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Abstract

Spectral clustering has been demonstrated to often outperform K-means clustering in real
applications because it improves the similarity measurement of K-means clustering. How-
ever, previous spectral clustering method still suffers from the following issues: 1) easily
being affected by outliers; 2) constructing the affinity matrix from original data which often
contains redundant features and outliers; and 3) unable to automatically specify the cluster
number. This paper focuses on address these issues by proposing a new clustering algorithm
along with the technique of half-quadratic optimization. Specifically, the proposed method
learns the affinity matrix from low-dimensional space of original data, which is obtained by
using a robust estimator to remove the influence of outliers as well as a sparsity regulariza-
tion to remove redundant features. Moreover, the proposed method employs the £, -norm
regularization to automatically learn the cluster number according to the data distribution.
Experimental results on both synthetic and real data sets demonstrated that the proposed
method outperforms the state-of-the-art methods in terms of clustering performance.

Keywords Spectral clustering - Subspace learning - Feature selection - M-estimation -
Half-quadratic optimization

1 Introduction

Cluster analysis is playing an important role in real applications, such as stock data analy-
sis, market segmentation, production supervision, and anomaly detection [28, 39]. In recent
years, spectral clustering has been attracting wide attention due to conducting K-mean clus-
tering on the spectral representation rather than original representation [11, 31, 32]. To do
this, spectral clustering first obtains the spectral representation of original data by conduct-
ing the eigenvalue decomposition of the affinity matrix of original data, and then conducts
K-means clustering on the resulted spectral representation [30].
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Spectral clustering generates the new representation (i.e., the spectral representation) of
original data through matrix spectral analysis theory so that it is simple to implement, and
does not easily fall into local optimal solution, compared to other clustering methods [30].
The key step of spectral clustering is the learning of spectral representation, i.e., affinity
matrix learning, which is also the key difference between spectral clustering and K-means
clustering. Usually, the construction of the affinity matrix includes local representation
methods and global representation methods. The global representation methods represent
each data point by all of data points [34, 46], while the local representation methods use the
local information of original data to construct the affinity matrix between samples, such as
local subspace affinity [33] and locally linear manifold clustering [6]. However, previous
spectral clustering still has issues to be addressed.

First, cluster performance always suffers from the influences of redundant features and
outliers. However, it is very often to find them on original data. Hence, the quality of both
the cluster models and the affinity matrix constructed on original data are not guaranteed
[25, 37, 40]. In the literature, some studies only focused on avoiding the influence of either
redundant features or outliers for constructing clustering model. For example, the literature
[16, 38] employed the sparse technique to avoid the influence of redundant features for clus-
tering, while the studies in [5, 19, 45, 46] used the low-rank method to avoid the influence
of outliers. A few literature has focused on taking the two issues into account in a unified
framework [42]. For example, some studies in [17, 25] proposed avoiding the influence of
redundant features by an £ ;- norm regularization as well as reducing the effect of outliers
by the robust estimator.

Second, the affinity matrix learning is also affected by the redundant features and out-
liers. A number of previous literature focus on constructing the affinity matrix from the
low-dimensional space of original data rather than the original space used in traditional
spectral clustering [20, 27]. To the best of our knowledge, no literature has focused on
simultaneously learning clustering models and the affinity matrix from the low-dimensional
space of original data by reducing the influence of outliers and redundant features.

Third, many clustering methods (such as K-means clustering and spectral clustering)
need to specify the cluster number, which requires prior knowledge. Recently, the literature
[25] focuses on automatically learning the cluster number by designing a regularization, but
does not taking into account the influence of outliers and redundant features on the affinity
matrix learning.

In this paper, we proposed a new clustering algorithm to address above three issues in
a unified framework by employing the half-quadratic optimization technique. Specifically,
our proposed method employs the sparse regularization and the half-quadratic technique,
respectively, to reduce the influence of redundant features and outliers so that our method
is available to learn a clustering model and the affinity matrix from the low-dimensional
space of high-dimensional original data. Moreover, we employ an £ j-norm regularization
to automatically determine the cluster number. Furthermore, we propose a new alternating
optimization strategy to solve the proposed objective function.

Compared to the previous clustering methods, we conclude the contributions of our
proposed method as follows:

— The proposed method jointly conducts the clustering task and feature selection from
low-dimensional space of original data in a unified framework. This makes our method
reduce the influence of outliers and redundant features. To the best of our knowledge,
a few literature has focused on these two issues simultaneously.
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—  The proposed method does not need to predefine the cluster number, which is an open
issue in the clustering study. Although some studies focused on solving this issue, they
did not take into account the influence of outliers and redundant features.

