
Prof. Sorin Istrail CSCI 1820/2820: An overview

January 25, 2024

- Ch. 1 The BLAST Algorithm and Karlin-Altschul Statistics
- Ch. 2 Genome Assembly Algorithms and Haplotype Assembly Algorithms
- Ch. 3 Hidden-Markov Models: The Learning Problem
- Ch. 4 Recombination and Ancestral Recombination Graphs (ARGs) Algorithms
- Ch.5 Rigorous clustering: Spectral Graph Theory Algorithms
- Ch. 6 Algorithms for Constructing Suffix Trees in Linear Time
- Ch. 7 Protein Folding (An Introduction)

### Ch. 1: BLAST Algorithm



**Given** a biomolecular query sequence Q and a database DB of biomolecular sequences

**Find** all the biomolecular sequences in DB that have high alignment scores to the query

Biomolecular: DNA, RNA, protein

Problems we need to solve along the way:

Problem 1. General scoring schemes as hypotheses testing frameworks The Karlin-Altschul Statistics and the max scoring subsequence

Problem 2. Random Walks Theory and The Gambler's Ruin's Problem

Problem 3. De-noising: how long an alignment needs to be non-random?

Problem 4. Information Theory and the theory of scoring matrices for alignment

Dr. Margaret Oakley Dayhoff The Mother & Father of Bioinformatics

#### **Temple Smith and Michael Waterman** at Los Alamos, New Mexico

Photo by David Lipman, Taken Summer of 1980



#### Sir Ronald Aylmer Fisher

|      | LARDER<br>THE LARDY TASTING TEA                                                   | <ul> <li>Linear discriminant analysis is a generalization of Fisher's lindiscriminant<sup>[47][83]</sup></li> <li>Fisher information, see also scoring algorithm also known a scoring, and Minimum Fisher information, a variational print which, when applied with the proper constraints needed to empirically known expectation values, determines the best distribution that characterizes the system.<sup>[84]</sup></li> <li>F-distribution, arises frequently as the null distribution of a statistic, most notably in the analysis of variance</li> <li>Fisher–Tippett–Gnedenko theorem : Fisher's contribution to made in 1927</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Problem                                                                           | <ul> <li><u>Fisher-Tippett distribution</u></li> <li><u>Fisher-Yates shuffle algorithm</u></li> <li><u>Von Mises-Fisher distribution<sup>[85]</sup></u></li> <li><u>Inverse probability</u>, a term Fisher used in 1922, referring to fundamental paradox of inverse probability" as the source of the</li></ul> |
| V O  | the                                                                               | confusion between statistical terms which refer to the true<br>estimated, with the actual value arrived at by estimation, w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | Null Hypothesis                                                                   | subject to error. <sup>[86]</sup><br>•Fisher's permutation test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Born | Ronald Aylmer Fisher                                                              | <ul> <li>Fisher's inequality<sup>[87]</sup></li> <li>Sufficient statistic, when a statistic is <i>sufficient</i> with respect<br/>a <u>statistical model</u> and its associated unknown parameter if</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 17 February 1890<br>London, England                                               | statistic that can be calculated from the same <u>sample</u> provide<br>additional information as to the value of the parameter". <sup>[88]</sup><br>•Fisher's noncentral hypergeometric distribution, a generali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Died | 29 July 1962 (aged 72)<br><u>Adelaide</u> , <u>South Australia</u> ,<br>Australia | the <u>hypergeometric distribution</u> , where sampling probabilit<br>modified by weight factors.<br>• <u>Student's <i>t</i>-distribution</u> , widely used in statistics. <sup>[89][90]</sup><br>•The concept of an <u>ancillary statistic</u> and the notion (the and<br>principle) that one should condition on ancillary statistics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Algorithmic Functions of Computational Biology - Course

