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Abstract

Background: Recently, many standalone applications have been proposed to correct sequencing errors in Illumina
data. The key idea is that downstream analysis tools such as de novo genome assemblers benefit from a reduced error
rate in the input data. Surprisingly, a systematic validation of this assumption using state-of-the-art assembly methods
is lacking, even for recently published methods.

Results: For twelve recent Illumina error correction tools (EC tools) we evaluated both their ability to correct
sequencing errors and their ability to improve de novo genome assembly in terms of contig size and accuracy.

Conclusions: We confirm that most EC tools reduce the number of errors in sequencing data without introducing
many new errors. However, we found that many EC tools suffer from poor performance in certain sequence contexts
such as regions with low coverage or regions that contain short repeated or low-complexity sequences. Reads
overlapping such regions are often ill-corrected in an inconsistent manner, leading to breakpoints in the resulting
assemblies that are not present in assemblies obtained from uncorrected data. Resolving this systematic flaw in future
EC tools could greatly improve the applicability of such tools.
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Background
Modern Illumina systems generate sequencing data with
very high throughput and low financial cost. Illumina esti-
mates that over 90% of sequencing data worldwide are
generated on Illumina platforms. This data is character-
ized by a relatively short read length (100–300 bp) and
a high accuracy (1–2% errors, mostly substitutions) [1].
Data generated on Illumina platforms suffers from var-
ious sources of bias, most notably a higher number of
sequencing errors towards the 3’-end of the reads and a
non-uniform distribution of reads across the genome [2].
Despite its short read length, Illumina data is often used

for de novo genome assembly, sometimes complemented
by data generated through other platforms. Most short-
read assemblers first generate a de Bruijn graph from
the input reads [3]. This graph represents all k-mers that
occur in the input reads and the overlap between them. As
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such, de Bruijn graphs are used to efficiently establish the
overlap between individual reads. The original genomic
sequence is then represented as some path through the de
Bruijn graph.
The presence of sequencing errors significantly compli-

cates this task: a single sequencing error in a read results
in up to k erroneous k-mers in the de Bruijn graph. These
k-mers create artifacts in the de Bruijn graph such as
spurious dead ends, parallel paths and chimeric connec-
tions [4]. Despite the low error rate, erroneous k-mers can
vastly outnumber true k-mers, challenging the identifica-
tion of the original sequence. To reduce the number of
erroneous k-mers, trimming tools can be used as a pri-
mary solution to discard parts of each input read that have
a per-base quality score below a user-defined threshold.
However, this further reduces the read length and might
aggravate the coverage bias.
Error correction tools (EC tools) on the other hand,

try to identify and correct the sequencing errors. Often,
this is achieved by generating a k-mer coverage spectrum
from the input data and replacing poorly covered (and
hence likely erroneous) k-mers by similar k-mers with a
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higher coverage. Sometimes, this process is further guided
by using the per-base quality scores. Many standalone
read error correction algorithms and implementations
have been proposed for Illumina data, including ACE [5],
BayesHammer [6], BFC [7], BLESS [8], BLESS 2 [9], Blue
[10], EC [11], Fiona [12], Karect [13], Lighter [14], Musket
[15], Pollux [16], Quake [17], QuorUM [18], RACER
[19], SGA-EC [20] and Trowel [21]. For a comprehensive
overview of the characteristics of these EC tools and those
for other sequencing platforms, we refer to [22].
The key idea is that the prior application of EC tools on

raw Illumina sequencing data provides assembly methods
with cleaner input data and hence improves the quality
of assembly both in terms of reduced fragmentation (i.e.,
longer contigs or scaffolds) and higher accuracy of the
resulting assemblies. As a secondary goal, the prior use of
EC tools may reduce the memory usage and the runtime
of the assembly tool. This is useful when assembling larger
genomes, a task that is typically quite resource-intensive.
Surprisingly, most EC tools are not evaluated on their

ability to improve the quality of de novo genome assembly
with modern assemblers, but rather directly on their abil-
ity to correct sequencing errors. Using simulated Illumina
data, such an evaluation is straightforward as error-free
data is known. In that case, the error correction gain,
a metric that expresses to what degree the error rate
is reduced, is used to describe the performance of EC
tools. With real Illumina data, the error correction per-
formance is typically assessed through the use of a read
mapper: both corrected and uncorrected reads are aligned
to their corresponding reference genome and various per-
formance metrics are derived to express the reduction in
mismatches in the respective alignments. EC tools that
result in more aligned reads and/or alignments with fewer
mismatches are assumed to be superior.
We argue that a lower average error-rate in the input