We summarize the rest of this paper as follows. We briefly review the literature related
to this paper in Section 2. In Section 3, we give the detailed description of our proposed
method as well as list our optimization strategy to the resulted objective function. After that,
we present experiment results in Section 4 and finally conclude this paper in Section 5.

2 Related work

In this section, we briefly review existing methods for clustering analysis by the information,
such as the clustering definition, the clustering categories, and previous clustering methods
for dealing with the noise and redundancy inherent data points.

2.1 Clustering analysis

Cluster analysis pushes data points to be grouped in clusters, helping us to analyze and
describe the real-world. Thus it is an important branch in the field of machine learning as
well as plays an important role in the real applications, such as psychology, biology, pattern
recognition, and data mining [1, 26]. According to the calculation criteria of the similarity
between two objects, previous clustering algorithms can be divided into the subcategories,
such as partition-based methods, hierarchical method, and density-based method. The
partition-based clustering method (e.g., K-Means algorithm and K-modes algorithm) sim-
ply divides data points to several non-overlapped subsets such that every data point belongs
to only one subset [4]. The hierarchical clustering method is to create a hierarchical tree
by calculating the similarity between different types of data points. Moreover, in the clus-
tering tree, original data points with different categories are located in the lowest layer of
the tree while the top layer of the tree is located in the root node of a cluster. Traditional
methods for a clustering tree generation include the bottom-up merge methods and the top-
down split methods [44]. The density-based clustering method is designed to start from the
distribution density of data objects, and then connects adjacent regions with enough density
to detect clusters with different shapes. Recently, the density-based clustering methods are
mainly used for clustering spatial data in the domain of database [36].

2.2 Clustering methods for feature selection

Clustering analysis usually involves high-dimensional data, which contains noise and redun-
dancy to degrade the clustering performance [5, 14]. However, most existing clustering
algorithms did not pay attention to this issue. A naive solution to noise and redundancy is to
first conduct dimensionality reduction and then conduct clustering analysis on the reduced
data. However, such a two-step strategy can not grantee to output significant clustering per-
formance as the goal of the first step (i.e., dimensionality reduction [38, 40]) is focused on
reducing the feature number rather than improving the clustering performance [42, 45, 46].
Recently, Volker et al. proposed to combine clustering analysis with feature selection in a
unified framework [24]. Martin et al. proposed the concept of feature saliency and intro-
duces the Expectation—-Maximization (EM) algorithm for clustering analysis [15]. Zhu et al.
proposed a novel one-step spectral clustering algorithm to combine the similarity learning
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with feature selection in a unified one-step clustering framework to simultaneously conduct
feature selection and spectral clustering [41].

2.3 Clustering methods for similarity measurement

Cluster analysis is an unsupervised learning method due to the lack of class labels, so the
goal of clustering is to maximize the similarity between two data points within the same
category as well as minimize the similarity between two data points in different categories.
Hence, the similarity measurement is the key step for clustering analysis [14]. In the lit-
erature, Zelnik-Manor proposed to self-adjust the number of the nearest neighbors of data
points for conducting spectral clustering [35]. Wang et al. proposed determining the sim-
ilarity by the density and distance of the data points [23]. Liu et al. proposed adjusting
the similarity between data points by the number of shared neighbors between two data
points [18].

2.4 Clustering methods for avoiding the influence of outliers

Although many methods have been proposed to improve the robustness of clustering anal-
ysis, how to improve the robustness of clustering algorithms is still a challenging problem
due to the diversity and complexity of noise. Recently, Wang et al. proposed to assign a
scale value to each data point according to the distance between the data point and the cor-
responding centroid, so as to distinguish normal data points from outliers in the clustering
process [29]. Liu et al. proposed to seek the lowest rank representation that can represent the
data points as linear combinations of the bases for spectral clustering [7]. Zhu et al. proposed
a new robust multi-view clustering method to solve the initialization sensitivity of existing
multi-view clustering, and introduce the correlation entropy loss function to estimate the
reconstruction error for effectively avoiding the impact of outliers [48].

3 Approach

In this section, we list the notations used in this paper in Section 3.1, and then report the
details of our proposed method in Section 3.2. Finally, we describe our optimization method
for the proposed objective function in Section 3.3.