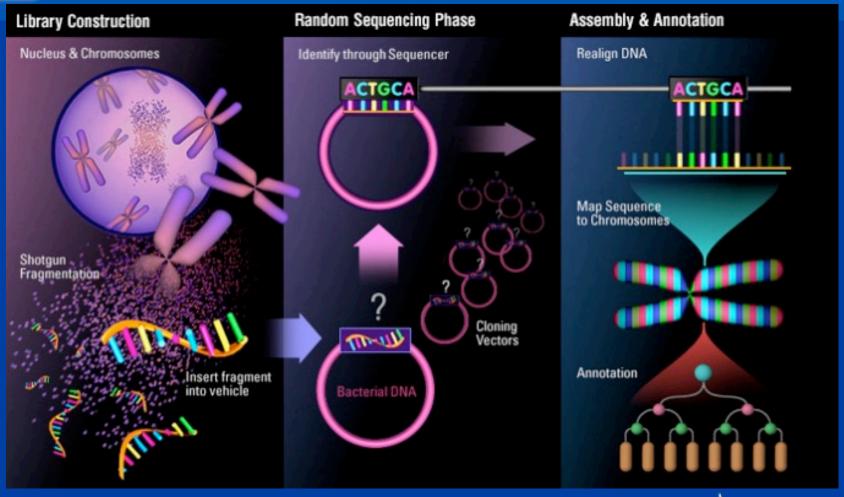
# The BLAST algorithm Professor Istrail

- Detect all word hits (exact, or nearly identical matches) of a given length between the two sequences
  - k=10 for nucleotide sequences (exact word matches)
  - k=3 for protein sequences (nearly identical word matches)
- □ Extend the word hits in both directions to high-scoring *gap-free* segment pairs (HSPs)
  - retain only HSPs that score above a threshold
  - start from the center of the HSP (original BLAST, 1990), or from the center of a pair of HSPs located close to each other on the same diagonal (gapped BLAST, 1997)
- □ Extend the HSPs in both directions allowing for gaps
  - use dynamic programming, and stop when the alignment score falls more than a threshold X below the best score yet seen
- □ Report all statistically significant local alignments
  - E-value (starting with BLAST 2.0) is used to measure the statistical significance
  - E-value = the number of alignments with score equal to or higher than s one would expect to find by chance when searching the database