data does not necessarily lead to better assembly results.
First, the vast majority of sequencing errors are benign to
the assembly process. For example, consider a sequencing
error that gives rise to one or more erroneous k-mers that
otherwise do not exist in the sequenced genome. In the
de Bruijn graph, such sequencing error causes a spurious
dead end or a short parallel path. These graph artifacts
are easily detected and corrected for by many assembly
tools assuming the corresponding true k-mers occur with
sufficient coverage in the input reads. Only a relatively
small fraction of sequencing errors is truly problematic,
for example when they give rise to erroneous k-mers that
do exist elsewhere in the genome. These errors thus give
rise to spurious ‘chimeric’ connections between nodes in
the de Bruijn graph that are otherwise distantly located
in the original sequence. As such, they may result in mis-
assemblies and/or shorter contig sizes. A second class of
problematic errors are those that occur in regions with

very low coverage. Such errors may render the assembly
tool unable to detect overlap between reads because no k-
mers are shared. Overall, an EC tool that is able to correct
all benign sequencing errors and not a single problem-
atic sequencing errormight exhibit a high error correction
gain but will not substantially improve the assembly pro-
cess. Second, EC tools might introduce new errors in the
sequence data. If such events are rare and unbiased, they
may not pose a great threat to the assembly process. How-
ever, if EC tools systematically make the same mistake in
a given context, the genome assembler may not be able to
recover from this error.
Most state-of-the-art genome assembly tools have built-

in algorithms to detect and handle sequencing errors,
either directly or implicitly through a correction proce-
dure on the de Bruijn graph. The prior use of standalone
EC tools thus only makes sense if they outperform these
built-in error correction algorithms. Table 1 lists for every
EC tool the accuracy analyses that were performed in
the accompanying publication. Even though all tools were
evaluated for their ability to reduce sequencing errors,
their ability to improve the genome assembly process is
either lacking or performed with older assembly tools.
Also, recent review papers on EC tools [23, 24] did not
contain such analyses.
In this paper, we review twelve recently published EC

tools. We compiled a benchmark suite of eight public
datasets sequenced from organisms with a genome size
ranging from 2 to 116 Mbp and assessed the performance
of the different EC tools both on their potential to cor-
rect the sequencing errors and on their ability to improve
assembly results using four assemblers (DISCOVAR [25],
IDBA [26], SPAdes [27] and Velvet [4]). We discuss the
impact on the resulting assembly quality and investigate
systematic errors in some of the EC tools. Finally, com-
putational efficiency (memory usage and runtime) of the
different EC tools is discussed. Note that the effect of error
correction for other applications such as variant calling is
beyond the scope of this paper.

Methods
Error correction tools
Twelve state-of-the-art (published in 2012 or later) EC
tools for Illumina data were included in this review and
listed in Table 1. We were unable to produce corrected
reads with QuorUM and EC and hence these tools were
excluded in this study.
EC tools have been classified according to their under-

lying algorithmic principles in several review papers
[22, 23, 28]. In Table 1, tools were classified according to
their main algorithmic approach: k-mer spectrum based
or multiple sequence alignment (MSA) based. The k-mer
spectrum based tools operate on the level of individ-
ual k-mers. First, the complete set of k-mers that occur
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Table 1 List of EC tools evaluated in this paper

EC tool Algorithm Data structure Indel support Accuracy analysis Assembly analysis Year

ACE k-mer k-mer trie Read level - 2015

BayesHammer k-mer Hamming graph Read level SPAdes 2013

BFC k-mer Bloom filter Read level Velvet, ABySS [34] 2015

BLESS 2 k-mer Bloom filter Read level Gossamer [35] 2016

Blue k-mer Hash table � Read level Velvet 2014

Fiona MSA Suffix tree � Base level - 2014

Karect MSA Partially-ordered graph � Read, base level Velvet, SGA, Celera [36] 2015

Lighter k-mer Bloom filter Read level Velvet 2013

Musket k-mer Bloom filter Base level SGA 2013

RACER k-mer Hash table Read level - 2013

SGA-EC MSA Suffix array Read level SGA 2012

Trowel k-mer Hash table Read, base level Velvet, SOAPdenovo [37] 2014

The algorithmic approach is either k-mer spectrum based (‘k-mer’) or multiple sequence alignment based (‘MSA’). Tools can be further classified according to data structure
and heuristics used. Some tools are able to correct insertions or deletions. In their accompanying publication, all tools were assessed directly on their ability to reduce error
rate, either on the read or base level. Most tools did not use assembly analyses with modern assemblers in their evaluation. SPAdes was used for the evaluation of
BayesHammer, but no comparison was made with assembly results from uncorrected data

in the input data and their corresponding frequency is
determined. Second, reads that contain rarely occurring
k-mers are assumed to contain sequencing errors and are
modified, using a minimum edit distance strategy, such
that these k-mers are replaced by similar, more frequently
occurring k-mers. In contrast, MSA-based tools oper-
ate on the level of reads. First, reads that are assumed
to represent overlapping genomic regions are clustered
together and a consensus is obtained through multiple
alignment. Second, reads are corrected according to the
consensus alignment.While all EC tools considered in this
review rely on either of these two approaches, there is still
a great diversity in the specific implementation heuris-
tics and data structures (bloom filter, hash table, suffix
tree, . . . ).
Most tools require users to specify a k-mer length to be

