
CS195f Homework 4

Mark Johnson and Erik Sudderth

Homework due at 2pm, 20th October 2009

In this problem set, we study different approaches to linear regression using a one-
dimensional dataset collected from a simulated motorcycle accident. The input variable,
x, is the time in milliseconds since impact. The output variable, y, is the recorded head
acceleration. The dataset is available here:

/course/cs195f/asgn/regression/motor.mat

We have divided the full dataset into 40 training examples (variables Xtrain and Ytrain),
and 53 test examples (variables Xtest and Ytest).

When fitting polynomial functions, as explored below, numerical problems can arise when
the input variables take even moderate values. To minimize these, all training features should
be scaled to lie in the interval [−1, +1] before fitting. Note that an equivalent scaling must
then be applied to all test data. Here is an example script to get you started:

/course/cs195f/asgn/regression/motorDemo.m

Question 1:

a) Consider a polynomial basis, with functions φj(x) = xj. Write a function which evaluates
these polynomial functions at a vector of points xi ∈ R, for any j. In a single figure, plot
φj(x) for −1 ≤ x ≤ 1, and j = 0, 1, 2, . . . , 19.

Hint: To create a dense regular grid of points at which to evaluate and plot these functions,
use the linspace command.

b) Consider the standard linear regression model, in which observations yi follow a Gaussian
distribution centered around a linear function w of a fixed set of basis functions:

p(yi | xi, w, β) = N (yi | wTφ(xi), β
−1)

Here, β is the inverse variance or precision. Define a family of regression models, each
of which contains all polynomials φj(x) of order j ≤ M , where M is a parameter control-
ling model complexity. Compute maximum likelihood (ML) estimates ŵ of the regression
parameters for models of order M = 0, 1, 2, . . . , 19. Plot, as a function of x, the mean
prediction ŵTφ(x) for models of order M = 0, 1, 3, 5, 19.

Hint: To compute x = A−1b in Matlab, rather than explicitly calling the inv command,
use the following command to improve numerical stability:
>> x = A \ b;

1



c) Consider the following error metric, which is defined for any set of N points (xi, yi):

L(x, y | ŵ) =

√

√

√

√

1

N

N
∑

i=1

(yi − ŵTφ(xi))2

What is the relationship between this quantity and the ML estimate of the inverse error
variance, β̂? Evaluate and plot L(x, y | ŵ) as a function of the model order, M , for the
40 training examples. Also do this for the 53 test examples. Which model has the smallest
training error, and which has the smallest test error? Together with the test data, plot
the mean prediction ŵTφ(x) for both of these models.

d) In constructing the training and test sets, we excluded one point from the original dataset:
x = 57.6, y = 10.7. What is the error in the prediction of this point for the two models
selected in part (c)? Discuss any qualitative differences between this datapoint and the
other test data.

e) We now consider an alternative, radial basis function basis of the form

φj(x) = exp

(

−
(x − µj)

2

2σ2

)

j = 1, . . . , M

For any model order M , we space the basis function centers µj evenly between −1 and 1.
In Matlab, this can be done with the following command:

>> mu = linspace(-1,1,M);

We then set the bandwidth to triple the distance between basis centers, σ = 3(µ2 − µ1).
Finally, for any M , we also include a constant bias term φ0(x) = 1. In three figures, plot
these basis functions for −1 ≤ x ≤ 1, and for models of order M = 5, 10, 15.

f) Repeat parts (b-d) for the radial basis function basis of part (e), and models of order
M = 5, 10, 15, 20, 25, 30. Which basis performs better for this data?

In the previous question, you may have noticed that unregularized ML estimates can
become unstable for large model orders, M . We now consider an alternative, Bayesian
approach in which the regression coefficients are assigned a Gaussian prior

p(w) = N (w | 0, α−1IM)

where α is a hyperparameter discussed further below.

Question 2:

a) What is the MAP estimate of w under the Gaussian prior above, and linear observa-
tion model of part 1(b)? Consider radial basis function and polynomial bases of orders
M = 100. For each of these two models, determine the MAP estimate ŵ assuming hyper-
parameter values of α = 0.01, β = 0.0025. Plot the mean prediction ŵTφ(x) for both of
these models. Would it be possible to compute ML estimates for models of order M = 100?
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b) Fix β = 0.0025, and consider 100 candidate values for the regularization parameter α,
logarithmically spaced between 10−8 and 100 = 1.0:

>> alpha = logspace(-8,0,100);

Using the semilogx command, plot the error metric of problem 1(c) versus α for both the
training and test datasets, and both basis families. Then plot the mean prediction ŵTφ(x)
for the models which minimize the training and test error, for each basis family.

c) Consider the two models from part (b) which minimize the test error for their corre-
sponding basis families. Given these hyperparameters and the training data, what are the
corresponding posterior distributions over the prediction function f(x) = wTφ(x)? Draw
and plot 10 samples from each of these two distributions.

Hint: The most efficient way to sample the specified functions is to determine the posterior
distribution of w, draw samples w̃ from it, and then determine corresponding prediction
functions f̃(x) = w̃Tφ(x) via the appropriate linear transformation. In Matlab, to draw a
sample from a multivariate normal distribution with mean mu and covariance Sigma, use
the following command:
>> SigmaRoot = chol(Sigma, ’lower’);

>> wSamp = mu + SigmaRoot * randn(size(mu));

d) Again consider the pair of models from part (c). What is the error in their corresponding
predictions of the held-out test point from problem 1(d)? Are the relative magnitudes of
these errors predictable from the posterior distributions plotted in part (c)?

e) Does the “soft” regularization approach explored in this question seem more or less effec-
tive than the model selection approach of question 1? Why?

In the previous questions, we compared the accuracy of various models on test data, but
did not provide a mechanism for choosing among models given solely training data. Cross-
validation methods provide one popular, but computationally intensive, solution to this
problem. The following question instead explores a Bayesian approach to model selection.

Question 3: (200-level credit)

a) In Sec. 3.5.1 of Bishop’s textbook, Pattern Recognition and Machine Learning, the
marginal likelihood of the training data is shown to take the following form:

p(y | α, β) =
M

2
log α +

N

2
log

β

2π
+

1

2
log |SN | −

α

2
||mN ||

2 −
β

2

N
∑

i=1

(yi − mT
Nφ(xi))

2

Here, mN and SN are the posterior mean and variance of the weight vector, w, given
N observations. Plot this quantity as a function of α, for the pair of basis families and
range of hyperparameter values considered in problem 2(b). For each model family, what
is the test accuracy for the hyperparameters which maximize the marginal likelihood of
the training data? How do these compare to the models which actually performed best in
problem 2(b)?
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Hint: To avoid numerical underflow when computing the marginal likelihood above, you
can exploit the following identity:

log |SN | = log
M
∏

j=1

λj =
M

∑

j=1

log λj SNuj = λjuj

Here, λj are the eigenvalues of the covariance matrix SN .

b) Suggest an alternative family of basis functions for this regression problem. As in problem
1(a,e), plot examples of this family.

c) Repeat part (a) for the basis family proposed in part (b). How does this new family perform
on test data, relative to the radial basis function and polynomial bases? Is this relative
performance accurately predicted by the marginal likelihood?
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