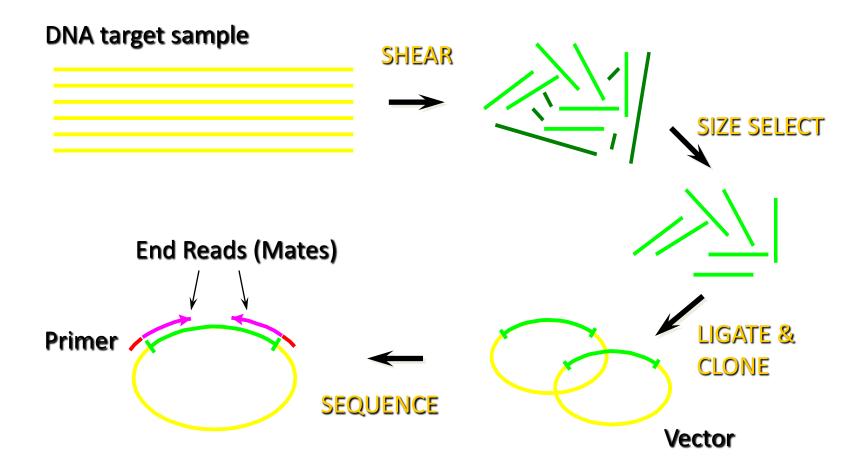
# Ch. 2: Genome Assembly Algorithms



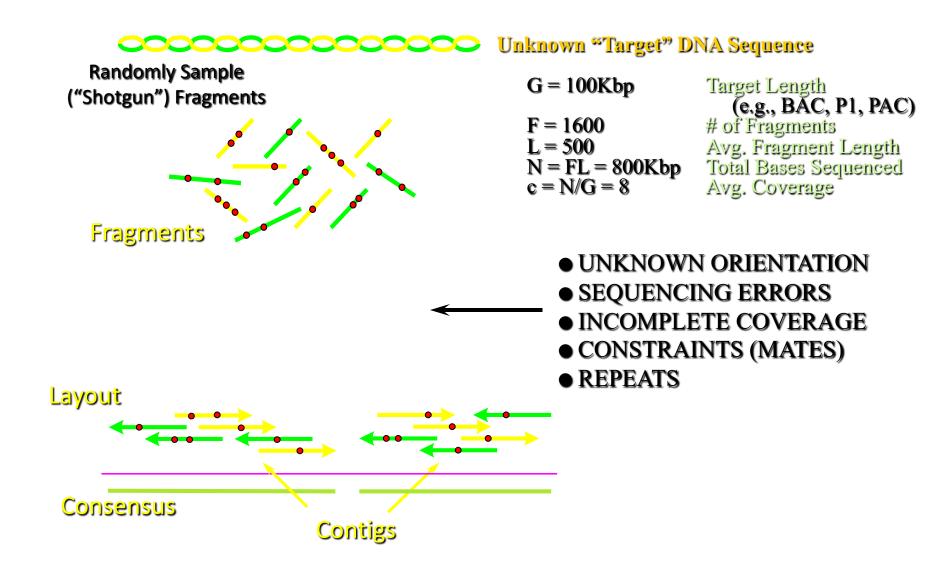

Questions: What algorithms to use to assemble DNA pieces into contigs and scafolds? How long are the contigs? How much the DNA target region is covered by the contigs? How to measure the success of a genome assembly? Problems we need to solve along the way

Problem 1. Genome Assembly Algorithms

Problem 2. Poisson statistics for DNA and Genome Assembly


Problem 3. Ham Smith's DNA Lab with no windows

#### Whole Genome Shotgun Sequencing



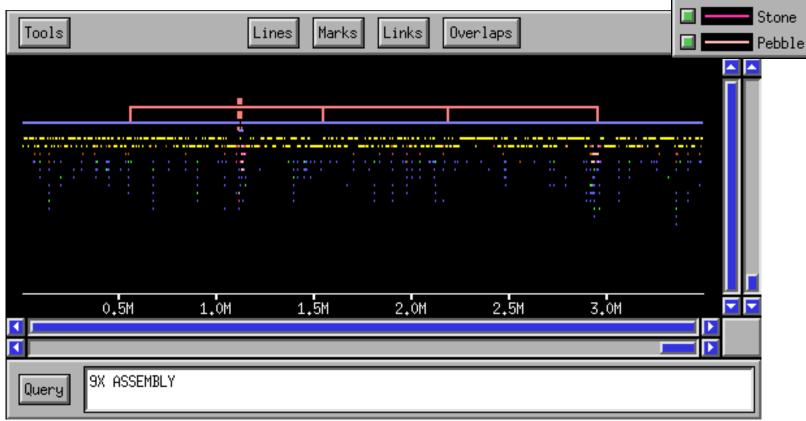



Shotgun DNA Sequencing (Technology)