3.1 Notations

In this paper, matrices and vectors are denoted as boldface uppercase letters and boldface
lowercase letters, respectively. More specifically, given a matrix X = [x;;], its i-th row and
Jj-th column are denoted as x; and x;, respectively. We denote the Frobenius norm, £ ,-

norm of a matrix X, respectively, as ||X||F = \/Z,- %113 = \/Z; I1x;113 and |[X]||2,, =

=

L
(Zi v j xé) . We further denote the transpose operator and the inverse of a matrix X

as X7 and X~!, respectively.
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3.2 Proposed method

Finding the internal structure of data is a challenging task in clustering task [13, 37]. Given
adata set X = [X], X2, ..., X;] € R"*9 as the data matrix with n samples, where d represents
the number of the features, we can use either global representation methods or local repre-
sentation methods to construct the affinity matrix S € R"*”. Since the local representation
method linearly represents the relationship between the data point and its nearest neighbors
[16, 40], it could effectively avoid the influence of outliers, so that it has been proved bet-
ter than the global representation method [45, 46]. In this paper, the local representation
method is used to construct the affinity matrix, using Euclidean distance to measure the sim-
ilarity between the data points, with the assumption that every data point can be connected
to other data in the data set. Specially, letting s; ; to represent the similarity between the i-th
data point and the j-th data point, a small distance ||x; — X;]| |% should be assigned a large
probability s;; while a large distance ||x; —X;| I% should be assigned a small probability s; ;.
Hence, we can obtain the following objective function based on previous literature [38, 43]

n
min -21 sijlIxi — x;13 1)

j=

Previous methods (e.g., [11, 39, 43]) assume that the affinity matrix constructed in the
original feature space can accurately represent the true relationship among data points, so
the affinity matrix can be used to guide the original feature space for conduct the predic-
tion task. However, such prediction is often inaccurate because both the redundant features
and outliers in the data set make the actual distribution of the data set complex. Thus, it is
difficult to guarantee that the affinity matrix learnt from the original feature space can effec-
tively guide the clustering process in the intrinsic low-dimensional subspace. This makes
that it is very challenging to conduct clustering on high-dimensional data. To address this
issue, we explore the optimal subspace in the original feature space and extract the inherent
affinity matrix from the optimal low-dimensional subspace, based on the assumption that
original data structure actually lies on a low-dimensional space.

More specifically, by denoting W € R?*¢ (where ¢ < d is the dimensions of intrinsic
space of original high-dimensional data) as the transformation matrix that maps the original
data X to its intrinsic subspace spanned by XW, we design to learn an intrinsic affinity
matrix S € R"*" in the intrinsic low-dimensional space via the following objective function

n
i il W —x; W2 SI13 + AW
Hv%’féljglsl’j“l W12 + BIISIZ + A W21 2)

s, WIXTXW =1, Vi,sT1=1,0<s;; <1,

where A is a tuning parameter. The penalty ||[W||, | conducts feature selection by outputting
the row sparsity on W to remove redundant features of X. While the orthogonal constraint on
the scatter matrix W/ X7 XW = I. € R°*¢ actually conducts subspace learning to transfer
original d-dimensional feature space into c-dimensional space. In this way, (2) reduces the
influence of redundant features by two kinds of dimensionality reduction methods, i.e.,
subspace learning and feature selection.

In spectral clustering, the quality of the affinity matrix will affect the effect of cluster-
ing. Moreover, the £;-norm regularization is only effective for Gaussian noise processing
with independent distribution, and can not effectively handle the abnormal edge of the affin-
ity matrix S, i.e., outliers. In other words, in the process of optimizing W, the abnormal
edges will still appear. Given noisy real-world data, heavy contamination of the connectiv-
ity structure by connections across different underlying clusters is inevitable. To address
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this issue, in this paper, our method uses robust estimators to automatically prune spurious
inter-cluster connections while maintaining veridical intra-cluster correspondences by the
following objective function

n
min > si (W —x;WI,) + BIIS|I5 + AW
W,SL]_ZZI i (1% JWILy) + BIISIE + AW,y )

st WIXTXW =1, Vi,sT1=1,0<s; <1,

where p(.) is a robust estimator designed by the half-quadratic theory [9, 12, 22] and the
£3,1-norm regularization on (x; W — x; W) could automatically output the number of the
clusters based on the data distribution [25].

