PR3: Genome Assembly

CS 182/282 Spring 2022

Released: Thursday, March 14th, 2024
Due: 11:59pm on Thursday, April 4, 2024

Overview

In the previous PR, you developed methods for quality control of sequencing data; namely, the implemen-
tation of algorithms to remove contamination from reads and correct errors due to missequencing of bases.
In this PR, you will implement your own genome assembler which can take in a set of reads from a text file
and output a de Bruijn graph representation of the full alignment and infer the most likely target sequence
associated with those reads. Note that the assembler implemented in these PRs is a simplified version of an
actual genome assembler, but involves many of the important concepts underlying genome assembly.

Genome assembly (and bioinformatics in general) continues to be at the forefront of disease research. It can
often be an important starting point for further analysis into an organism’s genome, or even a virus’s. You’ll
have the chance to experiment with assembly on real genomes in the application section of this project!

Reading
e How to apply de Bruijn graphs to genome assembly (Compeau et al., 2011)

Gradescope

To hand in your project, submit all of your project files to Gradescope. Make sure that any required shell
scripts are in the root directory of your submission (or uploaded as individual files). We have made a
small number of test cases visible to you after you submit so that you can ensure your program is working
properly.

Our Gradescope autograder is currently configured to accept solutions written in Python 2, Python 3 (pack-
ages: pandas, networkx), Java, and R (packages: dplyr, tidyverse). If you plan to use a different pro-
gramming language that is installed on the department machines, you must let the TA staff know as soon
as possible so we can update our autograder settings.

Extraneous print statements (i.e. anything besides the specified terminal outputs) will break the autograder.
Make sure to remove such code before submitting.

networkx

As mentioned above, the autograder accepts Python implementations that use networkx, a very useful
package for representing and manipulating graphs. You may find it convenient for your own implementation
— to learn more, take a look at the networkx DiGraph documentation. You can install it through the

command line with | pip install networkx‘ (consider making a venv or conda environment to avoid package

conflicts).


https://brown-cs182-spring24.github.io/resources/ch2/Compeau_2011a.pdf
https://networkx.org/documentation/stable/reference/index.html

P1: de Bruijn Graph Inference (50 points)

Your first task will be to implement a de Bruijn graph sequence assembler.

Assumptions

For this problem, you may make the following assumptions about the input data:

Reads will cover the entire target sequence (there will be no missing information)

Reads will not result in de Bruijn graphs which contain cycles

All reads will be k-mers of the same constant length k

There will be no edges which lead into a possible starting node, or out of a possible ending node, of
the final de Bruijn graph

The length of a putative target sequence is proportional to its likelihood of correctness

Implementation

You should submit a shell script called debruijn.sh which can be run as follows:

$ sh debruijn.sh <reads.txt>

where reads.txt is a text file containing a list of DNA reads of constant length (separated by new-
lines).

When called as above, the script should read in the k-mers, convert them into the edges of an internal
representation of a de Bruijn graph, simplify this internal representation, and finally print out all possible
most likely (i.e., maximum-length) target sequences which can be inferred from the input reads (ordered
alphabetically, one per line). Your program should also generate a DOT file called debruijn.dot representing
the simplified de Bruijn graph. It is only required that you simplify singletons (forks and crosses
can remain in your graph).

Graph Visualization

DOT is a graph description language which is useful for generating automatic visualizations of graphs. DOT
files are simply text files which describe nodes and edges of a graph. Your debruijn.dot file should contain
the internal representation of your simplified de Bruijn graph. We recommend following these steps to create
your DOT file:

e To initialize a graphviz digraph, use ‘graph = graphviz.Digraph("deBruijn") ‘ For networkx, use

graph = networkx.MultiDiGraph() ‘

e Add edges to your graph using ‘ graph.edge(node_name_1, node_name_2, edge_label) ‘ Note that

you do not have to initialize the nodes separately. Calling graph.edge() does this for you. The same
works for networkx.

e Write the contents of‘ graph.source() ‘to a file named debruijn.dot from within you program just as

you would to a text file. For networkx, use ‘ networkx.drawing.nx_pydot.write_dot(graph, "debruijn.dot")

To visualize your DOT graph, run the command ’ dot -Tpng debruijn.dot -o debruijn.png| This will

export a visualization of the DOT graph as a PNG in a new file called debruijn.png.

If you are not using a department machine, you may need to download graphviz in order to use DOT.


http://www.graphviz.org/

Test Cases

The following test cases are intended to give you a general idea of how your program should function. You
are strongly encouraged to develop your own test cases for this problem. Small example sequences are
relatively straightforward to break down into reads and provide an easy way to test your program on a
variety of inputs!

For checking your DOT outputs, you should ensure that your internal graph representations are equivalent
to those shown on the test cases below. The string contents of the file need not match exactly, but the
visualized graph should.

Test Case 1

$ sh debruijn.sh readsl.txt
ATCGCTATACTGC

debruijn.dot (tabs added for ease of reading)

digraph deBruijn {
TGCT -> GCTA [label=TGCTA]
ATCG -> GCTA [1abel=ATCGCTA]
GCTA -> TACT [label=GCTACT]
TACT -> CTGC [1label=TACTGC]

debruijn.png (after exporting DOT — PNG)




Test Case 2

$ sh debruijn.sh reads2.txt

ACTGGCACGA
ACTGGCACGT
GCTGGCACGA
GCTGGCACGT

debruijn.dot (tabs added for ease of reading)

digraph deBruijn {

ACT
GCT
CTT
ACG
AGC
ACG
GGC
GGC
CTG
GCA

->

CTG
CTG
TTG
CGT
GCA
CGA
GCA
GCC
GGC
ACG

[1abel=ACTG]
[1abel=GCTG]
[1abel=CTTG]
[1abel=ACGT]
[label=AGCA]
[1abel=ACGA]
[1abel=GGCA]
[1abel=GGCC]
[1abel=CTGGC]
[label=GCACG]

debruijn.png (after exporting DOT — PNG)




P2: Assembly (30 points)

Your second task will be to synthesize your prior algorithms to build a versatile genome assembler which can
decontaminate reads, correct sequencing errors, construct a de Bruijn graph, and finally infer the original
sequence. You should submit a shell script called assembly.sh which can be called as follows:

$ sh assembly.sh <reads.txt> <vector.txt>

This problem is designed to adapt your previous programs into a unified workflow. When called, the script
should print out its most likely inference as described in P1 above. You do not need to generate a DOT file
for this problem.

