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ABSTRACT
We outline a general coalescent framework for using genotype data in linkage disequilibrium-based

mapping studies. Our approach unifies two main goals of gene mapping that have generally been treated
separately in the past: detecting association (i.e., significance testing) and estimating the location of the
causative variation. To tackle the problem, we separate the inference into two stages. First, we use Markov
chain Monte Carlo to sample from the posterior distribution of coalescent genealogies of all the sampled
chromosomes without regard to phenotype. Then, averaging across genealogies, we estimate the likelihood
of the phenotype data under various models for mutation and penetrance at an unobserved disease locus.
The essential signal that these models look for is that in the presence of disease susceptibility variants in
a region, there is nonrandom clustering of the chromosomes on the tree according to phenotype. The
extent of nonrandom clustering is captured by the likelihood and can be used to construct significance
tests or Bayesian posterior distributions for location. A novelty of our framework is that it can naturally
accommodate quantitative data. We describe applications of the method to simulated data and to data
from a Mendelian locus (CFTR, responsible for cystic fibrosis) and from a proposed complex trait locus
(calpain-10, implicated in type 2 diabetes).

ONE of the primary goals of modern genetics is to (1996) argued that, under certain assumptions, associa-
understand the genetic basis of complex traits. tion mapping is far more powerful than family-based

What are the genes and alleles that contribute to suscep- methods. They proposed that to unravel the basis of
tibility to a particular disease, and how do they interact complex traits, the field needed to develop the technical
with each other and with environmental and stochastic tools for genome-wide association studies (including a
factors to produce phenotypes? genome-wide set of SNPs and affordable genotyping

The traditional gene-mapping approach of positional technology). Those tools are now becoming available,
cloning starts by using linkage analysis in families to and it will soon be possible to test the efficacy of genome-
identify chromosomal regions that contain genes of in- wide association studies. Moreover, association mapping
terest. These chromosomal regions are typically several is already extremely widely used in candidate gene stud-
centimorgans in size and may contain hundreds of genes. ies (e.g., Lohmueller et al. 2003).
Next, linkage analysis is normally followed by linkage For all these studies, whether or not they start with
disequilibrium and association analysis to help narrow linkage mapping, association analysis is used to try to de-
the search down to the functional gene and active vari- tect or localize the active variants at a fine scale. At that
ants (e.g., Kerem et al. 1989; Hastbacka et al. 1992). point, the data in the linkage disequilibrium (LD)-map-

The positional cloning approach has been very success- ping phase typically consist of genotypes from a subset
ful at identifying Mendelian genes, but mapping genes for of the common SNPs in a region. The investigator aims
complex traits has turned out to be extremely challenging to use these data to detect unobserved variants that im-
(Risch 2000). Despite these difficulties, there have been pact the trait of interest. For complex traits, it will nor-
a mounting number of recent successes in which posi- mally be the case that the active variants have a relatively
tional cloning has led to the identification of at-risk modest impact on total disease risk. This small signal
haplotypes or occasionally causal mutations, in humans will be further attenuated if the nearest markers are in
and model organisms (e.g., Horikawa et al. 2000; Gre- only partial LD with the active site (Pritchard and
tarsdottir et al. 2003; Korstanje and Paigen 2002; Przeworski 2001). Moreover, if there are multiple risk
Laere et al. 2003). alleles in the same gene, these will often arise on differ-

In view of the challenges of detecting genes of small ent haplotype backgrounds and may tend to cancel out
effect using linkage methods, Risch and Merikangas each other’s signals. [There is a range of views on how

serious this problem of allelic heterogeneity is likely to
be for complex traits (Terwilliger and Weiss 1998;
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Figure 1.—Schematic example of the data
structure. The lines indicate the chromosomes
of three affected individuals (solid) and of
three healthy control individuals (dashed).
The solid circles indicate unobserved variants
that increase disease risk. Each column of rect-
angles indicates the position of a SNP in the
data set. The goal is to use the SNP data to
detect the presence of the disease variants and
to estimate their location. Note that for a com-
plex disease we expect to see the “at-risk” al-
leles at appreciable frequency in controls, and
we also expect to find cases without these al-
leles. As a further complication, there may be
multiple disease mutations, each on a different
haplotype background.

For all these reasons, it is important to develop statisti- The current statistical methods in this field tend to
be designed for one goal or the other, but in this articlecal methods that can extract as much information from

the data as possible. Certainly, some complex trait loci we describe a full multipoint approach for treating both
problems in a unified coalescent framework. Our aimcan be detected using very simple analyses. However,

by developing more advanced statistical approaches it is to provide rigorous inference that is more accurate
and more robust than existing approaches.should be possible to retain power under a wider range

of scenarios: e.g., where the signal is rather weak, where In the first part of this article, we give a brief overview
of existing methods for significance testing and finethe relevant variation is not in strong LD with any single

genotyped site (Carlson et al. 2003), or where there is mapping. Then we describe the general framework of our
moderate allelic heterogeneity. approach. The middle part outlines our current imple-

Furthermore, for fine mapping, it is vital to use a sensi- mentation, developed for case-control data. Finally, we de-
ble model to generate the estimated location of disease scribe results of applications to real and simulated data.
variants as naive approaches tend to underestimate the
uncertainty in the estimates (Morris et al. 2002).

EXISTING METHODSIn this article, we focus on the following problem.
Consider a sample of unrelated individuals, each geno- Significance testing: The simplest approach to sig-
typed at a set of markers across a chromosomal region nificance testing is simply to test each marker separately
of interest. We assume that the marker spacing is within for association with the phenotype (using a chi-square
the typical range of LD, but that it does not exhaustively test of independence, for example). This approach is
sample variation. In humans this might correspond to

most effective when there is a single common disease�5-kb spacing on average (Kruglyak 1999; Zöllner
variant and less so when there are multiple variants

and von Haeseler 2000; Gabriel et al. 2002). Each
(Slager et al. 2000). When there is a single variant,

individual has been measured for a phenotype of inter-
power is a simple function of r 2, the coefficient of LDest, and our ultimate goal is to identify genetic variation
between the disease variant and the SNP (Pritchardthat contributes to this phenotype (Figure 1).
and Przeworski 2001) and the penetrance of the dis-With such data, there are two distinct kinds of statisti-
ease variant. In some recent mapping studies, this sim-cal goals:
ple test has been quite successful (e.g., Van Eerdewegh
et al. 2002; Tokuhiro et al. 2003).1. Testing for association : Do the data provide evidence

The simplest multipoint approach to significance test-that there is genetic variation in this region that con-
ing is to use two or more adjacent SNPs to define haplo-tributes to the phenotype? (Typically, we would want
types and then test the haplotypes for association (Dalyto see a systematic difference between the genotypes
et al. 2001; Johnson et al. 2001; Rioux et al. 2001; Gre-of individuals with high and low phenotype values,
tarsdottir et al. 2003). It is argued that haplotype-respectively, or between cases and controls.) The
based testing may be more efficient than SNP-basedstrength of evidence is typically summarized using a
testing at screening for unobserved variants (JohnsonP -value.

2. Fine mapping : Assuming that there is variation in this et al. 2001; Gabriel et al. 2002). However, there is still
uncertainty about how best to implement this type ofregion that impacts the phenotype, then what is the

most likely location of the variant(s) and what is the strategy in a systematic way and how the resulting power
compares to other approaches after multiple-testing cor-smallest subregion that we are confident contains the

variant(s)? This type of information is conveniently rections.
Various other more complex methods have been pro-summarized as a Bayesian posterior distribution.
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posed for detecting disease association. These include Markov model for the LD between adjacent sites. The
McPeek and Strahs model assumed a star-shaped geneal-a data-mining algorithm (Toivonen et al. 2000), multi-

point schemes for identifying identical-by-descent re- ogy for the case chromosomes and applied a correction
factor to account for the pairwise correlation of chromo-gions in inbred populations (Service et al. 1999; Abney

et al. 2002), and schemes for detecting multipoint associ- somes due to shared ancestry.
Subsequent variations on this theme have includedation in outbred populations (Liang et al. 2001; Tzeng

et al. 2003). other methods based on star-shaped genealogies (Mor-
ris et al. 2000; Liu et al. 2001) and methods involvingPerhaps closest in spirit to the approach taken here

is the cladistic approach developed by Alan Templeton bifurcating genealogies of case chromosomes including
those of Rannala and Reeve (2001), Morris et al. (2002),and colleagues (Templeton et al. 1987; see also Selt-

man et al. 2001). Their approach is first to construct a and Lam et al. (2000). Two other methods have also used
genealogical approaches, but seem to be practical onlyset of cladograms on the basis of the marker data by

using methods for phylogenetic reconstruction and for very small data sets or numbers of markers (Graham
and Thompson 1998; Larribe et al. 2002). Morris et al.then to test whether the cases and controls are nonran-

domly distributed among the clades. In contrast, the (2002) provide a helpful review of many of these methods.
More recently, Molitor et al. (2003) presented a lessinference scheme presented here is based on a formal

population genetic model with recombination. This model-based multipoint approach to fine mapping. They
used ideas from spatial statistics, grouping haplotypesshould enable a more accurate estimation of topology

and branch lengths. Our approach also differs from from cases and controls into distinct clusters and as-
sessing evidence for the location of the disease mutationthose methods in that we perform a more model-based

analysis of the resulting genealogy. from the distribution of cases across the clusters. Their
approach may be more computationally feasible forFine mapping: In contrast to the available methods

for significance testing, the literature on fine mapping large data sets than are fully model-based genealogical
methods, but it is unclear if some precision is lost byhas a heavier emphasis on model-based methods that

consider the genealogical relationships among chromo- not using a coalescent model.
The procedure described in this article differs fromsomes. This probably reflects the view that a formal

model is necessary to estimate uncertainty accurately existing methods in several important aspects. Our ap-
proach estimates the joint genealogy of all individuals,(Morris et al. 2002), and that estimates of location

based on simple summary measures of LD do not pro- not just of cases. This should allow us to model the an-
cestry of the sample more accurately and to include al-vide accurate assessments of uncertainty. The challenge

is to develop algorithms that are computationally practi- lelic heterogeneity in a more realistic way. We also ana-
lyze the evidence for the presence of a disease mutationcal, yet extract as much of the signal from the data as

possible. The methods should work well for the interme- after inferring the ancestry of a locus. This enables us
to apply realistic models of penetrance and to analyzediate penetrance values expected for complex traits and

should be able to deal with allelic heterogeneity. quantitative traits. Furthermore, in our Markov chain
algorithm we do not record the full ancestral sequencesThough one might ideally wish to perform inference

using the ancestral recombination graph (Nordborg at every node, which should enable better mixing and
allow analysis of larger data sets.2001), this turns out to be extremely challenging computa-

tionally (e.g., Fearnhead and Donnelly 2001; Larribe
et al. 2002). Instead, most of the existing methods make

MODELS AND METHODS
progress by simplifying the full model in various ways
to make the problem more computationally tractable We consider the situation where the data consist of a

sample of individuals who have been genotyped at a set(as we do here).
The first full multipoint, model-based method was of markers spaced across a region of interest (Figure 1).