used during the error correction procedure. The optimal
value can differ from one dataset to another, depending
on the coverage, genome size and error distribution. This
optimal value was empirically obtained by running the EC
tool multiple times with different k-mer sizes and select-
ing the k-mer size that yields the most contiguous SPAdes
assembly results as measured in terms of N50. This opti-
mal value was used to produce the results of Table 4.
For all other tables and figures, the default or recom-
mended k-mer size was used for all datasets. Parameters
and settings are provided in Additional file 1: Section 1.
All tools support multithreading, and with the excep-
tion of ACE and RACER, the number of parallel threads
can be specified. Those tools were run with 32 threads.
Runtime and peak memory usage were measured with
the GNU ‘time -v’ command. We recorded elapsed (wall
clock) time and peak resident memory usage. All tools

were run on a machine with four Intel(R) Xeon(R) E5-
2698 v3 @ 2.30GHz CPUs (64 cores in total) and 256 GB
of memory.

Data
Tools are benchmarked on eight datasets for which both a
high quality reference genome and real Illumina data are
publicly available (see Table 2). Genome sizes range from
2Mbp (Bifidobacterium dentium) to 116Mbp (Drosophila
melanogaster) while read coverage varies from 29X to
612X. Data is produced by the Illumina HiSeq, MiSeq and
GAII platforms with read lengths varying between 100 bp
and 251 bp. Two of the datasets have a variable read length
due to read trimming, all other datasets have fixed read
lengths.
To assess the performance of tools on simulated data,

synthetic Illumina reads for the same set of organisms
were generated using ART [29]. The same coverage and
read lengths were used as for the real data (Additional file 1:
Section 2). ART also generates a corresponding set of
error-free reads, which greatly facilitates the evaluation of
EC tools on synthetic data.

Error metrics
The error rate is the ratio of the total number of sequenc-
ing errors (substitutions or indels) and the number of
nucleotides in the input data. Error correction perfor-
mance is measured as follows: true positives (TP) corre-
spond to corrected errors; true negatives (TN) correspond
to initially correct bases left untouched; false positives
(FP) correspond to newly introduced errors; false nega-
tives (FN) correspond to unidentified errors. The error
correction gain (EC gain) is defined as:
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Table 2 Real datasets used for the evaluation of EC tools

Abbr. Organism Reference ID Genome size Cov. Sequencing
platform

Read length Trimmed
reads

Dataset ID Ref.

D1 Bifidobacterium dentium Nc013714.1 2.6 Mbp 373 X Illumina MiSeq 251 bp SRR1151311 [23]

D2 Escherichia coli K-12 DH10B NC010473 4.5 Mbp 418 X Illumina MiSeq 150 bp Ill. Data library [10]

D3 Escherichia coli K-12 MG1655 NC000913 4.5 Mbp 612 X Illumina GAII 100 bp ERA000206 [10]

D4 Salmonella enterica NC011083.1 4.7 Mbp 97 X Illumina MiSeq 239 bp � SRR1206093 [23]

D5 Pseudomonas aeruginosa ERR330008 6.1 Mbp 169 X Illumina MiSeq 120 bp � ERR330008 [10]

D6 Homo sapiens Chr. 21 HG19 45.2 Mbp 29 X Illumina HiSeq 100 bp Ill. Data library [10]

D7 Caenorhabditis elegans WS222 97.6 Mbp 58 X Illumina HiSeq 101 bp SRR543736 [23]

D8 Drosophila melanogaster Release 5 116.4 Mbp 52 X Illumina HiSeq 100 bp SRR823377 [23]

EC gain = TP − FP
TP + FN

.

The EC gain measures the degree in which the error rate
is reduced. A gain of 100%means all errors were corrected
and no new errors were introduced. The sensitivity (true
positive rate – TPR) is defined as follows:

TPR = TP
TP + FN

.

Evaluation of assembly results
To assess the impact of error correction on de novo assem-
bly results, the following assemblers were used: DISCO-
VAR, IDBA, SPAdes and Velvet. All four assemblers have
built-in error correction functionality. Velvet, IDBA and
SPAdes remove erroneous k-mers through the identifica-
tion of parallel paths (‘bubbles’ and ‘tips’) in the de Bruijn
graph. SPAdes and IDBA iteratively increase the k-mer
size. This way, they take advantage of shorter k-mers for a
sensitive detection of overlap between reads and of longer
k-mers for dealing with repeat resolution. DISCOVAR
uses a different methodology: for each read, a group of
‘true friends’ is determined. These are reads that share a k-
mer with the read and that do not have a high quality base
difference with the read. DISCOVAR then corrects each
read based on the consensus sequence obtained from the
multiple sequence alignment of its true friends.
We investigated the underlying causes of suboptimal

assembly results after error correction.MUMmer [30] was
used to align contigs, and to check if the contig has no
structural misassemblies. In order to determine the k-mer
frequencies Jellyfish [31] was used.

