
HW4: HMMs & the EM Algorithm

CS 182/282 Spring 2022

Released: Tuesday, April 16th, 2024

Due: 11:59pm on Thursday, April 23rd, 2024

Overview
HMMs are powerful statistical modelling tools with widespread applications in bioinformatics. In this HW,
you will explore the methodology and theory of several algorithms related to HMM inference.

This assignment is worth a total of 50 points.

Reading
• A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition (Rabiner, 1989)

Handin
Please download your code as a .ipynb file (see link to Google Collab notebook below) and submit to
gradescope along with a .pdf containing the answers to the written questions. Do not include any identifying
information on your handin.

P1: The Baum-Welch Algorithm (50 points)
The Baum-Welch algorithm provides an iterative method for “tuning” the parameters of an HMM to infer
characteristics of biological sequences. One application of HMMs is detecting CpG islands within genomic
sequences. As put by famed computational biologist and bioinformatician Richard Durbin in his seminal
book Biological Sequence Analysis (1998):

In the human genome wherever the dinucleotide CG occurs (frequently written CpG to distinguish
it from the C-G base pair across the two strands) the C nucleotide (cytosine) is typically chemically
modified by methylation. There is a relatively high chance of this methyl-C mutating into a T, with
the consequence that in general CpG dinucleotides are rarer in the genome than would be expected
from the independent probabilities of C and G. For biologically important reasons the methylation
process is suppressed in short stretches of the genome, such as around the promoters or ‘start’
regions of many genes. In these regions we see many more CpG dinucleotides than elsewhere, and
in fact more C and G nucleotides in general. Such regions are called CpG islands [Bird 1987].
They are typically a few hundred to a few thousand bases long.

The presence and location of CpG islands throughout the genome is therefore of great interest to biologists,
as it may indicate promoter regions, genes, or chromatin status. In this problem, you will explore how HMMs
can be “taught” to “learn” the CpG island status of a given DNA sequence.

The HMM we will use for detecting CpG islands has the following properties:

• 2 hidden states, representing non-CpG island regions (“oceans”) and CpG island regions, respectively
(S0 = “ocean”; S1 = “island”)

1

https://brown-cs182-spring24.github.io/resources/ch4/Rabiner_1989.pdf


• 4 emissions, representing the four DNA bases in alphabetical order (v0 = A, v1 = C, v2 = G, v3 = T)

• A 2 × 2 transition matrix, naively initialized with a greater probability of remaining in the current
state rather than transitioning to the other state for both “oceans” and “islands”

• A 2× 4 emission matrix, naively initialized so that the “island” state has a slightly greater probability
of emitting the bases C and G than the “ocean” state

• A 1× 2 initial state distribution, naively initialized with a greater probability of starting in an “ocean”

We have created a Google Colab notebook (an interactive Python code file shared via Google Drive) with
stencil code for the Baum-Welch algorithm here. Your task will be to finish implementing the algorithm and
explore its performance on some basic inputs.

To access the Colab notebook, click the link above (you will need to sign in to Google Drive using your
Brown email). This will open the notebook in read-only format. To edit the notebook, you can either click
File → Save a copy in Drive... or Open in playground → Copy to Drive. You should then be able to edit and
save a copy of the stencil code in your own Brown Google Drive account.

Inside the Colab notebook, you can either run individual blocks of code or execute the entire code at once.
The notebook will automatically import the following helper functions from our support code file:

• initialize: Initializes λ = (A,B, π) according to the naive constraints described above (with a small
degree of stochasticity)

• viterbi: Implements the Viterbi algorithm (a solution to the HMM “Decoding Problem”, covered in
CS 181) to compute Q∗ = argmax

all Q

[
log[P (O |Q,λ)]

]
• compute_logP: Computes the total log probability of observing the sequence (log[P (O |λ)])

• print_results: Prints the total log probability of observing the sequence (log[P (O |λ)]), the optimal
state sequence (Q∗), and the probability of the optimal state sequence (log[P (O |Q∗)]) for each iteration
of the algorithm

The function run_baum_welch implements the algorithm, which runs until convergence is achieved, using the
helper functions to produce interpretable results at each iteration. Do not modify this function!