Each individual has been assessed for some phenotype,developed by McPeek and Strahs (1999). Some ele-
ments of their model have been retained in most subse- which can be either binary (e.g., affected with a disease

or unaffected) or quantitative. Our framework can also ac-quent models, including ours. Most importantly, they
simplified the underlying model by focusing attention commodate transmission disequilibrium test data (Spiel-

man et al. 1993), where the untransmitted genotypes areonly on the ancestry of the chromosomes at each of a
series of trial positions for the disease mutation. They treated as controls.

We are most interested in the setting where the geno-then calculated the likelihood of the data at each of
those positions and used the likelihoods to obtain a typed markers represent only a small fraction of the

variation in the region, and our goal is to use LD andpoint estimate and confidence interval for the location
of the disease variant. Under that model, nonancestral association to detect unobserved susceptibility variants.

We allow for the possibility of allelic heterogeneity (theresequence could recombine into the data set. The likeli-
hood of nonancestral sequence was computed using the might be multiple independent mutation events that

produce susceptibility alleles), but we assume that allcontrol allele frequencies and assuming a first-degree
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these mutations occur close enough together (e.g.,
within a few kilobases) that we can treat them as having
a single location within the region.

The genealogical approach: The underlying model
for our approach is derived from the coalescent (re-
viewed by Hudson 1990; Nordborg 2001). The coales-
cent refers to the conceptual idea of tracing the ancestry
of a sample of chromosomes back in time. Even chromo-
somes from “unrelated” individuals in a population
share a common ancestor at some time in the past.
Moving backward in time, eventually all the lineages
that are ancestral to a modern day sample “coalesce”
to a single common ancestor. The timescales for this
process are typically rather long—for example, the most
recent common ancestor of human �-globin sequences
is estimated to have been �800,000 years ago (Harding
et al. 1997).

When there is recombination, the ancestral relation-
ships among chromosomes are more complicated. At
any single position along the sequence, there is still a
single tree, but the trees at nearby positions may differ.
It is possible to represent the full ancestral relationships
among chromosomes using a concept known as the “an- Figure 2.—Hypothetical example of a coalescent genealogy
cestral recombination graph” (ARG; Nordborg 2001; for a sample of 28 chromosomes, at the locus of a disease
Nordborg and Tavare 2002), although it is difficult susceptibility gene. Each tip at the bottom of the tree repre-

sents a sampled chromosome; the lines indicate the ancestralto visualize the ARG except in small samples or short
relationships among the chromosomes. The two solid circleschromosomal regions (Figure 3).
on the tree represent two independent mutation events pro-

Considering the coalescent process provides useful ducing susceptibility variants. These are inherited by the chro-
insight into the nature of the information about associa- mosomes marked with hatched circles. Individuals carrying
tion that is contained in the data. Figure 2 shows a hypo- those chromosomes will be at increased risk of disease. This

means that there will be a tendency for chromosomes fromthetical example of the coalescent ancestry of a sample
affected individuals to cluster together on the tree, in twoof chromosomes at the position of a disease susceptibil-
mutation-carrying clades. The degree of clustering depends

ity locus. In this example, two disease susceptibility mu- in part on the penetrance of the mutation.
tations are present in the sample. By definition, these
will be carried at a higher rate in affected individuals
than in controls. This implies that chromosomes from mation to learn as much as we can about the coalescent

genealogy of the sample at different points along theaffected individuals will tend to be nonrandomly clus-
tered on the tree. Each independent disease mutation chromosome. Our statistical inference for association

mapping or fine mapping will be based on this. In whatgives rise to one cluster of “affected” chromosomes.
Traditional methods of association mapping work by follows, we outline our approach of using marker data

to estimate the unknown coalescent ancestry of a sampletesting for association between the phenotype status and
alleles at linked marker loci (or with haplotypes). In and describe how this information can be used to per-

form inference. Unlike in previous mapping methodseffect, association at a marker indicates that in the neigh-
borhood of this marker, chromosomes from affected (e.g., Morris et al. 2002), we aim to reconstruct the

genealogy of the entire sample and not just the geneal-individuals are more closely related to one another than
by random. Fundamentally, the marker data are infor- ogy of cases. This extension allows us to extract substan-

tially more information from the data and enables sig-mative because they provide indirect information about
the ancestry of unobserved disease variants. Detecting nificance testing.

Performing inference: We start by developing someassociation at noncausative SNPs implies that case chro-
mosomes are nonrandomly clustered on the tree. notation. Consider a sample of n haplotypes from n/2

unrelated individuals. The phenotype of individual i isIn fact, unless we have the actual disease variants in
our marker set, the best information that we could possibly φi , and � represents the vector of phenotype data for

the full sample of n/2 individuals. The phenotypes mightget about association is to know the full coalescent genealogy
of our sample at that position. If we knew this, the marker be qualitative (e.g., affected/unaffected) or quantitative

measurements.genotypes would provide no extra information; all the
information about association is contained in the gene- Each individual is genotyped at a series of marker loci

from one or more genomic regions (or in the future pos-alogy. Hence, our approach is to use the marker infor-
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sibly from genome-wide scans). Let G denote the multi- tion about the location of the disease mutation. Thus,
we ignore the possible impact of selection and over-dimensional vector of haplotype data—i.e., the geno-

types for n haplotypes at L loci (possibly with missing ascertainment of affected individuals in changing the
distribution of branch times at the disease locus. Ourdata). Let X be the set of possible locations of the QTL

or disease susceptibility gene and let x � X represent expectation is that the data will be strong enough to
overcome minor misspecification of the model in thisits (unknown) position. Our approach is to scan sequen-

tially across the regions containing genotype data, con- respect (this was the experience of Morris et al. 2002,
in a similar situation). The second approximation is asidering many possible positions for x. A natural mea-

sure of support for the presence of a disease mutation good assumption if the active disease mutation is not
actually in our marker set and if mutations at differentat position x is given by the likelihood ratio (LR),
positions occur independently. We can then write

LR �
LA(�; x, P̂alt, G)

L0(�; P̂0, G)
, (1)

Pr(�, G |x) � �Pr(� |x , Tx)Pr(G |Tx)Pr(Tx)dTx

where LA and L0 represent likelihoods under the alterna-
and since Pr(G |Tx)Pr(Tx) � Pr(Tx |G)Pr(G) we obtaintive model (disease mutation at x) and null hypothesis

(no disease mutation in the region), respectively. P̂alt Pr(�, G |x) � �Pr(� |x , Tx)Pr(Tx |G)Pr(G)dTx
and P̂0 are the vectors of penetrance parameters under
the alternative and null hypotheses, respectively, that

� �Pr(� |x , Tx)Pr(Tx |G)dTx . (5)
maximize the likelihoods. Large values of the likelihood
ratio indicate that the null hypothesis should be re-

Expression (5) consists of two parts. Pr(� |x , Tx) is thejected. Specific models to calculate these likelihoods
probability of the phenotype data given the tree at x .are described below (see Equations 7 and 8).
To compute this, we specify a disease model and thenWe also want to estimate the location of disease muta-
integrate over the possible branch locations of diseasetions. For this purpose it is convenient to adopt a Bayes-
mutations in the tree (see below for details). Pr(Tx |G)ian framework, as this makes it more straightforward
refers to the posterior density of trees given the markerto account for the various sources of uncertainty in a
data and a population genetic model to be specified;coherent way (Morris et al. 2000, 2002; Liu et al. 2001).
the next section outlines our approach to drawingThe posterior probability that a disease mutation is at
Monte Carlo samples from this density.x is then

In summary, our approach is to scan sequentially
across the region(s) of interest, considering a dense setPr(x |�, G) �

Pr(�, G |x)Pr(x)
�XPr(�, G |y)Pr(y)dy

(2)
of possible positions of the disease location x . At each
position x , we sample M trees [denoted T (m )

x ] from the
� Pr(�, G |x)Pr(x), (3) posterior distribution of trees. For Bayesian inference of

location, we apply Equation 2 to estimate the posteriorwhere Pr(x) gives the prior probability that the disease
density Pr(x |�, G) at x by computinglocus is at x. Pr(x) will normally be set uniform across

the genotyped regions, but this prior can easily be modi-
fied to take advantage of prior genomic information if Pr(x |�, G) �

(1/M)�M
m�1Pr(� |x, T (m )

x )Pr(x)

�Y
i�1(1/M)�M

m�1Pr(� |yi , T (m )
yi

)Pr(yi)
,

desired (see discussion in Rannala and Reeve 2001;
Morris et al. 2002). (6)

To evaluate expressions (1) and (2), we need to com-
where {y1, . . . , yY } denote a series of Y trial values of xpute Pr(�, G |x). To do so, we introduce the notation
spaced across the region of interest. We will occasionallyTx , to represent the (unknown) coalescent genealogy
refer to the numerator of Equation 6, divided by Pr(x),of the sample at x. Tx records both the topology of the
as the “average posterior likelihood” at x . For signifi-ancestral relationships among the sampled chromo-
cance testing at x, we maximizesomes and the times at each internal node. Then

Pr(�, G |x) � �Pr(�, G |x, Tx)Pr(Tx |x)dTx LA(�; x, P̂alt , G) � 1
M �

M

m�1

Pr(� |x, T (m )
x , P̂alt ) (7)

� �Pr(�|x, Tx)Pr(G |�, x, Tx)Pr(Tx |x)dTx , and

(4) L0(�; P̂0 , G) � Pr(� |P̂0) (8)

with respect to P̂alt and P̂0 . See below for details aboutwhere the integral is evaluated over all possible trees. We
now make the following approximations: (i) Pr(Tx |x) � how these probabilities are computed.

