of inputs and their squares).

After training we compute the performance of each model M via evaluating its conditional
log-likelihood on the training set:

L(M) =
1

n

n
∑

i=1

log p(yi | xi, θ̂,M)

We now want to compare the performance of each model. We will write L(M) ≤ L(M ′) if
model M must have lower (or equal) conditional log-likelihood (on the training set) than M ′,
for any training set. For each of the following model pairs, state whether L(M) ≤ L(M ′),
L(M) ≥ L(M ′), or whether no such statement can be made (i.e., M might sometimes be
better than M ′ and sometimes worse). Also provide 1-2 sentence explanations.

a) GaussI versus LinLog.

b) GaussX versus QuadLog.

c) LinLog versus QuadLog.

d) GaussI versus QuadLog.

e) GaussX versus LinLog.
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