
CH4: Hidden Markov Models: The Learning Problem

CS 182 Spring 2024

Scribes (from previous years): alee113, chuang25, xqian6

Scribes (2022): hdandapa, ihuang8, spyon

Compiled & edited by eyouth, jwang194

Reach out to cs1820tas@lists.brown.edu for any clarifications or corrections.

Overview of HMMs
Hidden Markov models (HMMs) are statistical Markov models whose states are unknown (“hidden”). Many
biological sequences (i.e., DNA, protein, etc.) can be modelled as “outputs” generated by an HMM whose
hidden state sequences and transition/emission probabilities can yield insight into the biology underlying the
“observed” sequence. HMMs have found broad applications in bioinformatics and sequence inference.

Elements of an HMM

Construction
An HMM is constructed from several components:

States

Let S = {S1, . . . , SN} be the space of N states (which are unknown in standard HMM inference), and let
qt represent the state of the system at time t. The HMM state sequence proceeds in discrete units of time,
starting from t = 1. The sequence of states followed by an HMM is denoted Q = q1 . . . qT .

Emissions

Let V = {v1, . . . , vM} be the alphabet of M possible observed symbols (“emissions”), and let ot represent the
symbol emitted from state qt at time t. For an HMM which is designed to infer properties of DNA sequences,
M = 4 and V = {A, C, G, T}. The sequence of symbols emitted by an HMM is denoted O = o1 . . . oT .

Transition Probabilities

Let A = {aij} represent the transition probabilities between any two (not necessarily distinct) states; i.e.,
aij = P (qt+1 = Sj | qt = Si) for all i, j ∈ {1, . . . , N}. Note that this probability is independent of t.

Emission Probabilities

Let B = {bj(k)} represent the emission probabilities in each state; i.e., bj(k) = bSj
(vk) = P (ot = vk | qt = Sj)

for all j ∈ {1, . . . , N} and k ∈ {1, . . . ,M}. Note that this probability is independent of t.

Initial State Distribution

Let π = {π1, . . . , πN} be the distribution of start states, such that πi = P (q1 = Si) for all i ∈ {1, . . . , N}.

1

mailto:cs1820tas@lists.brown.edu

Definition
Define λ = (A,B, π). The HMM λ is entirely defined by its transition (A), emission (B), and starting state (π)
probabilities. Most applications of HMMs are focused on solving for or optimizing these parameters.

The 3 HMM Problems
Lawrence Rabiner’s 1989 “tutorial” on HMMs outlines three fundamental HMM problems, summarized below.
Problems 1 and 2 are covered in CS 181 and admit dynamic programming solutions of complexity O(N2T).
Problem 3 is more difficult to solve and involves greater algorithmic complexity in its solution.

Problem 1: The Evaluation Problem
What is the probability of observing a sequence O given the HMM λ?

The probability of observing O = o1 . . . oT given an arbitrary sequence of states Q = q1 . . . qT is

P (O |Q) =
T∏

t=1

P (ot | qt) =
T∏

t=1

bqt(ot)

while the prior probability of the sequence of states Q is

P (Q) = πq1 ·
T−1∏
t=1

aqtqt+1

Then the joint probability of observing O from the sequence of states Q is

P (O, Q) = πq1bq1(o1) · aq1q2bq2(o2) · · · aqT−1qT bqT (oT)

Therefore, the total probability of observing the sequence O given the HMM λ = (A,B, π) can be computed
by marginalizing the joint probability P (O, Q) over all possible sequences of states Q:

P (O |λ) =
∑
all Q

P (O, Q) =
∑
all Q

P (O |Q)P (Q)

Problem 2: The Decoding Problem
What is the most likely sequence of states Q∗ to have produced a sequence O given the HMM λ?