Sampling from the genealogy, Tx : To perform thesePr(Tx) and (ii) Pr(G |�, x , Tx) � Pr(G |Tx). The first
approximation implies that in the absence of the pheno- calculations, it is necessary to sample from the posterior

density, Tx |G (loosely speaking, we wish to draw fromtype data, the tree topology itself contains no informa-
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Figure 3.—Hypothetical example of the
ancestral recombination graph (ARG) for a
sample of six chromosomes, labeled A–F (left
plot), along with our representation (middle
and right plots). (Left plot) The ARG con-
tains the full information about the ancestral
relationships among a sample of chromo-
somes. Moving up the tree from the bottom
(backward in time), points where branches
join indicate coalescent events, while splitting
branches represent recombination events. At
each split, a number indicates the position
of the recombination event (for concrete-
ness, we assume nine intermarker intervals,
labeled 1–9). By convention, the genetic ma-
terial to the left of the breakpoint is assigned
to the left branch at a split. See Nordborg
(2001) for a more extensive description of
the ARG. (Middle and right plots) At each
point along the sequence, it is possible to ex-
tract a single genealogy from the ARG. The
plots show these genealogies at two “focal
points,” located in intervals 4 and 7, respec-
tively. The numbers in parentheses indicate
the total region of sequence that is inherited
without recombination, along with the focal
point, by at least one descendant chromo-
some. (1, 9) indicates inheritance of the en-
tire region. For clarity, not all intervals with
complete inheritance (1, 9) are shown.

the set of coalescent genealogies that are consistent with sample. It is likely that the region around the focal point
shared by the three chromosomes is smaller. In ourthe genotype data). We adopt a fairly standard population

genetic model, namely the neutral coalescent with recom- representation of the genealogy, we store the topology
at the focal point, along with the extent of sequence atbination (i.e., the ARG; Nordborg 2001). Our current

implementation assumes constant population size. each node that is ancestral to at least one of the sampled
chromosomes without recombination (Figure 3).A number of recent studies have aimed to perform

full-likelihood or Bayesian inference under the ARG An example of this is provided in Figure 4. Each tip
of the tree records the full sequence (across the entire(Griffiths and Marjoram 1996; Kuhner et al. 2000;

Nielsen 2000; Fearnhead and Donnelly 2001; Lar- region) of one observed haplotype. Then, moving up
the tree, as the result of a recombination event a partribe et al. 2002; reviewed by Stephens 2001). The expe-

rience of these earlier studies indicates that this is a of the sequence may split off and evolve on a different
branch of the ARG. When this happens, the amounttechnically challenging problem, and that existing

methods tend to perform well only for quite small data of sequence that is coevolving with the focal point is
reduced. The length of the sequence fragment thatsets (e.g., Wall 2000; Fearnhead and Donnelly 2001).

Therefore, we have decided to perform inference under coevolves with the focal point can increase during a
coalescent event, as the sequence in the resulting nodea simpler, local approximation to the ARG, reasoning

that this might allow accurate inference for much larger is the union of the two coalescing sequences. In other
words, the amount of sequence surrounding the focaldata sets. Our implementation applies Markov chain

Monte Carlo (MCMC) techniques (see appendix a). point shrinks when a recombination event occurs and
may increase at a coalescent event. A marker is retainedIn our approximation, we aim to reconstruct the coa-

lescent tree only at a single “focal point” x , although up to a particular node as long as there is at least one
lineage leading to this node in which that SNP is notwe use the full genotype data from the entire region,

as all of this is potentially informative about the tree at separated from the focal point by recombination. We
do not model coalescent events in the ARG where onlythat focal point. Consider two chromosomes that have

a very recent common ancestor (at the focal point). one of the two lines carries the focal point. Therefore,
the sequence at internal nodes will always consist of oneThese chromosomes will normally both inherit a large

region of chromosome around the focal point, uninter- contiguous fragment of sequence.
Our MCMC implementation stores the tree topology,rupted by recombination, from that one common ances-

tor. Then consider a more distant ancestor that the two node times, and the ancestral sequence at each node.
We assume a finite sites mutation model for the markerschromosomes share with a third chromosome in the
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Indeed, if one wished to perform inference across an
infinitely long chromosomal region, the total amount
of sequence stored at the ancestral nodes in our rep-
resentation would be finite, while that in the earlier
methods would not.

A more fundamental difference is that, unlike most
of the previous model-based approaches to this prob-
lem, our genealogical reconstruction is independent of
the phenotype data. There are trade-offs in choosing to

Figure 4.—Example of an ancestral genealogy as modeled frame the problem in this way, as follows. When the
by our tree-building algorithm. The ancestry of a single focal alternative model is true, the phenotype data contain
point (designated F) as inferred from three biallelic markers

some information about the topology that could helpis shown (alleles are shown as 0 and 1). Branches with recombi-
to guide the search through tree space. In contrast, ournation events on them are depicted as red lines, showing at

the tip of the arrow the part of the sequence that evolves on procedure weights the trees after sampling them from
a different genealogy. As can be seen at the coalescent event Pr(Tx |G) according to how consistent they are with the
at time t4, if no recombination occurs on either branch, the phenotype data (Equations 6 and 7), ignoring addi-
entire sequence is transmitted along a branch and coalesces,

tional information from the phenotype data. However,generating a full-length sequence. If on the other hand a re-
tackling the problem in this way makes it far easier tocombination event occurs, the amount of sequence that reaches

the coalescent event is reduced (indicated by the dashes). If assess significance, because we know that under the null
this reduction occurs on only one of the two branches, the the phenotypes are randomly distributed among tips of
sequence can be restored from the information on the other the tree. It also means that we can calculate posterior
branch (as at time t3). But if recombination events occur on

densities for multiple disease models using a singleboth branches, the length of the sequence is reduced (t2).
MCMC run.

Modeling the phenotypes: To compute expressions (6)
and (7), we use the following model to evaluate Pr(�|x,Tx).that are retained on each branch. (This rather simplistic

model is far more computationally convenient than At the unobserved disease locus, let A denote the geno-
type at the root of the tree Tx . We assume that genotypemore realistic alternatives.) At some points, sequence is

introduced into the genealogy through recombination A mutates to genotype a at rate �/2 per unit time,
independently on each branch. We further assume thatevents. We approximate the probability for the intro-

duced sequence by assuming a simple Markov model on alleles in state a do not undergo further mutation.
Next, we need to define a model for the genotype-the basis of the allele frequencies in the sample (similar

approximations have been used previously by McPeek phenotype relationship for each of the three diploid
genotypes at the susceptibility locus: namely, Pr(φ |AA),and Strahs 1999; Morris et al. 2000; Liu et al. 2001;

Morris et al. 2002). The population recombination rate Pr(φ |Aa), and Pr(φ |aa), where φ refers to a particular
phenotype value (e.g., affected/unaffected or a quan-� and the mutation rate � are generally unknown in

advance and are estimated from the data within the titative measure). For a binary trait, these three proba-
bilities denote simply the genotypic penetrances: e.g.,MCMC scheme, assuming uniform rates along the se-

quence. A more precise specification of the model and Pr(Affected|AA). In practice, the situation is often com-
plicated by the fact that the sampled individuals may notalgorithms is provided in appendix a.

Overall, our model is similar to those of earlier ap- be randomly ascertained. In that case, the estimated “pene-
trances” really correspond to Pr(φ |AA, S), Pr(φ |Aa, S),proaches such as the haplotype-sharing model of McPeek

and Strahs (1999) and the coalescent model of Morris and Pr(φ |aa, S), where S refers to some sampling scheme
(e.g., choosing equal numbers of cases and controls).et al. (2002). However, we focus on chromosomal shar-

ing backward in time, rather than on decay of sharing In the algorithm presented here, we assume that the
affection status of the two chromosomes in an individualfrom an ancestral haplotype. In part, this reflects our

shift away from modeling only affected chromosomes can be treated independently from each other and from
the frequency of the disease mutation: i.e., PA(φ) is theto modeling the tree for all chromosomes. The repre-

sentation used by those earlier studies means that they probability that a chromosome with genotype A comes from an
individual with phenotype φ, and analogously for Pa(φ). Inpotentially have to sum over possible ancestral geno-

types at sites far away from the focal point x, which are the binary situation, this model has two independent
parameters: PA(1) � 1 � PA(0) and Pa(1) � 1 � Pa(0).not ancestral to any of the sampled chromosomes and

about which there is therefore no information. Storing In this case the ratio PA(φ)/Pa(φ) corresponds directly to
the relative risk of allele A, conditional on the samplingall this extra information is likely to be detrimental in

an MCMC scheme, as it presumably impedes rearrange- scheme. As another example, for a normally distributed
trait, PA(φ) and Pa(φ) are the densities of two normalments of the topology. Thus, we believe that our repre-

sentation can potentially improve both MCMC mixing distributions at φ and would be characterized by mean
and variance parameters. Note that most values of PA(φ)and the computational burden involved in each update.
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and Pa(φ) do not correspond to a single genetic model Finally, it remains to determine the mutation rate, �,
at the unobserved disease locus. It seems unlikely thatthat exists as the mapping from (PA(φ), Pa(φ)) to (Pr(φ|AA),

Pr(φ |Aa), Pr(φ |aa)) is dependent on the frequency of much information about � will be in the data; hence
we prefer to set it to a plausible value, a priori. For athe disease mutation. Nevertheless, this factorization of

the penetrance parameters is computationally conve- similar model, Pritchard (2001) argued that the most
biologically plausible values for this parameter are in thenient and allows for an efficient analysis of Tx .

Of course, it is not known in advance which chromo- range of �0.1–1.0, corresponding to low and moderate
levels of allelic heterogeneity, respectively.somes are A and which are a , so we compute the likeli-

hood of the phenotype data by summing over the possi- Multiple testing: Typically, association-mapping stud-
ies consist of large numbers of statistical tests. To ac-ble arrangements of mutations at the disease locus.

Under the alternative hypothesis, most arrangements count for this, it is common practice to report a P -value
that measures the significance of the largest departureof mutations will be relatively unsupported by the data,

while branches leading to clusters of affected chromo- from the null hypothesis anywhere in the data set. The
simplest approach is to apply a Bonferroni correctionsomes will have high support for containing mutations.

Let M record which branches of the tree contain disease (i.e., multiplying the P -value by the number of tests),
but this tends to be unnecessarily conservative becausemutations and 	 � {1, . . . , n } be the set of chromosomes

that carry a disease mutation according to M (i.e., the the association tests at neighboring positions are corre-
lated.descendants of M) and let � be the set of chromosomes

that do not carry a mutation, i.e., � � {1, . . . , n } \	. A more appealing solution is to use randomization
techniques to obtain an empirical overall P -value (cf.Then we calculate
McIntyre et al. 2000). The basic idea is to hold all

Pr(� |x , Tx , �) � �
M
��

i�	

PA(φi)�
i��

Pa(φi)Pr(M |x , Tx , �)� . the genotype data constant and randomly permute the
phenotype labels. For each permuted set, the tests of(9)
association are repeated, and the smallest P -value for
that set is recorded. Then the experiment-wide signifi-For a case-control data set this can be written as
cance of an observed P -value pi is estimated by the frac-

Pr(� |x, Tx , �) � �
M

P nA
d

A (1 � PA)n A
hP na

da (1 � Pa)n a
h Pr(M |x, Tx , �), tion of random data sets whose smallest value is 
pi .