Robust estimators could produce robust estimations that are not unduly influenced by
outliers and output significant performance with reducing influence of outliers [12]. Based
on the half-quadratic theory, the researchers designed a number of robust estimators, each
of which could theoretically reduce the influence of outliers. In this paper, for simplicity,
we use the well-known German and Reynolds estimator [3] to replace p(.), i.e.,

—1 . 1
p(z) = T+1z] with ¢(z) = (127 “)

where z is a vector or a matrix, ¢(z) is a minimization function.

According to the literature [22], the half-quadratic theory usually transfers the robust
estimator to its equivalent formulation by introducing an auxiliary variable p, e.g., p(z;) =
n})i_n { pi zl.z + o(pi) }, where p,-zi2 is a quadratic function and ¢ (p;) is the dual function of the

1

robust estimator. Usually, each robust estimator has a corresponding minimization function,
we can assign different weights to each z; by minimization function. Specifically, if z; is
an outlier, the value of p; is small or even 0, and vice versa. In this way, the influence of
outliers will be reduced.

Based on above analysis, we transfer our objective function in (3) to our final objective
function as follows.

n
in Y s pilIxiW—x;W[3+¢P SI13 + AW
‘g,lg’lpi.jzls,,,pl,/llz W + @) + BIISII; + AWz )

s, WIXTXW =1,Vi,sT1=1,0<s; <L

Algorithm 1: Pseudo code of solving (5).

Input: X € R>d, B, and A;
Output: S € R"";
Initialize W € R4*¢;
Initialize t = 1;
repeat
Update P via (6);
Update S via (9) ;
Update W via (13);
t=t+1;
until Convergence,

9 N AW N =
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3.3 Optimization

Equation (5) is not jointly convex to all the variables (i.e., S, Wand P), but is convex for
each variable while fixing the others. In this paper, we employ an alternating optimization
strategy to optimize (5) and list the details in Algorithm 1.

(i)Update P by fixing S and W

According to the literature [2, 22], if the variables S and W are fixed, P can be updated
by the following formula:

A R
Pij = (1+||XiW—XjWH2)2’ L, ] = 1,..,n. (6)
(ii) Update S by fixing W and P

Given P and W, we obtain the optimization problem with respect to S as follows:

n
min Y s; jpi jIxiW —x; W3 + Blisi 1|3,
S i (7
st Vi, sf1=1,0<s; <1

The optimization of S is independent on each row, so we further change (7) to
individually optimize s; (i =1, ..., n) as follow:

n
; min Z sijeij + ,BSiZJ, ®)
S; lil,Si_jZOj:I
where e = {ei,l, ceny e,',,,}, €i.j = p,',j“X,'WT — XjWTH%.
We first calculate k nearest neighbors of each data point, and then set the value of s; ; as
0 if the j-th data point is not one of k nearest neighbors of the i-th data point. Otherwise, the
value of s; ; can be solved by Karush—-Kuhn-Tucker (KKT) [47] conditions, i.e.,

Aei,k+l—fi,j jf k
Sij = k"i.kﬂ—gl € )
0 j>k

The number of nearest neighbors k can be tuned by cross-validation methods. Moreover,
different data points have different numbers of nearest neighbors, base on the constraint
“éj k+1 = & ;" for specific k and j.

(iii)Update W by fixing S and P

While fixing P and S, the objective function with respect to W becomes:

n
min Y s pijl1xW — x;W|[3 + A[|W
o i,jz=1 z,]pt.,]” i j ||2 [IW]2,1 (10)
s, WIXTXW =1, Vi,sT1=1,0<s;; <1
By setting 5; ; = s; jp;,j and L = D — S € R™" as Laplacian matrix, where D =
diag(Sl), (10) is equivalent to

n‘l)é]rl tr(WIXTLXW) + A[|W||2.1, s.t., W XTXW =1, (11)
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Since the £, 1-norm regularization is convex and non-smooth, we employ the framework of
iteratively reweighted least squares (IRLS) to optimize S, via changing (11) to the following
objective function

min tr(WIXTLXW + AW QW), 5.0, WX TXW =1, (12)

where Q is a diagonal matrix with the i-th diagonal element g; ; = W i=1,.d.
2

In (12), both Q and W are unknown. Moreover, Q depends on W. According to the IRLS
framework, we design an iterative algorithm to solve problem (12) by two sequential steps
until the algorithm converges: 1) By fixing the value of W, we can obtain the value of Q ; 2)
By fixing the value of Q, (12) is changed to an eigen-decomposition problem with respect
to W.

min tr (W (XTLX + 2Q)W), 5.0, WIXTXW = I (13)

The optimal solution W in (13) is the eigenvectors of (X”X + xI;) " '(XTLX + 1Q)
sinceX” X + 1 is invertible, where x is a very small positive value.