Your task will be to implement the following seven key functions, upon which run_baum_welch relies:

• calc_alpha: Calculate the forward variable (α)

• calc_beta: Calculate the backward variable (β)

• calc_xi: Calculate the ξ variable

• calc_gamma: Calculate the γ variable

• update_A: Update the transition matrix (A)

• update_B: Update the emission matrix (B)

• update_pi: Update the initial state distribution (π)

You may find the posted lecture notes from CH4 useful in translating the formulas and relationships between
these variables into code, as well as Rabiner’s “tutorial” on HMMs (provided in the Readings above). Each
function should be relatively straightforward to implement if you follow the notation correctly. Note that
you may need to store probabilities as log probabilities in order to avoid underflow.

When you have finished implementing the seven key functions above, you should be able to actually run the
Baum-Welch algorithm on the two example sequences provided in the notebook!

Note: We recognize that not all students prefer to use Python, and that some students may not have had
prior experience working with the NumPy library or Google Colab notebooks. Please don’t hesitate to reach
out to the TAs if you have questions about syntax or code structure. The intention of this HW problem is

2

https://colab.research.google.com/drive/1mHOHV8Lt3TxegHqWrN6Wuhg1HpQRA0s8?usp=sharing


to provide you with an opportunity to see the Baum-Welch algorithm in action, not to reach the level of
coding complexity required to solve the PR problems.

Please download your notebook as a .ipynb file (along with a pdf containing the answers to the questions
below) and submit to gradescope (we will not be running your code, but we will be checking your implemen-
tation of each function for correctness).

Start by running the Baum-Welch algorithm on the first sequence provided. This is a simple example DNA
sequence containing a putative CpG island. Answer the following questions (note that Q1 can be answered
before any of the seven key functions have been implemented):

1. Run the algorithm 15− 20 times and examine the first line of output only (representing Q∗ for the
naive λ prior to any iterative tuning). Since the initialize helper function is not deterministic, each
run of the algorithm will start from a different initial λ = (A,B, π). What patterns do you observe in
the initial Q∗ sequence? (Note that if you have not yet implemented any of the seven key functions,
the total log probability of the sequence (log[P (O |λ)]) will erroneously be printed as -inf. You can
ignore this.)

2. Once all seven key functions have been implemented, run the algorithm 15−20 times and examine the
results. You should be able to get a sense of how the total log probability of the sequence (log[P (O |λ)])
converges to a local maximum, as well as how Q∗ and the Viterbi probability (logP (O |Q∗)]) change as
the algorithm “tunes” λ. What kinds of patterns in the final Q∗ do you observe? Where do you think
the CpG island is located within this sequence? (You may provide representative outputs if useful.)

3. You should be able to observe a variety of different Q∗ sequences across multiple runs of the algorithm.
Comment on the range of inferred “best states”. What do these results suggest about the overall
strengths and limitations of the Baum-Welch algorithm?

4. What kinds of patterns do you observe in the final tuned λ∗ = (A∗, B∗, π∗)? Interpret the relative
values of A∗, B∗, and π∗. What has the HMM “learned”?

Now run the Baum-Welch algorithm on the second sequence provided. This is a 500-bp subsequence of
the TP53 gene, which in humans codes for the p53 protein (nicknamed the “guardian angel of the genome”
because it is the most frequently-mutated gene in human cancers). According to the UCSC Genome Browser,
this sequence contains a 213-bp CpG island, which is located at the beginning of the TP53 gene.

5. Run the algorithm 5− 10 times and comment on the results you observe. Can you verify the location
of the CpG island?

6. Why might inference of Q∗ from this sequence not be as straightforward or unambiguous compared to
the first sequence?

The HMM we are tuning in this problem is fairly simple.

7. What is one drawback of using this HMM to “learn” the position of CpG islands within a sequence?

Hint : You may find Durbin’s excerpt above helpful.

8. What are some improvements that could be made to combat these limitations? Present a structure
for an alternative HMM for CpG island detection (define its hidden states and emissions, and the
dimensions of its transition, emission, and initial state distribution matrices). What kinds of general
patterns might you expect to see in its final tuned transition and emission matrices (A∗ and B∗)?

3