The latter procedure is practical only if the test of
where ni

d and ni
h count the number of i-type chromo- association is computationally fast. For the method pro-

somes (where i � {A, a }) from affected and healthy posed in this article, the inference of ancestries is inde-
individuals, respectively. Equation 9 can be evaluated pendent of phenotypes. Therefore, the trees need to
efficiently using a peeling algorithm (Felsenstein 1981). be generated only once in this scheme and the sampled
The details of this algorithm are provided in appendix trees are stored in computer memory. Then, the likeli-
b. Calculations for general diploid penetrance models hood calculations can be performed on these trees using
are much more computationally intensive, and we will both the real and randomized phenotype data to obtain
present those elsewhere. the appropriate empirical distribution.

For our Bayesian analysis, we take the prior for the For a whole-genome scan, a permutation test with the
parameters governing PA(φ) and Pa(φ) to be uniform proposed peeling strategy is rather daunting. Per-
and independent on a bounded set �̃ and average the forming the peeling analysis for 1000 permutations on
likelihoods over this prior. By allowing any possible or- one tree of 100 cases and 100 controls takes �6 min
der for the penetrances under the alternative model, on a modern desktop machine. Thus, a whole-genome
we allow for the possibility that the ancestral allele may permutation test with one focal point every 50 kb, 100
actually be the high-risk allele, as observed at some hu- trees per focal point, and a penetrance grid of 19 � 19
man disease loci, including ApoE (Fullerton et al. 2000). values would take �750,000 processor hours.

For significance testing, we test the null hypothesis that A rather different solution for genome-wide scans
PA(φ) � Pa(φ) compared to the alternative model where of association may be to apply the false discovery rate
the parameters governing PA(φ) and Pa(φ) can take on criterion, as this tends to be robust to local correlation
any values independently. Standard theory suggests that when there are enough independent data (Benjamini
twice the log-likelihood ratio of the alternative model, and Hochberg 1995; Sabatti et al. 2003).
compared to the null, should be asymptotically distrib- Unknown haplotype phase: Our current implementa-
uted as 
2 random values with d d.f., where d is the tion assumes that the individual genotype data can be
number of extra parameters in the alternative model resolved into haplotypes. However, in many current
compared with the null. Thus, for case-control studies studies, haplotypes are not experimentally determined
our formulation suggests that twice the log-likelihood and must instead be estimated by statistical methods.
ratio should have a 
2

1 distribution. In fact, simulations In principle, it would be natural to update the unknown
that we have done (results not shown) indicate that this haplotype phase within our MCMC coalescent framework

described below (Lu et al. 2003; Morris et al. 2003). Byassumption is somewhat conservative.
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doing so, we would properly account for the impact of about the presence of disease variation will come from
the degree to which case and control chromosomeshaplotype uncertainty on the analysis. In fact, Morris

et al. (2004) concluded that doing so increased the accu- cluster on the tree, so bias in the branch length estimates
may not have a serious impact on inferences about theracy of their fine-mapping algorithm (compared to the

answers obtained after estimating haplotypes via a rather location of disease variation. The next section provides
results supporting this view.simple EM procedure). However, it is already a difficult

problem to sample adequately from the posterior distri- Another factor not considered in our current imple-
mentation is the possibility of variable recombinationbution of trees given known haplotypes and it is unclear

to us that the added burden of estimating haplotypes rate (e.g., Jeffreys et al. 2001). Since recombination
rates appear to vary considerably over quite fine scales,within the MCMC scheme represents a sensible trade-

off. Therefore, we currently use point estimates of the this is probably an important biological feature to include
in analysis. One route forward would be for us to estimatehaplotypes obtained from PHASE 2.0 (Stephens et al.

2001; Stephens and Donnelly 2003). We also currently separate recombination parameters in each intermarker
interval, within the MCMC scheme (perhaps correlateduse PHASE to impute missing genotypes.

False positives due to population structure: It has across neighboring intervals). It is unclear how much this
would add to the computational burden of convergencelong been known that case-control studies of association

are susceptible to high type 1 error rates when the sam- and mixing. In the short term, it would be possible to use
a separate computational method to estimate these ratesples are drawn from structured or admixed populations

(Lander and Schork 1994). Therefore, we advise using prior to analysis with local approximation to the ances-
tral recombination graph (LATAG; e.g., using Li andunlinked markers to detect problems of population

structure (Pritchard and Rosenberg 1999), prior to Stephens 2003) and to modify the input file to reflect
the estimated genetic distances.using the association-mapping methods presented here.

When population structure is problematic, there are Software: The algorithms presented here have been
implemented in a program called LATAG. The programtwo types of methods that aim to correct for it: genomic

control (Devlin and Roeder 1999) and structured asso- is available on request from S. Zöllner.
ciation (Pritchard et al. 2000; Satten et al. 2001). It
seems likely that some form of genomic control correc-

TESTING AND APPLICATIONS: SIMULATED DATA
tion might apply to our new tests, but it is not clear to
us how to obtain this correction theoretically. It should To provide a systematic assessment of our algorithm

we simulated 50 data sets, each representing a fine-be possible to obtain robust P-values using the struc-
tured association approach roughly as follows. First, one mapping study or a test for association within a candi-

date region. Each data set consists of 30 diploid caseswould apply a clustering method to the unlinked mark-
ers to estimate the ancestry of the sampled individuals and 30 diploid controls that have been genotyped for

a set of markers across a region of 1 cM. Our model(Pritchard et al. 2000; Satten et al. 2001) and the
phenotype frequencies across subpopulations. Then, the corresponds to a scenario of a complex disease locus

with relatively large penetrance differences (since thephenotype labels could be randomly permuted across
individuals while preserving the overall phenotype fre- sample sizes are small) and with moderate allelic hetero-

geneity at the disease locus.quencies within subpopulations. As before, the test sta-
tistic of interest would be computed for each permuta- The data sets were generated as follows. We simulated

the ARG, assuming a constant population size of 10,000tion.
SNP ascertainment and heterogeneous recombination diploid individuals and a uniform recombination rate.

On the branches of this ARG, mutations occurred as arates: In the MCMC algorithm described above, and more
fully in appendix a, we assume—for convenience—that Poisson process according to the infinite sites model.

The mutation rate was set so that in typical realizationsmutation at the markers can be described using a stan-
dard finite sites mutation model with mutation parame- there would be 45–65 markers with minor allele fre-

quency �0.1 across the 1-cM region. The position of theter �. However, in practice, we aim to apply our method
to SNPs: markers for which the mutation rate per site disease locus xs was drawn from a uniform distribution

across the region. Mutation events at the disease locusis likely to be very low, but that have been specifically
ascertained as polymorphic. Hence, our estimate of � were simulated on the tree at that location at rate 1 per

unit branch length (in coalescent time), with no backshould not be viewed as an estimate of the neutral muta-
tion rate; it is more likely to be roughly the inverse of mutations (cf. Pritchard 2001). This process deter-

mines whether each chromosome does, or does not,the expected tree length (if there has usually been one
mutation per SNP in the history of the sample). More- carry a disease mutation. We required that the total

frequency of mutation-bearing chromosomes be in theover, the fact that SNPs are often ascertained to have
intermediate frequency and that we overestimate � may range 0.1–0.2, and if it was not, then we simulated a

new set of disease mutations at the same location. Thislead to some distortion in the estimated branch lengths.
However, we anticipate that most of the information procedure generated a total of 10–25 disease mutations
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across the entire population, although many of the mu- posterior probability. The running time for each data set
was �5 hr on a 2.4-GHz processor with 512 K memory.tations were redundant or at low frequency.

To assign phenotypes, we used the following pene- For comparison, we also analyzed each data set with
DHSMAP-map 2.0 using the standard settings suggestedtrances: a homozygote wild type showed the disease

phenotype with probability Phw � 0.05, a heterozygous in the program package. This program generated point
estimates for the locus of disease mutation and twogenotype showed it with probability Phe � 0.1, and a

homozygous mutant showed it with probability Phm � 95% confidence intervals: the first assuming a star-like
phylogeny among cases, and the second using a correc-0.8. According to these penetrances, we then created

30 case and 30 control individuals by sampling without tion to account for the additional correlation among
cases that results from relatedness.replacement from the simulated population of 20,000

chromosomes, as follows. Let n be the remaining num- Significance tests were performed by two methods.
First we calculatedber of wild-type chromosomes in the population and m

be the remaining number of mutant chromosomes in
Lm � max{LA(�; xi , Palt , G) : i � {1, . . . , 50}, Palt � �̃}the population. Then the next case individual was ho-

(10)mozygous for the mutation with probability (Phm · m ·
(m � 1)) · (Phm · m · (m � 1) � 2 · Phe · m · n � Phw ·

and calculated the likelihood ratio according to (1),
n · (n � 1))�1, heterozygous with probability (2 · Phe ·
m · n) · (Phm · m · (m � 1) � 2 · Phe · m · n � Phw · n ·

LR �
Lm

L0

,(n � 1))�1, and otherwise homozygous for the mutant
allele. The diplotypes for each case were then created
by sampling the corresponding number of mutant or with L0 � 0.5120. We assigned pointwise significance to
wild-type chromosomes. Control individuals were gener- this ratio by assuming that 2 ln(LR) is 
2-distributed
ated analogously. Across the 50 replicates, we found with 1 d.f. (Other simulations that we have done indicate
that 10–33 of the 60 case chromosomes and 0–9 of the that this assumption is somewhat conservative; results
control chromosomes carried a disease mutation. not shown.) To estimate global significance, we per-

As might be expected for the simulation of a complex muted case and control status among the 60 individuals
disease, not all of the simulated data sets carried much 1000 times, recalculated Lm for each permutation (using
information about the presence of genetic variation in- the original trees obtained from the data), and counted
fluencing the phenotype. For instance, in 22 of the the number of permutations that showed a higher Lm
generated data sets, the highest single-point association than the original data set anywhere in the region. The
signal among the generated markers, calculated as Pear- permutation procedure corrects for multiple testing
son’s 
2, is �6.5. across the region and does not rely on the predicted