This problem can be solved by brute-force maximization over all possible sequences of states Q, but such an
approach is computationally prohibitive in general. A dynamic programming solution such as that offered by
the Viterbi algorithm or the Forward-Backward algorithm renders this problem computationally tractable.
Several variables employed in these algorithms are also relevant to solving Problem 3:

Defn: The forward variable (α) gives the probability of observing a prefix of the emission sequence and
being in a given state at the end of the prefix: αt(i) = P (o1 . . . ot, qt = Si) for all i ∈ {1, . . . , N} and
1 ≤ t ≤ T .

Defn: The backward variable (β) gives the probability of observing a suffix of the emission sequence and
being in a given state just before the start of the suffix: βt(i) = P (ot+1 . . . oT , qt = Si) for all i ∈ {1, . . . , N}
and 1 ≤ t ≤ T .

Defn: The delta variable (δ) gives the maximum probability of observing a prefix of the emission sequence
and being in a given state at the end of the prefix: δt(i) = max

all q1...qt−1

P (o1 . . . ot, q1 . . . qt−1qt, qt = Si) for all

i ∈ {1, . . . , N} and 1 ≤ t ≤ T .

2

Problem 3: The Learning Problem
What parameters (A,B, π) maximize the probability of observing a sequence O given the HMM λ?

There is no exact analytical solution to this problem, although substantive numerical methods have been
developed to obtain convergence to a desired degree. One such algorithm was developed by Leonard Baum
and Lloyd Welch in the late 1960s and early 1970s.

The Baum-Welch Algorithm

The Baum-Welch algorithm employs an iterative process to “tune” the parameters (A,B, π) until some
λ′ = (A′, B′, π′) is achieved which locally maximizes P (O |λ′). It is a special case of the broadly-applicable
expectation-maximization (EM) algorithm, which is detailed further below. The Baum-Welch algorithm guar-
antees convergence to a desired threshold by constraining optimization (“re-estimation”) of the parameters
(A,B, λ) using properties of Lagrangian multipliers. Two additional relevant variables are as follows:

Defn: The xi variable (ξ) gives the probability of being in state Si at time t and state Sj at time t + 1,
given the HMM λ and the sequence O: ξt(i, j) = P (qt = Si, qt+1 = Sj | O, λ) for all i, j ∈ {1, . . . , N} and
1 ≤ t ≤ T − 1.

Using the definitions of the forward and backward variables, the ξ variable can be rewritten as follows:

ξt(i, j) =
P (qt = Si, qt+1 = Sj ,O |λ)

P (O |λ)

=
αt(i)aijbj(ot+1)βt+1(j)∑N

i′=1

∑N
j′=1 αt(i′)ai′j′bj′(ot+1)βt+1(j′)

Defn: The gamma variable (γ) gives the probability of being in state Si at time t, given the HMM λ and
the sequence O: γt(i) = P (qt = Si | O, λ) for all i ∈ {1, . . . , N} and 1 ≤ t ≤ T − 1.

The γ variable can be computed by marginalizing the ξ variable over all possible states j ∈ {1, . . . , N}:

γt(i) =

N∑
j=1

ξt(i, j)

Essentially, the ξ and γ variables yield “posterior” distributions which can be used to compute the expected
numbers of transitions between pairs of states and “visits” to a given state, respectively:

E(# transitions Si → Sj) =

T−1∑
t=1

ξt(i, j)

E(# “visits” to Si) =

T−1∑
t=1

γt(i)

Note that the “visits” to Si are actually transitions from Si; importantly, qt = Si will be uncounted, since
the ξ variable is only defined over 1 ≤ t ≤ T − 1. The value of γT (i) can be computed by observing that
γt(i) =

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

, although this additional “visit” can generally be ignored if T is sufficiently large.

