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Overview for Ch. 5

Clustering spaces and distance measures

The “curse of dimensionality”

Classification of clustering algorithms

Hierarchical Clustering Algorithms

k-means Clustering Algorithms

EM Clustering Algorithms

Euclidean vs Non-Eulcidian Spaces for Clustering

An Introduction to Spectral Graph Theory: eigenvalues and
eigenvectors in graph theory

Dimensionality Reduction: Principal Component Analysis

Spectral Clustering Algorithms
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Classification of Clustering Algoritms

Machine Learning: Classification is in Supervized Learning
Machine Learning: Clustering is in Unsupervized Learning,
maybe the most important

Clustering Algorithms: Type 1 Hierarchical Clustering aka
“tree construction” or “flat” clustering; hard clustering
Clustering Algorithms: Type 2 k-Means Clustering aka
“point assignment” clustering; hard clustering
Clustering Algorithms: Type 3 Model-based EM Clustering;
soft clustering
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k-means Clustering Algorithms

In the class of point assignment clsutering algorithms, the
best known family of algorithm is the k-means Clustering
algorithms family

Two assimptions are in place:

The Clustering Space is Euclidean, and
The number of clusters k is know in advance, i.e., part of the
input

Sorin Istrail Clustering Theory and Spectral ClusteringLecture 2



Ch. 5 Clustering Theory and Spectral Clustering
k-means Clustering Algorithms

A Generic k-Means Clustering Algorithm
k-Means Clustering Theory
Time Complexity: k-Means is a linear time algorithm
Design Options: Initialization and “best” k for k-Means

A generic k-means clsutering algorithm

GENERIC k-MEANS CLUSTERING ALGORITHM

INPUT: N points of a space S, and k the number of clusters

While termination criterion is not met

BEGIN Choose k points in different clusters;

Make these points centroids of their clusters;

FOR each remaining points p in the input DO

Find the centroid to which p is closest’

Add p to the cluster of that centroid;

Adjust the centroid of that cluster

to account for p;

END

OUTPUT: the k clusters C1, ..., Ck
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The algorithm initializes the k clusters by placing one input
point in each cluster

Then it places each of the remaining points into the clusters
one at a time

For each point, it places it in the cluster whose centroid is
closest to the point

A centroid of a cluster can move around, as points are
assigned to that cluster, but not too much

One further step could be that at the end of the algorithm to
fix the centroids and start again the algorithm assigning all to
points to the centroids for robustness
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k-Means Clustering Theory

We would like to show that the k-means algorithm iterations
converges, by proving that RSS monotonically decreases (in
fact decreases or no change) in each iteration.
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The k-means is the most important “flat clustering” (flat
meaning non hierarchical) algorithm

its optimization objective is to minimize the average Euclidean
L2 distance between the points and their centroids

The centroid for cluster C is defined by

µ(C ) =
1

| C |
∑
x∈C

x
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The residual sum of squares or RSS is the square distance
of each vector from its centroid summed over all points

RSSr =
∑
x∈Cr

(x − µ(Cr ))2

RSS =
k∑

r=1

RSSr

RSS is objective function of the k-means clustering
minimization

Since the number the points N is fixed, RSS is equivalent to
minimizing the average square distance, a measure of how
well the centroids represent their points in their clusters
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First, RSS deacreases in the reassignment step: each point p
is assigned to its closest centroid, so the distance it
contributes to RSS decreases

Second, it decreases in the recomputation step because the
new centroid is the minimum of the RSSr where point p was
reassigned to cluster Cr

Sorin Istrail Clustering Theory and Spectral ClusteringLecture 2



Ch. 5 Clustering Theory and Spectral Clustering
k-means Clustering Algorithms

A Generic k-Means Clustering Algorithm
k-Means Clustering Theory
Time Complexity: k-Means is a linear time algorithm
Design Options: Initialization and “best” k for k-Means

RSSr =
∑
x∈Cr

(x − µr )2

For finding the minimum we set the derivative to 0:

∂RSSr (µ)

∂µr
=

∑
x∈Cr

2(x − µr ) = 0

∑
x∈Cr

2(x − µr ) = 0

implies

µr =
1

| Cr |
∑
x∈Cr

which is exactly of centroid formula!
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In conclusion, we minimize RSSr , when the old centroid is
replaced with the new controid. RSS , the sum of the RSSr ,
must also decrease during recomputation

Because there are only a finite number of possible clusterings,
a monotonically decreasing algorithm will eventually arrive at
a local minimum. A note about breaking the ties when ties
exist: one can pick among the ties the smallest index of the
point in the input order (or other order on the N input points);
otherwise, if not careful, the algorithm might cycle forever.

There is, of course, no guarantee for the global minimum, just
reaching a local minimum
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Time complexity of the k-means clustering algorithm =
O(N) a linear time algorithm

Most time is computing distances between a point and a
centroid, such a computation takes O(1)

The reassignement of a point to one of the k centroids takes
constant time as k is a constant

Overall we caompute kN pairwise distances

If we perform I iterations (one iteration is reassignement of all
the points) then the overall time is O(IkN) which is O(N) as
Ii and k are constants
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Initializing Clusters for k-Means

We want to pick initially k “seeds” points that will be in
different clusters. Two approaches are used:

1 We k pick points that are as far away from one another as
possible. We can cluster the sample data hierachically into k
clusters. Pick from each clusters a point closer to the cluster
centroid

2 We can also use another approach for the selection set of the
first k points to initialiize the k clusters: at t = 1 pick the first
point at random from the input set; then we add one point to
the selection set at time t : for each point not in the selection
set yet, compute all the distances to the points in the selection
set; then pick at time t the point with the maximum of the
minimum distances to the points in the selection set of the
t − 1 points. Stop after the t = k step.
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Outliers

Outliers present problems for the k-Means clustering

If an outlier is picked as a seed, the algorithm may end up
with a cluster with only one element in that cluset, the outlier
element, a singleton cluster; avoiding ouliers from the seed
selection phase is important
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Picking the value of k for the k-means clustering

We can use a measure for quality of clustering based on such
measures of “diffuseness” as average diameter size or average
radius size, and and use the value of k for which e.g., the
averge diameter size increases moderately from step to step; if
we use a “wrong” k, e.g., fewer clusters that they really are,
such monotone increases of the average diameter will go up
abruptly at some value of k ; it seems that the best such k is
the last for the curve is “not bending” up
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If we have no correct value of of what k is, we can find a
good value in a number of clustering operations that grows
only logarithmically with the true number

we can run the k-means algorithm for k = 1, 2, 4, 8, ... and
eventually we will find that somewhere between two values b
and 2b there is very small difference of the measure of
“cohesion” of “diffuseness” that we use; we could conclude
that the value of k that is witnessed by the data is bewteen b

2
and b

If we use a binary search in that range we can find the best
value of k in another log2 b clustering operations, for a total of
2 log2 b clusterings; since that “true value” of k is at least b

2
we have used a number of clusterings that is logarithmic in k
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