We analyzed each simulated data set by considering distribution of the likelihood ratio.
50 focal points x 1, . . . , x 50, spaced equally across the For comparison we assessed the performance of sin-
1-cM region. For each point xi we used LATAG to draw gle-point association analysis by calculating the associa-
50 trees from the distribution Pr(Txi

|G , xi). To ensure tion of each observed marker in a 2 � 2-contingency
convergence of the MCMC, we used a burn-in period table with a 
2-statistic and recorded the 
2 of the marker
of 2.5 � 106 iterations for x 1. As the tree at location xi with the highest value. We assigned significance to this
is a good starting guess for trees of the adjacent tree at test statistic in two ways: first, on the basis of the 
2-distri-
xi�1 we used a burn-in of 0.5 � 106 iterations for x 2, . . . , bution with 1 d.f., and second, by performing 1000
xk . We sampled each set of trees {T (1)

xi
, . . . , T (50)

xi
} using permutations of phenotypes among the 60 individuals

a thinning interval of 10,000 steps and estimated Pr(�, and counting the number of permutations in which the
G |xi) according to (6) and (B2) without assuming any highest observed 
2 was higher than that observed in
prior information about the location of disease muta- the sample.
tions. We found that the mean was somewhat unstable To assess convergence, we then repeated the analysis
due to occasional large outliers and therefore substi- of each data set an additional four times and compared
tuted the median for the average in (6). To evaluate (B2) the estimated posterior distributions to assess the con-
we summed over a grid of penetrances �̃ � {0.05, 0.1, vergence of the MCMC and the variability in estimation.
. . . , 0.95} � {0.05, 0.1, . . . , 0.95}, setting the disease We calculated the overlap of two credible intervals C 1
mutation rate � to 1.0. We calculated the posterior prob- and C 2 obtained from multiple MCMC analyses of the
ability at each locus xi by evaluating same data set as

Pr(xi |�, G) �
Pr(�, G |xi)

�50
j�1Pr(�, G |xj)

. � |C 1 � C 2 |
|C 1 |

�
|C 1 � C 2 |

|C 2 | ��2,

In addition, we recorded the point estimate for the
location of the disease mutation as the xi with the highest where |I | is the length of interval I.
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tively flat across the entire region. Some of the data sets
contain very little information about the presence or
location of disease mutations, and so small random fluc-
tuations in the estimation can shift the peak from one
part of the region to another. To further quantify this
observation, we computed the correlation between the
average pairwise difference of the point estimates with
the average posterior likelihood at the point estimate
for each data set. We observed that these were strongly
negatively correlated (correlation coefficient � �0.29).
The higher the signal that is present in the data (ex-
pressed in posterior probability), the smaller the differ-
ence is between the point estimates.

In summary, when the data sets contained a strong
signal, the concordance between individual runs wasFigure 5.—Point estimates of the locus of disease mutation
quite high, indicating good convergence. On the otherfor five independent MCMC analyses of each of 50 simulated

data sets. The data sets are ordered from left to right by the hand, when the information about location was weak,
median point estimate across the five replicates. The shading random variation across runs meant that the point esti-
of the point indicates the strength of the signal at the point mates sometimes varied considerably. In such cases,estimate: darker points indicate stronger signals in the data.

longer runs would be needed to obtain really accurateOpen points correspond to estimates where the average poste-
estimates. For analyzing real data, it is certainly impor-rior likelihood is �1.2-fold higher than the expected posterior

likelihood in the absence of disease mutations, shaded trian- tant to use multiple LATAG runs to ensure the ro-
gles correspond to estimates that are 1.2–12-fold higher than bustness of the results.
the background, and solid circles correspond to estimates that Point estimates of location: The mode of the posteriorare �12-fold higher than background.

distribution is a natural “best guess” for the location of
the disease variation. To assess the accuracy of this esti-
mate, we calculated the distance between this pointRESULTS
estimate and the real locus of the disease mutation for

Assessing convergence: An important issue for each simulated data set. Overall, we observed an average
MCMC applications is to check the convergence of the error of 0.19 cM with a standard deviation of 0.23 cM.
Markov chain, since poor convergence or poor mixing To evaluate this result, we compared it to the accuracy
can lead to unreliable results. While numerous methods of two other point estimators. As a naive estimator, we
exist to diagnose MCMC performance (Gammerman chose the position of the marker that has the highest
1997), the most direct approach is to compare the re- level of association with the phenotype, measured using
sults from multiple MCMC runs. If the Markov chain the Pearson 
2 statistic. This choice is based on the ob-
performs well, and the samples drawn from the posterior servation that, on average, LD declines with distance.
are sufficiently large, then different runs will produce As an example of an estimator provided by a multipoint
similar results. (Conversely, good performance by this method, we analyzed the prediction generated by
criterion does not absolutely guarantee that the Markov DHSMAP.
chain is working well, but it is certainly encouraging.) We found that the average distance between the dis-

To assess the convergence of the LATAG algorithm, ease locus and the SNP with the highest 
2 was 0.25 cM
we performed five runs for each of the 50 simulated data (standard deviation 0.26 cM) and the distance to the
sets. For our simulated data sets we found that on average, DHSMAP point estimate was 0.27 cM (standard devia-
pairs of 50% credible intervals overlapped by 75% and tion 0.25 cM). The cumulative distributions of the error
pairs of 95% credible intervals overlapped by 96%. in estimation are displayed in Figure 6. The estimate

As a second method of evaluating the convergence generated by LATAG is most likely to be close to the
of the MCMC, we compared the point estimates for the real locus of disease mutation. For instance, in 54% of
location of disease mutation between the different runs. all simulations, the LATAG estimate is within 0.1 cM of
The average distance between two point estimates on the the real locus, while the naive estimate is within 0.1 cM
same data set is 184 kb. This number includes data sets in 44% of all cases and DHSMAP is in the same range
where there is very little information about the locus of in 30% of our simulated data sets.
disease mutation. Figure 5 displays the point estimates Coverage of credible intervals: A major advantage of
for across independent runs, indicating that for most using model-based methods to estimate disease location
data sets all five runs produce a similar estimate. Further is that they can also provide a measure of the uncertainty
inspection of the results in Figure 5 indicates that in of an estimate. To assess the accuracy of the estimated
most cases where there is substantial variation across uncertainty for LATAG, we generated credible intervals

of different sizes, ranging from 10 to 90%, on the basisruns, this is because the posterior distribution is rela-



1082 S. Zöllner and J. K. Pritchard

Figure 7.—Coverage accuracy of the credible intervals ob-
tained by LATAG. We constructed credible intervals of differ-Figure 6.—Cumulative distribution of distances (in centi-
ent sizes, ranging from 10 to 90% (x-axis). The y-axis shows themorgans) between the locus of disease mutation and point
number of data sets (out of 50) for which the credible intervalestimates from three different methods. From top to bottom,
contained the true location of the disease gene. The blue barsthe three estimates are obtained from LATAG, DHSMAP, and
(number observed) are generally slightly higher than the pur-from the location of the SNP with the highest single-point
ple bars (number expected if the coverage is correct), sug-
2-value in a test for association.
gesting that our credible intervals may be slightly conservative.

of the posterior distribution for each data set. Figure 7
based 
2 of 8.5. In 88% of the simulations, the 
2-testplots the number of data sets for which the disease mu-
generated a more significant single-point P -value.tation is located within each size credible interval and

However, because the extent of multiple testing maycompares those numbers to the expected values. There
be different for the two methods, this is not exactly theis good accordance between the values, although it ap-
right comparison. The LATAG analysis consists of 50pears that for low and intermediate confidence levels
tests, many of which are highly correlated, because thethe constructed intervals are somewhat conservative and
trees may differ little from one focal point to the next.that the posterior distribution generated by LATAG
The SNP-based test consists of about the same numberslightly overestimates the uncertainty. The high uncer-
of tests (one for each marker), and the correlation be-tainty about the location of the disease mutation is re-
tween tests depends on the LD between the markers.flected in the average size of the confidence intervals,
Therefore, a simple Bonferroni correction is too conser-which range from 0.06 cM for the 10% C.I. to 0.85 cM
vative for both test statistics. To perform tests that takefor the 90% C.I.
the dependence structure in the data into account, weFor comparison, we also looked at the 95% confidence
obtained P -values for each of the two test statistics byintervals that are generated by DHSMAP. Those intervals
permutation (see Simulation methods). We observed thatare considerably shorter than the intervals obtained from
correcting for multiple tests has a strong impact on theLATAG, at an average length of 0.37 cM for intervals
signal of the single-point analysis. For 24% of the data sets,obtained using the correction for pairwise correlation and
the single-point analysis produced a region-wide P -value0.15 cM without that correction. But for both models the
�0.05, while in 30% of the data sets LATAG produced aconfidence intervals were too narrow, with 48 and 18%,
P -value �0.05. Furthermore, the two tests do not alwaysrespectively, of intervals containing the true disease locus
detect the same data sets: one-third of all the data sets(cf. Morris et al. 2002). In summary, LATAG seems to
that showed a significant single-point score did not haveprovide credible regions that are fairly well calibrated or
a significant signal with LATAG, while 45% of all diseaseperhaps slightly conservative.
loci that were detected with LATAG were not detectedHypothesis testing: To gauge the power of LATAG in
with the single-point analysis (Figure 8). Hence, althougha test for association, we assessed for each data set whether
LATAG appears to be more powerful on average, therewe could detect the simulated region as a region harbor-
may be some value in performing SNP-based tests ofing a disease mutation. To do this, we calculated the
association as well as that approach may detect somelikelihood ratio at each focal point according to Equa-
loci that would not be detected by LATAG.tion 1 and considered the maximal LR that we observed

among all focal points as the evidence for association.
For comparison, we also tested each SNP for association

TESTING AND APPLICATIONS: REAL DATA
with the phenotype, using a standard Pearson 
2-test.
We obtained an average maximum value of twice the log- To further illustrate our method we report analyses of

two sets of case-control data. One data set was used tolikelihood ratio of 5.8 and an average maximum SNP-



1083Mapping of Complex Trait Loci

Figure 8.—Comparison of the ability of LATAG (x-axis)
and a SNP-based 
2-test (y-axis) to detect disease-causing loci Figure 9.—Repeatability across runs. Average posterior like-in a test for association. Each point corresponds to one of the lihoods for 10 independent LATAG analyses of the CF data50 simulated data sets and plots the most significant P-values set are shown. For the location of the disease locus and theobtained for that data set using each method, corrected for resulting posterior credible region refer to Figure 10.multiple testing within the region. The dotted lines depict
the P � 0.05 cutoffs and the diagonal line plots the regression
line through the log-log-transformed data.

calculated P(� |Ti , x) with the peeling algorithm. As
the resulting posterior likelihoods seemed to be heavily
dependent on a few outliers, we estimated the likelihoodmap the gene responsible for cystic fibrosis, a simple

recessive disorder (Kerem et al. 1989), while the other P(x |�, G) at each position x by taking the median of
the likelihoods P(� |Ti , x) instead of the average sug-data set is from a positional cloning study of a complex

disease, type 2 diabetes (Horikawa et al. 2000). gested by theory. As before, we used the posterior mode
as our point estimate for location. Missing data wereExample application 1: Cystic fibrosis: The cystic fibro-

sis (CF) data set used by Kerem et al. (1989) to map the imputed using PHASE 2.0 (Stephens et al. 2001).
Results: To provide a simple check of convergence,CFTR locus has been used to evaluate several previous

fine-mapping procedures, thus allowing an easy compar- Figure 9 shows the results from the 10 independent analy-
ses of the CF data set. As can be seen, all 10 runs haveison between LATAG and other multipoint methods.