#### Shotgun DNA Sequencing (Computation)




### Assembly Progression (Macro View)

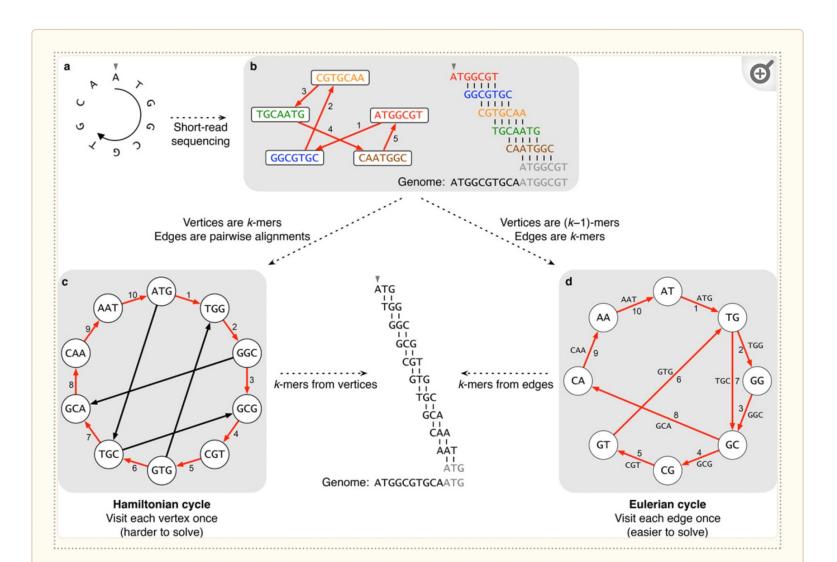
Read Valid

Invalid

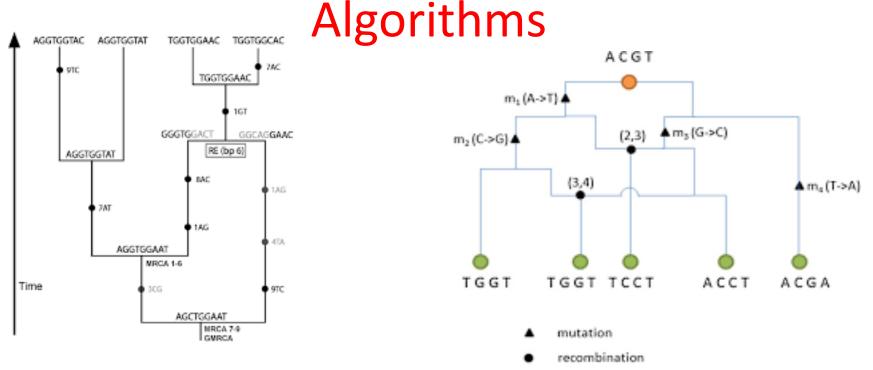
Contig Rock

U-Unitig




#### Siméon Denis Poisson

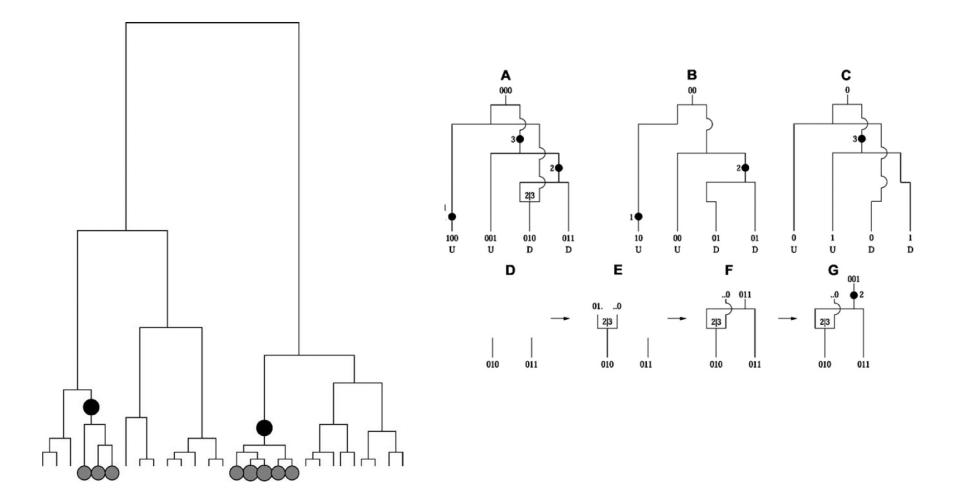



| Born                   | 21 June 1781                                    |
|------------------------|-------------------------------------------------|
| bom                    | Pithiviers, Kingdom of France                   |
|                        | (present-day <u>Loiret</u> )                    |
|                        | (presenteday <u>conec</u> )                     |
| Died                   | 25 April 1840 (aged 58)                         |
|                        | Sceaux, Hauts-de-Seine, Kingdom of France       |
|                        |                                                 |
| Alma mater             | École Polytechnique                             |
| Known for              | Poisson process                                 |
|                        | Poisson equation                                |
|                        | Poisson kernel                                  |
|                        | Poisson distribution                            |
|                        | Poisson limit theorem                           |
|                        | Poisson bracket                                 |
|                        | Poisson algebra                                 |
|                        | Poisson regression<br>Poisson summation formula |
|                        | Poisson's spot                                  |
|                        | Poisson's ratio                                 |
|                        | Poisson zeros                                   |
|                        | Conway–Maxwell–Poisson distribution             |
|                        | Euler–Poisson–Darboux equation                  |
|                        |                                                 |
|                        |                                                 |
|                        | Scientific career                               |
| Fields                 | Mathematics and physics                         |
| Institutions           | École Polytechnique                             |
| institutions           | Bureau des Longitudes                           |
|                        | Faculté des sciences de Paris                   |
|                        | École de Saint-Cyr                              |
|                        |                                                 |
| Academic advisors      | Joseph-Louis Lagrange                           |