These values can then be used to update (“re-estimate”) the parameters (A,B, π) as follows (consider the
meaning behind each formula to gain an intuition for the process):

3

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

for all i, j ∈ {1, . . . , N}

b̄j(k) =

∑T
t=1,ot=vk

γt(j)∑T
t=1 γt(j)

for all j ∈ {1, . . . , N} and k ∈ {1, . . . ,M}

π̄i = γ1(i) for all i ∈ {1, . . . , N}

This yields an updated set of parameters λ̄ = (Ā, B̄, π̄). After each iterative step, either a local optimum is
reached (i.e., λ̄ ≈ λ based on some convergence threshold) or the new model better explains the sequence
observed (i.e., P (O |λ′) > P (O |λ)). Iteration of this process eventually results in a maximum likelihood
estimation (MLE) of the HMM (λ∗).

The re-estimation formulas can be derived by maximizing Baum’s auxiliary function:

Q(λ′, λ) =
∑
all Q

log[P (O, Q |λ′)] · P (O, Q |λ)

=
∑
all Q

log[P (O, Q |λ′)] · P (Q | O, λ) · P (O |λ)

Since P (O |λ) is not dependent on Q, it can be treated as a constant and so maximization can be equivalently
performed using constrained optimization for the quantity

∑
all Q

log[P (O, Q |λ′)] · P (Q | O, λ)

= EQ

[
log[P (O, Q |λ′)]

∣∣O, λ
]

The Baum-Welch Theorem guarantees iterative improvement; i.e.,

λ′ = argmax
λ̄

[Q(λ̄, λ)] =⇒ P (O |λ′) ≥ P (O |λ)

Convergence to a local optimum λ∗ is generally obtained by running the algorithm until the per-iteration
change in log-likelihood falls below some fixed threshold.

The Baum-Welch algorithm can be implemented within the framework of the more general EM algorithm
(developed by Arthur Dempster, Nan Laird, and Donald Rubin in 1977). The EM algorithm consists of
two repeated steps: expectation (“E-step”) and maximization (“M-step”). In the context of the Baum-Welch
algorithm, the E-step is the calculation of Baum’s auxiliary Q function, and the M-step is the maximization
of this quantity to yield the arg max λ′. Iteration of the EM algorithm thus guarantees convergence to some
λ∗ which yields a locally-maximal probability of observing the sequence O.

Throughout the re-estimation process, the parameters of the HMM are bound by the following stochastic
constraints (which are automatically satisfied by the model at each iteration by construction):

N∑
i=1

π̄i = 1

N∑
j=1

āij = 1 for all i ∈ {1, . . . , N}
M∑
k=1

b̄j(k) = 1 for all j ∈ {1, . . . , N}

4

These constraints can be employed to solve the optimization problem by the method of Lagrange multipliers.
Under this method, the probability P = P (O |λ∗) is maximized when the following conditions hold:

πi =
πi

∂P
∂πi∑N

i′=1 πi′
∂P
∂πi′

aij =
aij

∂P
∂aij∑N

j′=1 aij′
∂P

∂aij′

bj(k) =
bj(k)

∂P
∂bj(k)∑M

k′=1 bj(k
′) ∂P

∂bj(k′)

It can be shown that these formulas are equivalent to those given by the Baum-Welch algorithm re-estimations
above, proving that the originals formulas are indeed exactly correct at locally-optimal P (O |λ∗).

The Principle of Maximum Likelihood
The general principle of maximum likelihood supposes that a sample Dj is drawn from datasets {D1, . . . ,Dc},
and that each sample is an independently and identically-distributed random variable from the distribution
p(x |wj). This distribution is assumed to have a known parameter form; i.e., it is determined uniquely by
the value of its parameter vector θj . For example, if p(x |wj) = N(µj , σj), θj would be the vector of all
components of µj and σj . The explicit dependence of p(x |wj) on θj may be shown by writing p(x | θj).

If these assumptions are satisfied, then optimization algorithms can be applied to select the MLE (θ∗j) which
yields the highest probability of observing the sample Dj .

Solving the Maximum-Likelihood Problem
Inputs: training data (Dj) sampled from datasets {D1, . . . ,Dc}.