3.4 Convergence analysis

This section proves that the objective function value in (6) monotonically decrease in each
iteration. Denoting the objective function in (6) as J (W, S, P), according to the properties
of half-quadratic theory in [9], if the values of both W and S are fixed, the optimization of P
has a closed-form solution. Hence, we have

J(Wl+l,st+l,Pt+l) < J(Wt+1,st+l,l)t) (14)

When the values of W/*! and P! are fixed, the optimization of S’ +1 takes a closed-form
solution, so we have

JOWHLSHLPY) < J(WHL S P (15)

Since we conduct the optimization of W by the eigenvalue decomposition method, so we
have

JWHL S Py < J(W!, S, P) (16)
By integrating above three results together, i.e., (14)-(16), we obtain

JWIHL S Py < J(W!, S P) (17)
By combining (14), (15) with (17), we have:

J(WH_I,SH_I,PH—I) < J(Wt,SZ,PZ) (18)

4 Experiments
In this section, we evaluated our proposed clustering method, by comparing to seven state-

of-the-art clustering methods, on two synthetic data sets and 12 public data sets, in terms of
clustering performance.
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4.1 Experimental analysis on synthetic data sets

In this subsection, we evaluated the effectiveness of our proposed method on two synthetic
data sets with different data distributions.

4.1.1 Experimental analysis on the two-moon data set

The bimonthly data was randomly generated for the first synthesized data set. Specifically,
there were two clusters in the data set and they were distributed in the two-moon shape,
where each cluster contains 100 data points and the noise ratio was set as 0.13. The aim
of this experiment was set to use our proposed method to calculate the affinity matrix by
dividing all of the data points into two clusters accurately. In our experiment, we marked
these two clusters in the data set as red and blue colors respectively, as shown in Figure 1a.
We also denoted the width of the line as the similarity of between two data points, as shown
in Figure 1b-c.

As shown in Figure 1b, in the original data set, there are connection points from different
clusters connected to each other. However, there are no data points connected between the
two clusters for our proposed method in Figure 1c. This indicates that our proposed method
has successfully divided the data into two clusters by avoiding the influence of outliers.

4.1.2 Experimental analysis on the three-ring data set

In the second synthetic data set, we randomly generated a three-ring data set with five
dimensions, where the first two dimensions were distributed in three circles and the left
three features are redundant features. Since only the first two dimensions of the data set
contain important information, finding a subspace containing important information is very
important for clustering. We visualized the original data sets represented by the first two
features in Figure 2a.

In our experiment, we compared the clustering result of our proposed method with two
commonly used dimensionality reduction methods, such as principal component analysis
(PCA) and local retention prediction (LPP), and then visualized all the results in Figure 2.

From Figure 2, we knew that both LPP and PCA methods (i.e., Figure 2b and c, respec-
tively) did not find an effective low-dimensional subspace to output reasonable clustering
results. However, our proposed method finds subspaces correctly as it is almost identical
to the subspaces formed by the first two important dimensions. As a result, our proposed

o, e
o %« o o S%pe
> <
05 ‘..:o.‘. LI 3{3.
of et o -'.‘.o. i
3, . oo
c °. L4 .0
. e ) an .
05 wey Sp o
3

(a) Original data points (b) Original connected graph (c) Graph by our method

Figure 1 Visualization of the clustering results of our proposed method on the two-moon synthetic data

@ Springer



World Wide Web

0.5F

Coo o o L
-0.5 05t a .
-1
-1
-15 -1 -0.5 0 0.5 1 15 -2 -15 -1 -0.5 ? 0.5 1 15
(a) Original data points (b) Subspace learnt by LPP
15 ° . b © g
, ¢ s o0 bl . 1
o &, P ){
0.5 . )
® Dy 3 > o 0.5
° . B
0 o (::_‘ : .*t;’. o ° o
-05 e’ oy ‘, ‘o L 0
PRSI
- ral .9 A
Yo o -05
-1.5
-2 »
-25
-2 -1 0 1 2 -15 -1 -0.5 0 0.5 1 15
(c) Subspace learnt by PCA (d) Subspace learnt by our method

Figure 2 Visualization of the clustering results of our proposed method and two dimensionality reduction
methods (e.g., LPP and PCA) on the three-ring data set. We only visualized the first two features of the
original data set in Figure 2a

method outputs feasible significant clustering results, as shown in Figure 2d. Hence, our
proposed is able to deal with the influence of redundant features.