Results and discussion
Ability of EC tools to correct sequencing errors
In order to estimate the reduction in error rate through
the use of EC tools, both uncorrected and corrected
data were aligned to the corresponding reference genome
using BWA [32]. For all datasets D1-D8 and EC tools,

the fraction of reads that align with respectively m = 0
and m > 9 mismatches is reported in Additional file 1:
Section 3.1. All EC tools are able to substantially reduce
the number of mismatches required for read alignment.
This is especially true for bacterial genomes, where often
>95% of the corrected reads show perfect alignment with
the reference. In contrast, for larger genomes, this is typi-
cally in the range of 60–80%. Error correction also reduces
the fraction of highly erroneous reads (i.e., reads that
require more than 9 mismatches to align), albeit to vary-
ing degrees. For the largest dataset D8 (D. melanogaster),
Fig. 1 provides a more detailed breakdown of the num-
ber of mismatchesm required for read alignment. Initially,
about 50% of the uncorrected reads perfectly align. ACE
shows the highest increase of this figure to 60.14%. ACE
also has the lowest percentage of highly erroneous reads.
After applying error correction to a read, there is no

guarantee that BWA will again align that read to the same
genomic location. Therefore, this evaluation metric might
favor overly aggressive EC tools that transform reads into
similar reads that do exist in the genome, but that do not
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represent the actual sequenced genomic region. There-
fore, in an alternative evaluation metric, we assume that
the error-free read is represented by the segment of the
reference genome to which the uncorrected read aligns.
Uncorrected reads that can not be mapped to the ref-
erence genome are excluded from this evaluation. As
BayesHammer and BLESS 2 do not provide a one-to-one
correspondence between input and output, they are not
included in this evaluation.

Table 3 shows the EC gain, the percentage of cor-
rected errors and the number of newly introduced errors
per Mbp of read data for each of the eight datasets.
Detailed confusion matrices are provided in Additional
file 1: Section 3.2.2. Major differences in EC gain can
now be observed between the different EC tools. All
EC tools perform much better on the smaller bacterial
genomes (D1-D5), than on the larger eukaryotes (D6-
D8). For all datasets, Karect shows the highest number of

Table 3 Accuracy comparison of EC tools in terms of EC gain, percentage of corrected errors, and number of newly introduced errors
per Mbp of read data

D1 D2 D3 D4 D5 D6 D7 D8

Error correction gain (%)

ACE 96.3 97.9 98.7 96.2 91.1 41.7 -3.3 25.9

BFC 78.7 84.3 80.2 81.4 78.6 52.8 63.3 24.1

Blue 98.5 98.8 98.7 96.7 95.4 51.1 65.2 28.8

Fiona 87.4 94.6 97.5 85.5 91.4 55.0 65.8 29.8

Karect 99.4 99.8 99.7 98.5 98.2 63.1 75.5 34.3

Lighter 85.4 93.8 92.5 80.1 84.6 45.7 50.3 21.7

Musket 91.3 93.6 93.4 88.0 87.1 49.5 59.2 23.5

RACER 92.3 94.4 97.0 88.3 94.0 17.4 32.6 22.3

SGA-EC 55.3 67.2 45.5 53.1 65.2 48.7 60.6 23.0

Trowel 38.4 49.4 38.8 40.5 46.8 13.2 1.1 10.5

Percentage of corrected errors (sensitivity)

ACE 97.7 98.5 99.2 98.0 97.0 61.3 73.8 34.5

BFC 78.8 84.4 80.2 81.4 78.7 54.1 63.8 24.7

Blue 98.7 99.3 99.1 97.0 95.7 59.9 70.6 31.4

Fiona 87.5 94.8 97.7 85.5 91.7 60.6 71.7 31.5

Karect 99.4 99.9 99.7 98.5 98.2 64.4 76.7 35.5

Lighter 85.5 94.0 92.7 80.2 86.3 48.9 59.1 24.3

Musket 91.3 93.6 93.4 88.1 87.3 52.9 65.3 26.4

RACER 92.9 95.8 98.2 89.0 94.8 59.2 68.2 34.0

SGA-EC 55.3 67.2 45.5 53.1 65.3 50.4 61.3 23.2

Trowel 39.0 49.9 43.4 40.9 47.6 23.6 31.2 11.8

Number of errors introduced per Mbp

ACE 44 23 40 151 194 1217 2375 1123

BFC 2 3 7 2 3 83 15 73

Blue 8 20 30 31 10 547 167 341

Fiona 2 7 14 6 9 347 183 218

Karect 0 1 3 1 1 80 36 157

Lighter 2 6 14 8 56 202 273 332

Musket 1 2 5 3 6 214 190 383

RACER 21 62 97 58 27 2603 1097 1524

SGA-EC 1 3 6 2 3 105 22 24

Trowel 21 26 376 41 25 647 930 172
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true positives (errors that were successfully corrected) and
the lowest number of false negatives (uncorrected errors).
With the exception of dataset D7 (C. elegans) and D8 (D.
melanogaster), Karect also has the lowest number of false
positives (newly introduced errors). Overall, Karect has
the highest error correction gain for all datasets.
For most datasets, BFC, SGA-EC and Trowel cor-