The data set was generated to find the gene responsible modes in the same region and yield the same conclusion
about the location of the causative variation.for CF, a fully penetrant recessive disorder with an inci-

dence of 1/2500 in Caucasians. Many different disease- Figure 10 summarizes our results across the 10 runs.
The posterior distribution is sharply peaked at 867 kb,causing mutations have been observed at the CFTR lo-

cus, but the most common mutation, �F508, is at quite near the true location of �F508 (which is at 885 kb).
The 95% credible interval is rather narrow, extendinghigh frequency, accounting for 66% of all mutant chro-

mosomes. from 814 to 920 kb. Even though several markers with
little association to the trait are in the vicinity of theThe data set consists of 23 RFLPs distributed over

1.8 Mb; these were genotyped in 47 affected individuals. deletion (Figure 10), the LATAG estimate is quite accu-
rate. It is useful to compare our results to those obtainedIn addition, 92 control haplotypes were obtained by

sampling the nontransmitted parental chromosomes. by other multipoint methods (see Table 1, modified
from Morris et al. 2002). For this data set, most of theHigh levels of association were observed for almost all

markers in the region; the marker with the highest highest single-point 
2 values lie to the left of the true
location of �F508, and so most of the methods err tosingle-point association (
2 � 63) is located at 870 kb

from the left-hand end of the region. The �F508 muta- the left, with some of the earliest methods (Terwil-
liger 1995) actually excluding the true location fromtion is at 885 kb and is present in 62 of the 94 case

chromosomes. the confidence interval. Note that the LATAG estimate
is closer to the true location, and that the 95% credibilityWe ran 10 independent runs of the Markov chain,

estimating the average posterior likelihood at each of region is narrower than that obtained by any of the
previous methods.50 evenly distributed points across the region. Each run

had a burn-in of 2.5 � 106 steps for the first focal point To assess the ability of LATAG to detect the CF region
by association, we calculated a likelihood ratio accord-and 106 steps for each following focal point. In each

run, we sampled 50 trees at each focal point, with a ing to (1) and obtained 2 ln(LR) � 40. Assuming a

2-distribution with 1 d.f., this log-likelihood ratio has anthinning interval of 10,000 steps. The runs took 8 hr

each on a Pentium III processor. For each tree Ti , we associated P -value of 3.7 � 10�10. While this is extremely
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of 85 SNPs distributed over an area of 876 kb. The
markers were genotyped in 108 cases and 112 controls.
No individual marker shows high association; the
marker with the highest LD (
2 � 9) is located at 121 kb
from the left-hand end of the region. The original study
also used some additional information from family-shar-
ing patterns that we do not consider here. On the basis
of detailed analysis of those data, Horikawa et al. (2000)
proposed that a combination of two haplotypes, each
consisting of 3 SNPs within the CAPN10 gene, increases
the risk of diabetes by two- to fivefold. The three SNPs
that make up the haplotype are located at 121, 124, and
134 kb.

We used the PHASE 2.0 algorithm, with recombina-
Figure 10.—Average posterior likelihoods generated by tion in the model (Stephens et al. 2001), to impute the

LATAG for the CF data set (Kerem et al. 1989). The dots depict phase information and missing genotypes for both cases
the association signals of the individual markers as 
2-statistics and controls. Then we used LATAG to infer the poste-
(see scale on the right). We display the likelihoods here be-

rior distribution of the location of the disease mutationcause the posterior density is extremely peaked, with 95% of
and a P -value for association, as described above. Per-its mass inside the box marked by the dashed lines.
forming eight independent runs of the MCMC, we gen-
erated a total of 800 draws from the posterior distribu-

significant, it is less significant than that obtained from tion P(T |G , x) for each of 50 positions in the sequence.
simple tests of association with individual SNPs (six of Each run had a burn-in of 5 � 106 steps for the first
which yield 
2-values �50). This may indicate that our point and 106 steps for each following point, a thinning
likelihood-ratio test does not fit the 
2-approximation interval of 10,000 steps between draws, and took 36 hr
very well, particularly far out in the tail of the distribu- on a Pentium III processor.
tion, or that our test is slightly less powerful in this ex- Results: Figure 11 plots the estimated posterior distri-
treme setting. Due to the extremely high level of signifi- bution for the location of diabetes-associated variation
cance, it is infeasible to generate an accurate P -value in this region. From this distribution we estimate the
by permutation. position of the disease mutation at 131 kb, at the same

Example application 2: Calpain-10: Our second appli- location as the SNPs that Horikawa et al. (2000) reported
cation comes from a positional cloning study that was as defining the key haplotypes. However, the posterior
searching for disease variation underlying type 2 diabe- distribution is quite wide, with 50% of its mass between
tes. Type 2 diabetes is the most common form of diabe- 70 and 245 kb. The full 95% credibility region extends
tes and in developed countries it affects 10–20% of in- between 0 and 660 kb, indicating that we can really ex-
dividuals over the age of 45 (Horikawa et al. 2000). clude only the right-hand end of this region. We would
This appears to be a highly complex disease, with no need larger samples to obtain more precision.
gene of major effect, and with environmental factors To assess whether we would have detected this region
playing an important role. A linkage study in Mexican by association, on the basis of this data set, we evaluated
Americans localized a susceptibility gene to a region (1) and obtained 2 ln(LR) � 6.0 at the posterior mode,
on chromosome 2 containing three genes, RNEPEPL1, corresponding to a single-point P -value of 5.3 � 10�4.
CAPN10, and GPR35. A data set that was generated by When we correct for multiple testing using the simula-

tion procedure, the overall significance level drops toHorikawa et al. (2000) for positional cloning consists

TABLE 1

Estimates of locations of the CF-causing allele, as taken from Morris et al. (2002)

Method Estimate Variability Comments

Terwilliger (1995) 770 690–870 (99.9% support interval)
McPeek and Strahs (1999) 950 440–1460 (95% confidence interval) Pairwise correction
Morris et al. (2000) 800 610–1070 (95% credible interval) Pairwise correction
Liu et al. (2001) — 820–930 (95% credible interval)
Morris et al. (2002) 850 650–1000 (95% credible interval)
LATAG 867 814–920 (95% credible interval)

The �F508 mutation, which is responsible for 66% of all CF cases, is located at position 885. Only estimates
that are based on the entire data set are presented.
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across multiple blocks are potentially quite informative
about the order of recent coalescent events. In our
method, rather than forcing the user to predefine re-
gions of limited recombination, the algorithm “adapts”
to the data, in the sense that quite large regions of
shared haplotypes may help to resolve recent coalescent
events, while much smaller regions (e.g., corresponding
to haplotype blocks) may be the relevant scale for recon-
structing the topology of the more ancient coalescent
events. Hence, we gather information both from muta-
tion and from recombination events to reconstruct the
ancestral trees. By doing so, we can detect association
even when there is allelic heterogeneity, and we can
gain information about low-frequency disease muta-

Figure 11.—Posterior distribution for the location of the tions, even using only intermediate-frequency SNPs.diabetes-affecting variant(s) in the calpain-10 region (solid line;
Our simulations indicated that LATAG is substantiallysee scale on the left). The dots represent the association of
more powerful than single-point SNP-based tests of asso-individual markers with the phenotype (see 
2-scale on the right).

The red dots indicate the three markers that define the disease- ciation, at least for the scenario considered.
associated haplotypes reported by Horikawa et al. (2000). It is also natural to compare LATAG to recent fine-

mapping algorithms. One major difference between
LATAG and most of the previous coalescent-based algo-

a mildly significant P � 0.02. In contrast, if we assess rithms is that LATAG aims to reconstruct the ancestry
the significance of the highest observed single-point of all the sampled chromosomes, not just of case chro-

2 by permuting case and control labels, we obtain a mosomes. By considering the ancestry of all individuals
nonsignificant P -value of 0.11. at once, we can deal with more general phenotype mod-

Overall, our results are consistent with the conclusion els and we can model allelic heterogeneity and incom-
of Horikawa et al. (2000), that CAPN10 is the gene that plete penetrance in a natural way, although including
was responsible for their diabetes linkage signal in this re- this additional information may increase computation
gion. However, our analysis cannot exclude GPR35 as the time. This also represents the first multipoint fine-map-
disease gene. As with the original analysis, our strongest ping method for quantitative traits. Our approach can
signal is in the CAPN10 region, but our overall signal also produce penetrance estimates under haploid and
is only modestly significant. diploid models (the latter to be presented elsewhere),

although these estimates may not be straightforward
to interpret when the ascertainment of samples is not
random. We have not focused on this here, but ourDISCUSSION
approach also produces a posterior probability that each

We have described a new unified method, LATAG, for chromosome carries a disease mutation. This can be
association mapping and fine mapping with multipoint used to guide full resequencing of implicated regions.
data. Our approach, based on a local approximation to Including control chromosomes in the tree allows us to
the ARG, strikes a compromise between modeling the make better use of the control data than earlier methods
population genetic processes that produce the data and that used just controls to estimate the SNP allele fre-
the need for a model that is computationally tractable quencies, as exemplified by the strong performance of
for large data sets. our method on the CF data and on the simulated data.