Outputs: estimates for the unknown parameter vectors {θ1, . . . , θc}.

For simplicity, it is assumed that classes of data are functionally different, so that Di gives no information
about θj for i ̸= j. Then the problem reduces to c identical problems of the same form, and may be treated
in terms of a generic data set D, containing training samples which are drawn independently from the
probability distribution p(x | θ) and used to estimate the unknown parameter vector θ.

Suppose D contains n samples x1, . . . , xn. Because all xi are drawn independently, the total probability of
the data sample with respect to θ is

p(D | θ) =
n∏

i=1

p(xi | θ)

The maximum-likelihood estimate θ̂ is that which maximizes the likelihood p(D | θ). Intuitively, this estimate
corresponds to the value of θ which best supports the actual data sample observed.

For analytical reasons, it is generally easier to work with the logarithm of the likelihood than the likelihood
itself. Since the log function is monotonically increasing, the value θ̂ which maximizes the log-likelihood also
maximizes the likelihood. If p(D | θ) is a differentiable function of θ, θ̂ can be found using standard methods
from differential calculus.

5

Given θ = (θ1, . . . , θr)
⊤, the gradient operator (∇θ) is defined as

∇θ =

(
∂

∂θ1
, . . . ,

∂

∂θr

)⊤

The log-likelihood function is defined as

L(θ) = log[p(D | θ)]

and the maximum likelihood estimator (MLE) is defined as

θ̂ = argmax
θ

[L(θ)]

where the dependence on D is implicit.

By the independence condition assumed above,

L(θ) =

n∑
i=1

log[p(xi | θ)]

=⇒ ∇θL(θ) =

n∑
i=1

∇θ log[p(xi | θ)]

and necessary conditions to solve for the maximum-likelihood estimate θ̂ can be obtained from the set of r
equations given by

∇θL(θ) = 0

The Expectation-Maximization Algorithm

The methods for inferring the maximum-likelihood estimator θ̂ can be extended to enable learning of pa-
rameters governing a distribution from training points which may include missing data features. (If there is
no missing data, θ̂ may be solved by maximizing the log-likelihood L(θ) as above.)

The basic idea of the EM algorithm is to iteratively estimate the likelihood of the data sample observed
given the data that is present. Consider a full sample D = {x1, . . . , xn} drawn from a single distribution.
Suppose that some features are missing, so that each sample point can be defined as follows:

xi = {xig , xib}

where present data features are denoted “good” (g) and missing data features are denoted “bad” (b). The
features may then be separated into “good” and “bad” classes, Dg and Db, such that D = Dg ∪ Db.

The Baum function, also known as the central equation, is defined as follows:

Q(θ; θi) = EDb

[
log[p(Dg,Db; θ)] | Dg; θ

i
]

where Q is a function of θ with θi assumed to be fixed, and the expectation is marginalized over the missing
features assuming that θi are the “true” parameters which describe the full distribution. θ represents a
candidate vector for an improved estimate, while θi is the current best estimate for the full distribution. At
each iteration, the algorithm selects θi+1 as the candidate θ which maximizes Q(θ; θi).

6

Pseudocode for the EM algorithm is as follows:

Algorithm 1 EM Algorithm
1: BEGIN
2: initialize ϵ, θ0, i = 0
3: repeat
4: increment i = i+ 1

compute Q(θ; θi) {E step}
set θi+1 = argmax

θ
[Q(θ; θi)] {M step}

5: until Q(θi+1; θi)−Q(θi; θi−1) ≤ ϵ

6: return θ̂ = θi+1

7: END

The EM algorithm is most useful when the optimization of the Q function is simpler than that of the
likelihood L(θ). Most importantly, it guarantees that the log-likelihood of the “good” data (with the “bad”
data marginalized) will increase monotonically. Note that this is not equivalent to finding the particular
values of the “bad” data which yield the maximum likelihood of the full, complete data!

7