rect significantly fewer sequencing errors compared with
other EC tools. BFC and SGA-EC appear to be conserva-
tive as they introduce only a small number of new errors.
In contrast, ACE, Racer and Trowel often introduce a
significant amount of new errors. Note that for dataset
D7, the EC gain of ACE is negative, indicating a higher
number of sequencing errors after error correction than
in the uncorrected data: ACE successfully corrects about
10.8 million errors but introduces almost 11.3 million new
errors.
For comparison, artificial data was generated for the

eight genomes using the same read length and coverage
as the corresponding real datasets. Data was corrected
using identical settings as before. The confusion matrix
and derived metrics can be unambiguously constructed
for artificial data since the true, error-free read is known
(see Additional file 1: Section 3.2.3). BFC now shows the
highest gain for four datasets, while Karect and Fiona each
have the highest gain for two datasets. The numbers indi-
cate that EC tools perform much better on artificial data
than on real data. This is due to the fact that simulated
data are produced according to simplified models that
may fail to capture the intricacies of real data.

Ability of EC tools to improve genome assembly
To evaluate the effect of error correction on de novo
genome assembly, both uncorrected and corrected reads
were assembled using respectively DISCOVAR, IDBA,
SPAdes and Velvet. The resulting assemblies were eval-
uated using QUAST [33] and detailed reports for all
combinations of assemblers and EC tools are provided in
Additional file 1: Section 4 for reference. We found that
SPAdes and DISCOVAR consistently produced higher
quality contigs than Velvet and IDBA. We were unable
to produce assemblies with DISCOVAR using the reads
that were corrected by Trowel and Fiona. Therefore, only
SPAdes assemblies are discussed in detail in the remainder
of this section.
Table 4 shows the contig and scaffold NGA50 values

for all eight datasets and EC tools. For the EC tools that
allow the k-mer size to be specified, the optimal value of
k was used (see Additional file 1: Section 1). The NGA50
represents the characteristic length of the assembled con-
tigs/scaffolds that can be contiguously aligned to the ref-
erence genome. These contigs/scaffolds thus contain no
major structural assembly errors and a higher NGA50
hence implies a less fragmented assembly. For smaller

genome sizes (datasets D1-D5), the prior application of
EC tools often does not significantly influence the scaffold
NGA50. For dataset D3, many tools are able to improve
the contig NGA50, sometimes significantly. Remarkably,
for dataset D5 (P. aeruginosa) most EC tools lead to a
somewhat lower scaffold NGA50 compared to the assem-
bly result obtained from uncorrected data. However, the
NGAx plot of this dataset reveals no major differences
in assembly quality between corrected and uncorrected
reads (see Additional file 1: Section 4.3.5). For the larger
genomes, the use of EC tools does occasionally improve
assembly results, especially on dataset D6 (Human, chr. 21)
where eight out of twelve EC tools lead to a higher scaf-
fold NGA50. On the largest datasets D7 and D8 however,
error correction may significantly deteriorate the assem-
bly quality. In some cases, the NGA50 obtained is less than
half of the corresponding value on uncorrected data.
Especially for dataset D8 (D. melanogaster), the prior

use of different EC tools results in a large variability in
assembly quality (see Fig. 2). Only Blue, Karect and SGA-
EC improve the NGA50 for this dataset. In contrast, error
correction with ACE, BLESS 2, Fiona or RACER leads
to significantly shorter scaffolds. Additionally, a lower
percentage of the genomewas found to be covered by scaf-
folds and a higher rate of insertions, deletions and mis-
matches was observed (see Additional file 1: Section 4).
At this point it should be stressed that error correc-

tion does consistently lead to substantially better assembly
results for Velvet or IDBA. However, in our hands, the
NGA50 values obtained with Velvet or IDBA were much
lower than with SPAdes or DISCOVAR. Even after error
correction, Velvet and IDBA yield significantly shorter
contigs than SPAdes or DISCOVAR. From this we con-
clude that the built-in error correction procedures in
Velvet and IDBA are less accurate than those in SPAdes
and DISCOVAR.

Error rate versus assembly quality
Even though EC tools almost always reduce the error
rate in the input data, they do not necessarily lead to
better assemblies. In order to better understand these
contrasting observations, we investigated why the use of
corrected data can lead to a more fragmented assembly.
For the largest dataset (D8), the two largest contigs (> 400
kbp each) that were correctly assembled from uncor-
rected data were selected. The corresponding (shorter)
contigs obtained from assemblies on corrected data were
aligned to these contigs and visualized in Fig. 3. With
the exception of Trowel, all error correction tools lead
to a more fragmented assembly of at least one of these
contigs. Breakpoints, i.e., endpoints of the shorter con-
tigs, caused by error correction do not appear to occur
at random positions. Rather, different EC tools often
cause breakpoints at the same positions. For example, in
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Table 4 NGA50 of respectively contigs (top) and scaffolds (bottom) assembled by SPAdes before and after error correction