Problem

sampleReads.txt contains a list of reads of uniform length from the sequencing of the SARS-CoV-2 genome.
These reads contain both randomly-distributed sequencing errors and contamination from a known source
(vector.txt). Your task is to decontaminate/correct these reads and infer the sequence from which they
originated. You will receive 30 points (autograded) for recovering the exact target sequence.

Some notes on integration of prior PRs are as follows:

e BLAST: a BLAST-like approach may be appropriate to scan for contamination at the ends of the
reads. You may use any scoring scheme implemented previously, or devise your own.

e Contamination: when contamination is detected, simply discard the entire read. If performed correctly,
this should not compromise the integrity of the assembly. Approximately 10% of the reads contain
contamination.

e Correction: sequencing errors may occur at any position in any read across the entire dataset with a
0.01% error rate. Just as you did for PR2, think about how you can optimize the values of k, ¢, and d
for this correction task.

You can set up your shell script however you’d like as long as it only takes in the reads and vector .txt
files (you can call several scripts sequentially within your shell script or just one). It may help to treat this
problem as a sequential process which employs different modules or functions from your other programs as
appropriate.

Please note that you will likely have to modify your assembly code to make it effective at assembling simulated
sequencing reads.

Grading

Your code will be graded by globally aligning your assembled genome with the true SARS-CoV-2 genome.
If the the score of this alignment divided by the maximum possible alignment score is over 0.9, you will pass
the autograder test.

Application (20 points)

You should submit a file called assembly.pdf in which you briefly describe each of your parameter choices
and complete the following Waterman Statistics questions.

Parameters

The following parameter choices are required:

e k-mer size for contamination removal - This represented the minimum length of contamination
to be removed in PR2. While you will discard the entirety of a read if you detect contamination, this
parameter is still important for accurately detecting contamination in the first place.



e k-mer size for error correction - This is the k-value that you use to classify k-mers as frequent or
infrequent.

e t-value for correction - This is the threshold for classifying k-mers as frequent/infrequent

e d-value for correction - This is the number of differences between a frequent and an infrequent k-mer
that is permitted when choosing frequent k-mer replacements for infrequent k-mers.

If you add any additional tune-able parameters to your program, please describe what they
are and provide an explanation for your choice of this parameter as well.

When describing each parameter choice, please consider at least one of the following factors.

e How does the quality of your results change based on your parameter choice? Please
provide quantitative evidence, for instance number of contaminated reads removed.

e Why is your parameter choice statistically appropriate for this assembly task? For example,
think about the likelihood of uniqueness of the different k-mer types involved in the whole assembly
process.

e Does you parameter choice improve runtime? This does not have to be a quantitative analysis,
but if you observe that your assembly runs faster with this parameter choice, explain why you think
that is.

The above factors are just suggestions of things to consider. You can absolutely justify your choice using
your own line of reasoning.

Waterman Statistics

In this section of your application report, we want you to dive into the approximation of mean contig
length we saw in class using the HIV genome (mutated) reads we give you in the project support files. In
particular we would like to see a thoughtful discussion that cites results from your assembler on the following
questions:

e What are the challenges to computing mean contig length from your assembler when
the input reads have sequencing errors? Please provide both an answer to this question and a
proposal for computing mean contig lengths in the questions to follow in a few sentences.

e Using maximum contig length as a "biased-up" proxy for mean contig length, how does
mean contig length vary with coverage? To answer this question, you’ll need to think about
how to vary your coverage, and give results for ¢ = 1,2, 3,4 (show us the math you used to make this
happen!). Feel free to set a seed for replication purposes, but you’ll need to use some randomization
here!

For this question, make sure that you break each read into 25-mers (or some other fized value) after
contamination and correction and use the results to form your de Bruijn graph. You will play around
with this value in the next question, but for the purposes of this question, pick a singular k£ and vary
coverage instead. If you are running into errors at 25 with recursion depth, make sure your de Bruijn
graph inference can properly handle potential cycles.

We're cheating a little bit by using maximum contig length as a proxy for mean contig length (what if
the distribution of lengths changes shape with coverage?), but no need to discuss this in your writeup.
It should serve as a reasonable biased proxy for our purposes.

¢ How does mean contig length vary with k, the k-mer size you use to break down your
reads (as described above)? To answer this question, you’ll need to fix a coverage, and instead
vary this k parameter. Vary it in whatever way you see fit! Make sure to discuss why you might find
what you found, from a theoretical perspective (hint: think about how uncorrected sequencing errors
might play a role). Do you trust the quality of the contigs more or less for high £?



e With your answer to the second question in mind, evaluate the robustness of our answer
to question 3 of Waterman Statistics. Where does it fail for the HIV genome? Is it ever a
good approximation? To answer this question, you’ll need to revisit your varying results in question
2 (and maybe try out some more extreme values). Make sure to explain why the approximation fails,
with mention to how we derived the approximation itself (hint: think about where in the derivation
we made an approximation!).