|                        | Pierre-Simon Laplace                            |
| Doctoral students      | Michel Chasles                                  |
|                        | Joseph Liouville                                |
| Other notable students | Nicolas Léonard Sadi Carnot                     |
|                        | Peter Gustav Lejeune Dirichlet                  |
|                        | reter oustav Eejeune Dintinet                   |

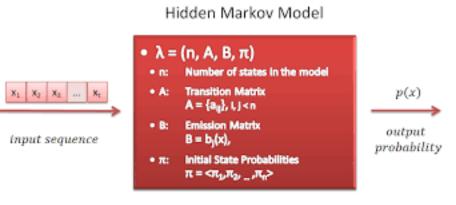
POISSON. Souther

### de Bruijn Genome Assembly




## Ch. 3 Recombination and Ancestral Recombination Graphs (ARG)




How do we reconstruct genealogies of a sample of individuals incorporating past mutations and recombinations?

Recombination + Phylogenetic Trees = ARG

### Ancestral Recombination Graph and Marginal Trees



### Ch. 4: HMM - the Learning Problem



Maximum Likelihood and the Expectation-Maximization problem

#### **Three Fundamental HHM Problems**

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov models should be characterized by **three fundamental problems**:

| Problem 1 (Likelihood): | Given an HMM $\lambda = (A, B)$ and an observation se-      |  |
|-------------------------|-------------------------------------------------------------|--|
|                         | quence <i>O</i> , determine the likelihood $P(O \lambda)$ . |  |
| Problem 2 (Decoding):   | Given an observation sequence $O$ and an HMM $\lambda =$    |  |
|                         | (A,B), discover the best hidden state sequence $Q$ .        |  |
| Problem 3 (Learning):   | Given an observation sequence O and the set of states       |  |
|                         | in the HMM, learn the HMM parameters A and B.               |  |

#### HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that is, the *A* and *B* matrices. Formally,

**Learning:** Given an observation sequence *O* and the set of possible states in the HMM, learn the HMM parameters *A* and *B*.

The input to such a learning algorithm would be an unlabeled sequence of observations O and a vocabulary of potential hidden states Q. Thus, for the ice cream task, we would start with a sequence of observations  $O = \{1, 3, 2, ...,\}$  and the set of hidden states H and C.

Forwardbackward Baum-Welch EM

The standard algorithm for HMM training is the **forward-backward**, or **Baum-Welch** algorithm (Baum, 1972), a special case of the **Expectation-Maximization** or **EM** algorithm (Dempster et al., 1977). The algorithm will let us train both the transition probabilities A and the emission probabilities B of the HMM. EM is an *iterative* algorithm, computing an initial estimate for the probabilities, then using those estimates to computing a better estimate, and so on, iteratively improving the probabilities that it learns.