Tools D1 D2 D3 D4 D5 D6 D7 D8

Contig NGA50

Uncorrected 397 392 92 570 119 253 231 409 264 881 8 559 6 429 50 484

ACE 397 392 = 92 570 = 125 608 ↑ 231 409 = 264 881 = 8 771 ↑ 3 143� 28 679�
BayesHammer 397 392 = 92 344 ↓ 132 564� 231 409 = 264 881 = 9 075 ↑ 6 540 ↑ 53 534 ↑
BFC 397 392 = 92 570 = 132 876� 231 409 = 264 881 = 9 375 ↑ 6 389 ↓ 49 185 ↓
BLESS 2 397 392 = 92 570 = 119 265 ↑ 231 409 = 264 881 = 7 975 ↓ 3 047� 23 814�
Blue 397 392 = 92 708 ↑ 132 876� 231 409 = 289 353 ↑ 7 628� 6 191 ↓ 50 486 ↑
Fiona 397 392 = 92 611 ↑ 119 253 = 231 409 = 264 881 = 9 224 ↑ 5 346� 45 472 ↓
Karect 397 392 = 92 611 ↑ 132 876� 231 409 = 264 881 = 9 865� 6 392 ↓ 54 132 ↑
Lighter 397 392 = 92 570 = 132 564� 231 409 = 289 353 ↑ 9 609� 6 423 ↓ 50 440 ↓
Musket 397 392 = 92 566 ↓ 132 876� 231 409 = 264 881 = 9 293 ↑ 6 170 ↓ 46 377 ↓
RACER 397 392 = 92 523 ↓ 112 393 ↓ 231 409 = 264 881 = 7 336� 3 244� 21 538�
SGA-EC 397 392 = 92 344 ↓ 119 255 ↑ 231 409 = 264 881 = 9 296 ↑ 6 435 ↑ 52 105 ↑
Trowel 397 392 = 92 344 ↓ 119 335 ↑ 231 409 = 264 881 = 7 808 ↓ 6 389 ↓ 48 357 ↓

Scaffold NGA50

Uncorrected 397 392 97 353 132 876 231 409 289 353 8 829 6 472 60 554

ACE 397 392 = 97 353 = 133 713 ↑ 231 409 = 264 881 ↓ 9 190 ↑ 3 158� 35 392�
BayesHammer 397 392 = 97 353 = 133 309 ↑ 231 409 = 264 881 ↓ 9 443 ↑ 6 576 ↑ 58 570 ↓
BFC 397 392 = 97 353 = 133 088 ↑ 231 409 = 264 881 ↓ 9 664 ↑ 6 419 ↓ 59 613 ↓
BLESS 2 397 392 = 97 353 = 132 876 = 231 409 = 264 881 ↓ 8 441 ↓ 3 073� 35 638�
Blue 397 392 = 97 288 ↓ 133 309 ↑ 231 409 = 289 353 = 7 841� 6 183 ↓ 61 289 ↑
Fiona 397 392 = 97 353 = 132 876 = 231 409 = 264 881 ↓ 9 491 ↑ 5 385� 54 188�
Karect 397 392 = 97 353 = 133 058 ↑ 231 409 = 264 881 ↓ 10 302� 6 446 ↓ 62 304 ↑
Lighter 397 392 = 97 353 = 133 309 ↑ 231 409 = 289 353 = 9 955� 6 468 ↓ 59 697 ↓
Musket 397 392 = 97 353 = 133 088 ↑ 231 409 = 264 881 ↓ 9 502 ↑ 6 219 ↓ 55 842 ↓
RACER 397 392 = 97 353 = 132 876 = 231 409 = 264 881 ↓ 7 603� 3 266� 23 783�
SGA-EC 397 392 = 97 353 = 132 876 = 231 409 = 264 881 ↓ 9 640 ↑ 6 483 ↑ 60 636 ↑
Trowel 397 392 = 97 353 = 132 876 = 231 409 = 264 881 ↓ 8 107 ↓ 6 435 ↓ 57 078 ↓

Arrows in the table are based on their value relative to the NGA50 value obtained from uncorrected data as follows:� < -10% < ↓ < 0% < ↑ < +10% <�

Fig. 3, the breakpoints marked as ‘A’ and ‘B’ each occur in
four cases.
In order to identify the mechanisms that cause break-

points, the k-mer spectrum of both corrected and uncor-
rected data along the two contigs was examined. In this
section, k = 21 is used throughout, as it corresponds to
the smallest k-mer size that is used to establish overlap
between individual reads by the multi-k SPAdes assem-
bler. In Fig. 3, black bars visualize the locations of ‘lost
true 21-mers’, i.e., 21-mers that do exist in the reference
sequence (hence ‘true’) and also do exist in the uncor-
rected data but that are no longer present in the corrected
data (hence ‘lost’). Lost true k-mers hence refer to those
k-mers that were systematically, but erroneously removed
during error correction. In many cases, lost true 21-mers
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occur in the direct vicinity of breakpoints, indicating a
possible causal relationship between lost true 21-mers and
these breakpoints (see Fig. 3).
To varying degrees, all EC tools suffer from lost true k-