Our association-mapping method is similar in spirit For any model-based approach such as LATAG, it is
to earlier tree-based methods (e.g., Templeton et al. worth considering the various modeling assumptions
1987). However, we take a more probabilistic approach and how these might affect the results. In general, it
in the sense that we average over the uncertainty in trees seems that most of the inaccuracies of the model can
and consider an explicit mutation model at the unob- be overcome by informative data; at worst they might
served disease locus. A more fundamental difference is slightly reduce our power and precision (cf. Morris
that our tree inference scheme aims to model recombi- et al. 2002). For instance, the Markov model that we
nation explicitly, while the earlier methods make the use for LD outside the inherited region is not strictly
most sense in small regions without evidence for recom- accurate and might be expected to produce a slight
bination. Moreover, even for estimating the tree within a bias toward keeping too much sequence on the tree.
haplotype block, markers outside the block may contain Inaccuracies there may explain the tendency toward
additional information about that tree. It is typical for conservativeness in the coverage of our credible inter-
there to be at least some LD between haplotype blocks vals (Figure 7). Similarly, the finite sites model used for

SNP mutation, ignoring SNP ascertainment, is clearly(Daly et al. 2001), and patterns of haplotype sharing
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inaccurate. However, this model is computationally con- puting facilities. Nevertheless, improving the algorithm
to deal with larger data sets is a focus of our ongoingvenient, and it seems likely that the data should over-
research.whelm deficiencies here; again, that view is supported

One question that arises in this context is whether toby the results. Besides, allowing recurrent SNP mutation
treat haplotype phase from diploid genotypes as knownprovides an ad hoc way of allowing for gene conversion,
when inferring the trees (here we estimated phase usingwhich might otherwise confound our inference.
Phase 2.0 ; Stephens et al. 2001). The alternative—whichAnother issue is that we ignore the ascertainment of
is more statistically sound—is to use the MCMC coales-cases and natural selection on the disease variants.
cent algorithm to mix over unknown phase along withThese processes are expected to distort the shape of
tree topology. Morris et al. (2004) implemented suchthe tree (cases will be more closely related than pre-
a method and reported that it produced more accuratedicted under the coalescent model). But this distortion
fine-mapping results than did a method that used haplo-effect will be most pronounced when the signal is very
types estimated by a simple EM algorithm. However,strong (e.g., for a recent highly penetrant mutation, as
given that it is already difficult to achieve good MCMCin the CF data). In that case, the data will usually be
performance in large data sets of known haplotypes, itstrong enough to overwhelm the rather weak coalescent
is unclear to us that also mixing over haplotypes is neces-prior. In other words, when the coalescent model is
sarily a good strategy. We look forward to further re-furthest from the truth, the data are likely to be very
search on this issue.informative and should override the misspecifications

In summary, our new methods provide a coherentof the prior.
framework for achieving different goals of LD-basedAt present we also assume that even if there are multi-
mapping. Furthermore, they perform well on real andple disease mutations in a region all of these occur at
simulated data, compared to standard existing methods.essentially the same position. This may well be a poor
One of the biggest challenges for the future will be toassumption. For example, mutations in different exons
develop our current framework so that it can be appliedof a single gene might be many kilobases apart. Neither
to the massive data sets that will soon be forthcomingour method nor any other existing method would han-
in the human genetics community.dle this well; however, dealing with this issue is surely

We thank Nancy Cox, Dick Hudson, Dan Nicolae, Matthew Ste-an important problem for the future.
phens, and two anonymous reviewers, plus the other members of ourFull-likelihood coalescent methods such as LATAG
lab, for helpful discussions and/or comments on the manuscript and

pose considerable computational challenges. It is not Nancy Cox for giving us access to the calpain-10 data. This work was
easy to design MCMC algorithms that can traverse through supported by grant HG 2772 to J.K.P. from the National Institutes of

Health.tree space efficiently and produce robust, repeatable
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1088 S. Zöllner and J. K. Pritchard

Stephens, M., N. J. Smith and P. Donnelly, 2001 A new statistical Tokuhiro, S., R. Yamada, X. Chang, A. Suzuki, Y. Kochi et al., 2003
An intronic SNP in a RUNX1 binding site of SLC22A4, encodingmethod for haplotype reconstruction from population data. Am.

J. Hum. Genet. 68: 978–989. an organic cation transporter, is associated with rheumatoid ar-
thritis. Nat. Genet. 35: 341–348.Templeton, A. R., E. Boerwinkle and C. F. Sing, 1987 A cladistic

analysis of phenotypic associations with haplotypes inferred from Tzeng, J.-Y., B. Devlin, L. Wasserman and K. Roeder, 2003 On
the identification of disease mutations by the analysis of haplotyperestriction endonuclease mapping. I. Basic theory and an analysis

of alcohol dehydrogenase activity in Drosophila. Genetics 117: similarity and goodness of fit. Am. J. Hum. Genet. 72: 891–902.
343–351. Van Eerdewegh, P., R. D. Little, J. Dupuis, R. G. Del Mastro, K.

Terwilliger, J. D., 1995 A powerful likelihood method for the Falls et al., 2002 Association of the ADAM33 gene with asthma
analysis of linkage disequilibrium between trait loci and one or and bronchial hyperresponsiveness. Nature 418: 426–430.
more polymorphic marker loci. Am. J. Hum. Genet. 56: 777–787. Wall, J. D., 2000 A comparison of estimators of the population

Terwilliger, J. D., and K. M. Weiss, 1998 Linkage disequilibrium recombination rate. Mol. Biol. Evol. 17: 156–163.
mapping of complex disease: Fantasy or reality? Curr. Opin. Bio- Zöllner, S., and A. von Haeseler, 2000 A coalescent approach to
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APPENDIX A: THE MCMC ALGORITHM

The goal of the Markov chain Monte Carlo algorithm is to generate trees from the distribution Pr(Tx |X � x, G).
As before, G denotes haplotype data across some region, and x is a focal point within that region. We treat the
unknown genealogy, node times, and ancestral sequence at each node as missing data and use MCMC to integrate
over these missing data. For a more detailed description, we need to introduce some more notation. As an aid to
the reader, the notation used in this appendix is summarized in Table A1.

We assume that recombination events and mutation events on one side of x occur independently of events on
the other side of x, so that conditional on the tree topology and branch lengths, the full likelihood can be
computed as the product of the left-hand and right-hand likelihoods. Thus, it is sufficient to describe mutations
and recombinations on the right side of x with the understanding that the same process occurs on the left side.
Let us therefore assume, without loss of generality, that x is immediately to the left of marker 1.

The sample we are looking at consists of n chromosomes that are typed at L loci. The marker map can be described
by the following variables. Let di , i � {1, . . . , L } be the physical distance between the focal point x and marker i
and let �i be the number of alleles at marker i . Let �/2 be the mutation rate of each marker per unit coalescent
time, and let �/2 be the recombination rate per unit coalescent time per unit distance. That is, recombination
events occur between the focal point x and marker i at rate � · di/2 per unit coalescent time.

The coalescent tree Tx is described by the following two variables: Let � � (�n, . . . , �2) denote the times between
successive coalescent events (e.g., �n is the time during which there are n lineages in the tree). Let � denote the
labeled topology of the tree. For notational purposes, it is convenient to introduce Kj , j � {1, . . . , 2n � 1} as the
ordered set of nodes on the tree, so that {K1, . . . , Kn } are the external nodes, Kn�1 is the node of the first coalescent
event, and K2n�1 is the most recent common ancestor (MRCA). Furthermore, let B � (b 1, . . . , b 2n�2) be the vector
of branch lengths, where bj is the branch length between node Kj and its parental node.

Let s j
i � {1, . . . , �i } be the observed or inferred allele at node Kj at marker i , and let s j denote the full haplotype

{s j
1, s j

2 , . . . s j
L}. If marker i has no sequence in Kj , then s j

i is set to 0. Let S � (s1, . . . , s 2n�1) be the vector of all
sequence information in internal and external nodes. In this notation G � {s1, . . . , sn }. Let rj � {1, . . . , L � 1} be
the marker closest to x that is not inherited to node Kj from its ancestor due to recombination, where rj � L � 1
indicates that the entire set of markers is inherited. Let R be the vector of all rj . Using this notation, the goal of
our algorithm is to sample from Pr(�, � |s1 , . . . , s n), while treating (�, �, R, s n�1, . . . , s 2n�1) as augmented data. Let
A � (�, �, �, �, R, s n�1, . . . , s 2n�1) be the joint vector of unknown parameters. At each step of the algorithm, we
draw a candidate value Ã from a proposal density O(· |A, G). Details about the proposals are given below. The
candidate value Ã is accepted to replace A with probability �(A, Ã), where

�(A, Ã) � min 	1,
Pr(Ã |G) · O(A |Ã, G)
Pr(A |G) · O(Ã |A, G)
 (A1)

is the usual Metropolis-Hastings ratio; otherwise the old value A is retained. The probabilities Pr(Ã |G) and Pr(A|G)
are calculated according to the details given below. As is standard, the initial steps of the Markov chain are discarded,
as they are heavily influenced by the starting condition. Inference is then performed on the subsequent set of
topologies, with an appropriate thinning interval.

To evaluate (A1), we need to calculate the probabilities Pr(Ã |G) and Pr(A |G). To this end, we first need to
establish some basic models for recombination and mutation.
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TABLE A1

Summary list of notation for the MCMC

Parameter Meaning

x Focal point
Tx Bifurcating tree at locus x
G Genotypes (marker data)

n No. of chromosomes in the sample
L No. of markers
di Distance between x and marker i � {1, . . . , L }
�i No. of alleles at marker i

�/2 Mutation rate of each marker per coalescent time unit
�/2 Recombination rate per kilobase per coalescent time unit

�i Times between coalescent events
� Vector of coalescent times �i

� Labeled topology of the tree
Kj Ordered set of nodes on the tree
bj Branch length between node Kj and its parental node
B Vector of branch lengths bj

s j
i Sequence information in node Kj at marker i

rj Marker closest to x that is not inherited to node Kj due to recombination
R Vector of recombinations rj

A (�, �, �, �, R, s n�1, . . . , s 2n�1), the joint vector of unknown parameters

For a more detailed description refer to the text.

Mutation model: We assume a finite sites mutation model with parent-independent mutation at rate �/2 per
branch, per unit coalescent time. That is, at each marker, mutations occur as a Poisson process at rate �/2, and
the new allele following a mutation is drawn uniformly at random from the �i possible alleles. (Hence, at a site with
two alleles, �/2 is twice the biological mutation rate, which counts only mutations that change the allele.) It should
be pointed out that � as it is used here represents the mutation rate of a preascertained SNP, not the usual mutation
rate of a random base pair. Letting node Kl be ancestral to Kk , then conditional on the fact that no recombination
occurs between x and marker i between Kl and Kk , the allelic state of marker i has the distribution

Pr(s k
i � a1 |s l

i � a2 , bk , r r
k � i) � 	

1
�i

(1 � e��·bk /2) if a1 � a2

1
�i

(1 � e��·bk /2) � e��·bk/2 if a1 � a2
 , (A2)

where a1 , a2 � {1, . . . , �i }.
Background haplotype probabilities: For the model of the recombination process it is necessary to provide the

probability that a haplotype could arise on the part of the ancestry that is not described by Tx. Let q , v � {1, . . . ,
L � 1} be positions on the marker map and (si)q
i�v be the sequence between those two positions. Then H((si)q
i�v)
designates the probability of drawing the haplotype (si)q
i�v from the population. As in some previous work in this
area (e.g., McPeek and Strahs 1999; Morris et al. 2002), we model the likelihood for sequence that recombines
into the tree as a first-order Markov process, estimating the allele frequencies and two-site haplotype frequencies
as proportional to the sample frequencies plus 1.