### Ch. 5 Rigorous Clustering Algorithms Spectral Graph Theory Algorithms

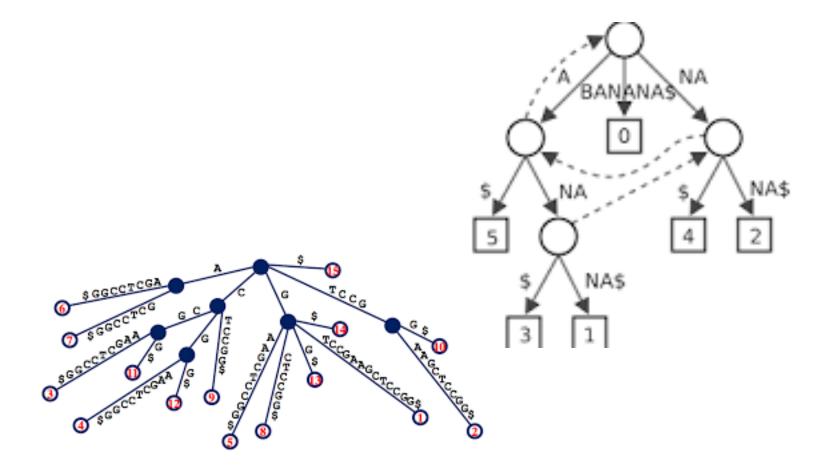
#### **Algorithms and Statistical Theory**

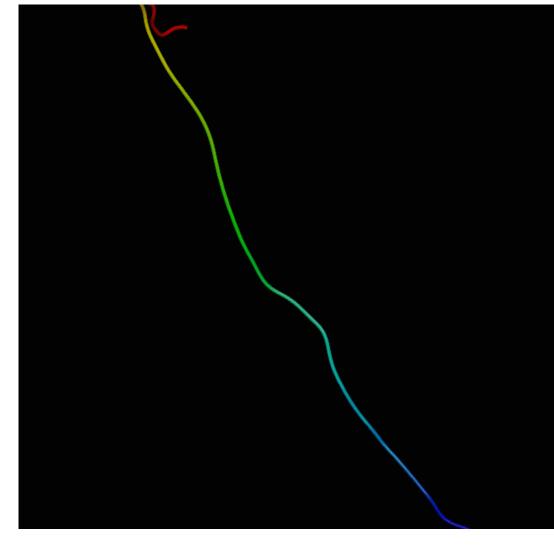
- An introduction to Linear Algebra foundations for graph theory
- Principles of Clustering Theory
- Graph Laplacians
- Graph cuts and random walks intuitions for Spectral Clustering
- Unnormalized Spectral Clustering Algorithms
- Normalized Spectral Clustering Algorithms
- Algorithmic Fairness and Clustering

### **Algorithmic Fairness and Clustering**

#### Fairness Notion 2: Exactly Balanced Clustering

- For multiple protected groups (Rösner and Schmidt, ICALP 2018)
  - The data points are partitioned into  $\ell$  many groups, say  $C = C_1, C_2, \dots, C_{\ell}$ .
  - A cluster S is called *exactly balanced* if  $\frac{|C_i \cap S|}{|S|} = \frac{|C_i|}{|C|}$  for all *i*.
  - A clustering is called *fair* if every cluster is *exactly balanced*.


#### Pierre-Simon Laplace




| Born              | 23 March 1749<br><u>Beaumont-en-Auge</u> ,<br>Normandy, <u>Kingdom of</u><br><u>France</u> |  |
|-------------------|--------------------------------------------------------------------------------------------|--|
| Died              | 5 March 1827 (aged 77)<br><u>Paris</u> , <u>Kingdom of France</u>                          |  |
| Alma mater        | University of Caen                                                                         |  |
| Known for         | show                                                                                       |  |
| Scientific career |                                                                                            |  |
| Fields            | Astronomy and Mathema<br>tics                                                              |  |

| Notable students | Siméon Denis Poisson |
|------------------|----------------------|
|                  | Napoleon Bonaparte   |

#### Ch. 6 Suffix Trees in Linear Time





# Ch. 7 The Protein Folding Problem

#### Statistical Mechanics models

Mixed character of the problem :

continuous mathematics -- geometry of surfaces & discrete mathematics -- combinatorics of folds