mers. For dataset D8, Fig. 4 shows the 21-mer spectrum
of the uncorrected data, along with the lost true 21-mer
spectrum for the individual EC tools. Unsurprisingly, true
k-mers are almost exclusively lost when their correspond-
ing coverage in the uncorrected data is low. Indeed, a
lower than expected coverage is an important feature for
EC tools to select candidate errors. Trowel and SGA-EC
appear most conservative in terms of lost true k-mers:
almost no true 21-mers that occur > 2 times are removed.
In contrast, ACE, BLESS 2, Musket and RACER remove a
significant number of true 21-mers, some of which occur
> 10 times in the initial data. These EC tools lead to amore
fragmented assembly, which becomes especially evident
for the second biggest contig (cfr. Fig. 3).
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In principle, a lost true k-mer should not necessar-
ily lead to a breakpoint. If all reads that initially contain
the lost true k-mer(s) are modified in a consistent man-
ner, the assembler will still be able to correctly identify
the overlap between those reads and the lost true k-mers
would appear as mismatches in the resulting assembly. In
practice, the lost true k-mers will likely be replaced by k-
mers that actually occur elsewhere in the genome and the
genome assembler will be challenged by a spurious repeat
that it may or may not be able to resolve. Vice versa, not
all breakpoints due to error correction are directly related
lost true k-mers. The ill-correction of reads could poten-
tially only lead to a decrease in coverage without losing the
true k-mer in all reads. This can still result in a breakpoint.
In practice however, we find that breakpoints due to

error correction are often related to lost true k-mers (cfr.
Fig. 3). Further inspection revealed that true k-mers are
typically lost in regions that suffer from poor coverage in
the direct vicinity of a local coverage peak. Often, such
sudden increase in coverage is caused by the presence
of a short repeated element. For example, Fig. 5 shows a
genomic regionwith low k-mer coverage (around 7X) that
contains a repeated k-mer with coverage 35. This repeated
k-mer also occurs in other reads that originate from differ-
ent genomic locations. We can therefore assume that the
EC tool makes erroneous decisions based on the sequence
content of these reads. In this example, ACE makes a
large number of substitutions in originally error-free reads

causing 75 consecutive lost true k-mers. Clearly, the error
correction procedure is not performed in a consistent
manner for all reads, rendering the assembler unable to
detect overlap between these reads and ultimately lead-
ing to a breakpoint. For the same reasons, BLESS 2 and
RACER also break at this specific location.
As a second example, Fig. 6 shows a short 22 bp long

AT repeat with very high coverage (nearly 14 000X), in
a genomic region with otherwise low coverage. Musket
introduces a new error in two out of four overlapping
reads. Within this specific context, these substitutions
cause a number of true k-mers to be lost. More impor-
tantly, because the error correction is not performed in
an identical manner across all four reads overlapping this
locus, the overlap is broken and a breakpoint is intro-
duced. Similarly, due to the same AT repeat, Fiona intro-
duces errors that result in a number of lost true k-mers.
In this case however, the newly introduced errors result
in mismatches in the assembled sequence rather than a
breakpoint.
From these examples, the limitations of k-mer spec-

trum based error correction tools become evident. Due to
their primary focus on individual k-mers, they do not take
into account the surrounding context in which the k-mer
occurs. Because these tools correct reads individually, dif-
ferent corrections may be applied to different reads even
though the reads overlap the same genomic region. This
may render de Bruijn graph assemblers unable to detect
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Fig. 5 Alignment of uncorrected and ACE-corrected reads in the neighborhood of a contig breakpoint: The first track shows the 21-mer coverage of
the uncorrected data. The second track (Ref ) contains part of the reference genome, which is assembled into one contig from uncorrected data. A
repeated 21-mer is indicated in red. The third track (Uncorrected) shows the alignment of the uncorrected, but error-free reads to the reference. The
fourth track (Corrected) uses these same alignment positions, but with the sequence content of the corrected reads. Newly introduced errors are
indicated by a character in the reads. The rectangle in the fourth track indicates 75 overlapping 21-mers that are lost as a result of erroneous error
correction
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Fig. 6 Alignment of uncorrected and corrected reads by Musket and Fiona in the neighborhood of a contig breakpoint: Lost true k-mer can result in
two different scenarios. The first track shows the 21-mer coverage of the uncorrected data. The second track (Ref ) shows a part of the reference
genome, which is assembled into one contig from uncorrected data. A frequently occurring AT-repeat is indicated in red. The third track (Uncorrected)
shows the alignment of the uncorrected reads to the reference. The fourth and the fifth tracks (CorrectedMusket and Corrected Fiona) use these same
alignment positions, but with the sequence content of corrected reads by Musket and Fiona. The sixth track is the assembled contig from corrected
reads by Fiona. The rectangles indicate the regions in corrected reads by Musket and Fiona that no longer contain any true 21-mers. The coverage is
low around an ‘AT’ repeat with coverage 13750x in the uncorrected data. Musket incorrectly changed two bases, breaking the connection between
two groups of reads. In contrast, in the Fiona-corrected reads, the connection is not lost. Instead the lost true k-mers in Fiona appear as mismatches
in the assembled contig