Recombination model: Letting the nodes Kk , Kq be the descendants of node Kj , then zj � {1, . . . , L � 1} is defined
as zj � max {rk , rq }. Thus zj is the marker closest to x in node Kj that will not be inherited to the present. For i � {1,
. . . , n }, by definition zi � L � 1. Then the probabilities of recombination events on the branch from Kj , conditional
on the state at Kj , are
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Pr(rj � c |bj , zj) �

⎧
⎪
⎪
⎪
⎭
⎫
⎪
⎪
⎪
⎩

0 if c � zj

�
dc

0

bj �/(2e�bj �t/2)dt if c � 1

�
dc

dc�1

bj �/(2e�bj �t/2)dt if 1 � c � zj

�
∞

dc�1

bj �/(2e�bj �t/2)dt if c � zj , (A3)

for c � {1, . . . , L � 1}. For some rearrangements in the tree in the MCMC, it is necessary to calculate the probability
of a recombination on bj , conditional on the state of nodes that are ancestral to Kj . In our model, the amount of
information at a node is dependent on the recombination events that occur on branches descending from that
node. Thus certain rearrangements may be incompatible with the rest of the tree, as they may provide an upper
bound to sequence lengths in ancestral nodes. If the sequence in an ancestral node is longer than this upper bound,
the resulting tree is impossible. This has to be taken into account when calculating the probability of a given
recombination conditional on the sequence length at nodes. Let Ku be a node that is ancestral to Kj . Then, rj is
consistent with zu if it allows sequence information up to zu to reach node Ku . Then, the distribution for recombination
events in Kj is

Pr(rj � c |bj , zj , zu) � 	0 if c is not consistent with zu

Pr(rj � c |bj , zj) if c is consistent with zu .

Prior probabilities: In our current implementation, the priors for � and � are those given by the standard neutral
model for a single locus. That is, �l , the time during which there are l lineages, is exponentially distributed with
parameter � l

2 �
�1

, independently for each l. The topology � is a bifurcating tree with n labeled tips; when there are l lin-
eages, the probability that two particular lineages coalesce is � l

2 �
�1

for all pairs. The priors for � and � are taken
as uniform.

Probability of a tree: With these models in place, we can now write the probability of the tree and augmented
data, conditional on the observed data, as

Pr(�, �, �, �, R, s n�1, . . . , s 2n�1 |s1, . . . , s n) �
Pr(�, �) · Pr(�) · Pr(�)

Pr(s1, . . . , s n)
· Pr(R, S |�, �, �, �), (A4)

assuming independence of the prior probabilities for (�, �), �, and �. The prior probabilities in (A4) [i.e., Pr(�,
�), Pr(�), and Pr(�)] are computed as above. Pr(s1, . . . , s n) is constant and cancels out of the Metropolis-Hastings
ratio. The last factor can be calculated as

Pr(R, S |�, �, �, �) � Pr(R |�, �, �) · Pr(S |R, �, �, �). (A5)

Now, as the nodes are ordered by their time since the present, we can calculate the first term of (A5) as

Pr(R |�, �, �) � Pr(r1 |�, �, �) · Pr(r2 |r1 , �, �, �) · . . . · Pr(r2n�2 |r1, . . . , r2n�3 , �, �, �). (A6)

The individual terms in (A6) can be calculated according to (A3), as for any node Kj the recombinations for all
nodes “below” Kj are in the conditional; therefore zj is known. The second term of (A5) can be calculated as

Pr(S |R, �, �, �) � Pr(s 2 n�1 |R, �, �, �) · . . . · Pr(s1 |s 2, . . . , s 2n�1 , R, �, �, �). (A7)

The first term of (A7) represents the sequence at the MRCA of the coalescent tree and can be approximated by
drawing from H((s 2n�1

i )yr
i�z2n�1
). Every other term in (A7) calculates the probability of sequence in node Kv conditional

on the sequence of its ancestral node Kj while nodes that are descendants of Kv are not in the conditional. Therefore,
it can be written as

Pr(sv |s j , bv , zv , rv , �) � H((s 2n�1
i )rv
i�zv

) �
rv�1

i�yr

Pr(s v
i |s j

i , bv),

where the probabilities in the second term are calculated according to (A2).
MCMC updates: The MCMC algorithm draws trees from T |G , while treating (�, �, R , s n�1, . . . , s 2n�1) as augmented

data. We start with an initial value for each of these variables, chosen either at random from the prior or using
some heuristic guess. Then at each step of the algorithm, we propose a change of one or more parameters. Each
step includes the “local update of internal nodes” for all nodes and one or more of the topology rearrangements.
The updates for � and � are performed less often. Each proposal is accepted according to the Metropolis-Hastings
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Figure A1.—Proposal of major rearrangements of the topol-
ogy of the tree. Nodes Ki are displayed as i. One node (I ) and
all its descendants are moved from one clade of the tree to a
different clade.

ratio (A1). In the following, we describe the different proposals employed. Dependent on the nature of the data
set, we perform the different proposals at different rates. For every parameter z let z̃ denote the proposed new
parameter. Furthermore, we define ti to be the time between node Ki and the present. The different changes we
propose are:

Propose new �: A new �̃ is drawn from a uniform distribution on the interval (0.5 · �, 2 · �).

Propose new �: A new �̃ is drawn from a uniform distribution on the interval (0.5 · �, 2 · �).

Local update of internal nodes: Starting at the terminal nodes, we propose for each node Ki an r̃i , a time t̃i , and a
sequence s̃ i conditional on the sequence and recombination events at surrounding loci. All nodes are visited in
each step of the Markov chain.

Major rearrangements: We randomly select a node Ki that can be removed from its location, without causing
inconsistencies among its parental nodes (Figure A1). Using the notation illustrated in Figure A1, Ki is a candidate
to be moved if

max{rq , bj } � bo .

Then we consider all other nodes whose parental nodes are older than Ki and weight them according to their
sequence similarity with Ki. Given those weights, we draw one node Kc . Let Kk be the parental node of Kc. We
then draw a time t uniformly from the interval (max{tc , ti }, tk) and propose a new tree where Ki coalesces with Kj

at node K̃p at time t , while Kj and Kq coalesce at node Ko (see Figure A1). We draw new recombinations r̃j , r̃c , r̃i ,
and r̃p and a new sequence s̃ r conditional on the information at surrounding nodes.

Minor rearrangements: We draw an internal node Ki of the tree. Let Ki and Kj coalesce at Kp and Kp and Kq coalesce
at Ko . Then we propose a tree, where Kj and Kq coalesce at K̃p and Ki and K̃p coalesce at Ko , while the coalescent
times remain unchanged. We also propose a new s̃p and r̃p .

Reordering of coalescent events: We select a internal node Ki that has the direct descendants Kk and Kl and the
parental node Km . Then we select a second internal node Kj that has the direct descendants Ko and Kp and the
parental node Kq with tj � (max{tk , tl }, tm) and ti � (max{to , tp }, tq) and propose an exchange of times ti and tj .

APPENDIX B: CALCULATING THE PHENOTYPE LIKELIHOODS

Given a tree Tx , we need to compute Pr(� |X � x , Tx), the probability of observing the arrangement of phenotypes
on the tree. To do this, we assume that all disease mutations occur as a Poisson process with rate �/2. Furthermore,
we assume that multiple mutations on the same chromosomes have no further effect; thus every chromosome that
carries at least one mutation has the same distribution of phenotypes. Under this model we have developed the
following approach to calculate Pr(� |X � x , Tx).

Peeling algorithm: Recall that P φ
m denotes the probability that a chromosome comes from an individual with

phenotype φ given that it has mutation (m � 0) or at least one mutation (m � 1). Then Pr(� |X � x, Tx) can be
calculated exactly, using the peeling algorithm (Felsenstein 1981).

Let mi be an indicator for the mutation status at node Ki, where mi � 1, if node Ki carries at least one disease
mutation and mi � 0 otherwise. Furthermore, let �i be the phenotypes of all terminal nodes that descend from
node Ki. Then it is straightforward to calculate Pr(�i |mi � 1), as further mutations on branches below Ki do not
affect the phenotype (by assumption). Therefore,

Pr(�i |mi � 1) � �
Kj is terminal descendants of Ki

P φj
1 , (B1)



1092 S. Zöllner and J. K. Pritchard

where Kj denotes the terminal descendants of Ki . In the case of a case control phenotype, where �i consists of a
affecteds and u unaffecteds, Equation B1 can be written as

Pr(�i |mi � 1) � (P 0
1)u · (P 1

1)a,

where u is the number of controls and a is the number of cases among the terminal descendants of Ki .
On the other hand, Pr(�i |mi � 0) is a little more complicated to calculate. Here we can make use of the assumption

that conditional on the mutation status phenotypes at each terminal node occur independently. Then mutations
on branches are affecting only phenotypes that descend from this branch. Let Ky be an internal node of the tree
and Ks , Kt be the descendants of Ky . Furthermore, let �i be the probability that there is at least one disease mutation
on the branch from node i to its parental node, calculated as �i � 1 � e��bi/2. Then we can write

Pr(�y |m y � 0) � (Pr(�s |m s � 0) · (1 � �s ) � Pr(�s |m s � 1) · �s ) · (Pr(�t |m t � 0) · (1 � �t) � Pr(�t |m t � 1) · �t ).

While Pr(�s |ms � 1) and Pr(�t |mt � 1) can be calculated according to (B1), Pr(�s |ms � 0) � P φ
0, if s is a terminal

node. Therefore, we can calculate Pr(�y |my � 0) for every internal node by starting at the most recent nodes and
working iteratively backward in time. As Pr(� |X � x, Tx) � Pr(�MRCA |mMRCA � 0), this allows us to calculate the
likelihood of the phenotypes given the tree.

Integrating over penetrances: The calculations just described are for fixed values of P φ
0 and P φ

1 . Since these are
unknown in advance, our Bayesian computations are based on integrating over the space of possible penetrances.
To this end, let us assume, these probabilities are governed by a vector P of variables that live on the bounded set
�. In the case of a binary phenotype, this vector P consists of the penetrances of the carriers/noncarriers and � �
[0, 1] � [0, 1], while for a normally distributed quantitative phenotype it is composed of the variances and the
means of carriers and noncarriers. Then we want to evaluate

Pr(� |Tx , X � x) � �
P��

Pr(� |Tx , X � x, P)Pr(P)dP.

In practice, we are unable to calculate the integral. We therefore substitute

Pr(� |Tx , X � x) � 1
k �

k

i�1

Pr(� |Tx , X � x, Pi) (B2)

with �̂ � {P1, . . . , Pk } selected from a suitable grid on �. For the analysis presented here, we used (P 0
0 , P 0

1) � �̂ �
{(0.05, 0.05), (0.1, 0.05), . . . , (0.95, 0.95)}.