overlap between those reads. In that respect, error cor-
rection tools that rely on multiple sequence alignments
(MSA) are in principle less susceptible to this kind of error.
As overlapping reads are clustered and aligned, the error
correction is systematic across those reads. MSA-based
tools indeed yield higher NGA50 values on average.
These results demonstrate that evaluating error correc-

tion tools directly on their ability to reduce error rate has
significant limitations as there is often no clear correlation
between such metrics and the ability to improve assembly.
For example, on datasets D8, ACE ranked fourth in terms
of gain and showed the highest number of corrected reads
that align error-free to the reference genome. Yet, ACE-
corrected reads do not lead to good assembly results on
this dataset.
We should emphasize that error correction is not always

destructive: EC tools can improve the quality of assembly

in certain cases. For example, even though Karect also
suffers from a significant number of ‘lost true k-mers’
(see Fig. 4), the tool leads to the highest NGA50 values
in many cases (see Table 4). Again for dataset D8, we
selected the longest contig (> 500 kbp) that was correctly
assembled from corrected data by Karect and aligned
the corresponding (shorter) contigs obtained from assem-
blies on uncorrected data. A specific case where Karect
removes errors that subsequently lead to the correct con-
nection between two contigs is shown in Additional file 1:
Section 5.

Time and space requirements
Figures 7 and 8 show the memory usage and runtime
of the EC tools (see Additional file 1: Section 6.1 for
detailed tables). Since it is not possible to specify the
number of threads for ACE and RACER, they were
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omitted. For all datasets, BayesHammer, Fiona and Karect
use significantly more memory than other tools while
BayesHammer, Fiona, Karect, Musket, and SGA-EC have
a relatively high runtime. In general, we note that all tools
that rely on multiple sequence alignments require more
resources. The tools that rely on Bloom filters (BLESS 2,
Lighter and BFC) are both memory efficient and fast.
Given the reduced error in the input data, we evaluate

the potential of error correction tools to reduce the peak
memory usage and/or runtime of the assembly process
itself. Since error correction is computationally inten-
sive, this may be an important aspect of error correction
tools. Peak memory usage and runtime were measured for
all assemblies with SPAdes and DISCOVAR (Additional
file 1: Figures S3–S6). The runtime of DISCOVAR shows
no decrease after error correction, while the peak mem-
ory usage decreases slightly. Conversely, the runtime of
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SPAdes does decrease after error correction, but the peak
memory usage does not.
The peak memory usage and runtime tables for artifi-

cial data show that Lighter and SGA-EC are again among
the most memory-efficient tools, while Karect and Fiona
consume more memory than any other tools. Lighter
is the fastest tool followed by BLESS 2 in all the cases
(Additional file 1: Section 6.2).

Conclusions
The performance of different EC tools was compared
using two approaches: the ability of EC tools to correct
sequencing errors in Illumina data, and the effects of
those corrections on the resulting de novo genome assem-
bly quality. We found that EC tools correct a significant
fraction of sequencing errors. However, state-of-the-art
Illumina assemblers do not always appear to benefit from
this. The assembly results for eight different datasets with
SPAdes and DISCOVAR show that the prior application
of EC tools often does not lead to a significant increase in
NGA50, and in fact may result in a lower NGA50. Many
erroneous corrections occur in regions that have low read
coverage and in the vicinity of highly frequent repeats.
Due to the low coverage, error correction tools incorrectly
assume the presence of sequencing errors. The repeated
elements on the other hand cause erroneous substitutions
to be applied. A too aggressive and/or inconsistent trans-
formation of such reads in such region may lead to loss
of information from which no recovery is possible during
the assembly process. This inevitably leads to an increased
assembly fragmentation. Additionally, the prior use of EC
tools does not lead to a major decrease in overall run-
time and/or memory requirements compared with the
assembly from uncorrected data.
From amethodological point of view, multiple sequence

alignment (MSA) basedmethodsmight have an advantage
over methods that operate on isolated k-mers. MSA-
based methods take multiple reads into account when
applying substitutions and hence appear to make more
consistent corrections across overlapping reads.
We recommend future EC tools to be primarily eval-

uated on their ability to improve assembly results using
state-of-the-art assemblers and sufficiently large datasets.
Only a relatively small fraction of sequencing errors are
truly impacting the assembly process. It is the behavior of
the error correction tool on precisely these cases that will
ultimately determine its degree of success.

Additional file

Additional file 1: Supplementary Data. Evaluation of the impact of
Illumina error correction tools on de novo genome assembly. (PDF 628 kb)

http://dx.doi.org/10.1186/s12859-017-1784-8
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