4.1.3 Summarization on two synthetic data sets

Based on the experimental results in Figures 1-2, our proposed method has been shown to
be available individually dealing with either redundant features or outliers. In Section 4.2,
we showed that our proposed method could deal with both redundant features and outliers
on 12 real-world data sets, compared to the state-of-the-art clustering methods.

4.2 Experimental analysis on real benchmark data sets

4.2.1 Data sets

We evaluated our proposed clustering methods and the comparison methods on twelve
benchmark data sets, whose details were summarized in Table 1.
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Table 1 The details of all data

sets used in our experiment Dataset # (samples) # (features) # (classes)

Wine 178 13 2
Ecoil 336 343 8
Control 600 60

Parkinsons 195 22 10
Movements 360 90 15
Vehicle 846 18 20
Jatfe 213 1024 15
German 1000 20 2
Usps 1000 256 10
Isolet 1560 617 26
Statlog 6435 36 6
Mfeatures 2000 649 10

4.2.2 Comparison methods

The comparison methods include two classic clustering methods (i.e., NCut and k-
means [8]), five state-of-the-art clustering methods (i.e., Low-Rank Representation (LRR)
[19], Constrained Laplacian Rank (CLR) [21], Sparse subspace clustering (SSC) [5]), and
SMooth Representation (SMR) [10]), and Structured Sparse Subspace Clustering (SSSC)
[17].

We listed the details of the comparison methods as follows.

— k-means partitions all the data points into k groups so that the data points in the same
group are with minimal mean.

—  NCut partitions all the data points into k disjoint groups, where the weights of the edges
between the groups are minimum.

— LRR seeks the lowest rank representation to linearly represent the data points.

— SSC first assumes that each point can be sparsely represented by all other data points,
and then groups the data points drawn from multiple linear or affine subspaces of high-
dimensional data.

—  SMR makes use of the least square function and the trace norm regularization to enforce
the grouping effect among representation coefficients, and then achieves the subspace
segmentation.

— CLR learns the affinity matrix to have exactly k connected components where k is the
number of clusters.

— CSSC integrate the affinity matrix learning with spectral clustering in a unified
framework, as well as uses spectral clustering to correct errors in the affinity matrix.

4.2.3 Experimental setting

In the experiment, we employed four evaluation metrics (such as clustering ACCuracy
(ACC), Normalized Mutual Information (NMI), F-measure and Adjusted Rand Index
(ARI)) to evaluate the clustering performance of all the methods. We set the range
of parameters (i.e., A and B) in our methods as A € {10_3, 1072, ..., 103} and 8 €
{10‘3, 1072, ..., 103}, as well as set the parameters in the comparison methods based on the
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literature so that all comparison methods achieved their best clustering performance in our
experiments.
We listed the details of four evaluation metrics as follows:

Neorrect
ACC = =gt (19)

where N represents the total sample number and Ngo,rec; represents the sample number
accurately clustered.

— TP+TN

ARI = 7p1Fp  FNTTN 20)
where T P means that two samples clustered in a class are correctly classified, 7 N means
that two samples that should not be clustered in a class are correctly separated, F P means
that samples that should not be clustered in a class are incorrectly placed in a class, and F N
means that samples that should not be clustered in a class are incorrectly separated.

2
F —measure = %% (2D
TP TP
where P = 7575 and R = 7577y -
_ HA+H(B)
NMI = “55> (22)

where A and B are clustering results, and H (A, B) is the joint entropy of A and B.
4.2.4 Experimental analysis of real-world data sets

We listed the clustering results of all the methods on these real data sets in Tables 2, 3, 4
and 5 and had the following observations.

Our proposed method achieved the best performance, followed by CSSC, CLR, SMR,
SSC, LRR, NCut, and k-means. For example, the accuracy of our method improved on
average by 5.29%, compared to the best comparison methods (i.e., CSSC) on all 12 data sets.
It may be that our method uses subspace learning to learn the affinity matrix from the low-
dimensional subspace so that our method removes the influence of outliers and redundant
features as well as uses robust estimation to avoid the influence of outliers in the data. On
the contrary, the comparison algorithm cannot take into account the effects of these two
constraints at the same time, so that they could obtain reliable models.

4.3 Parameters sensitivity

Two parameters need to be adjusted in our proposed objective function. In this section, we
changed the values of A and 8 by setting their ranges as {1073, 1072, ..., 103} to investigate
the variations of the clustering accuracy of our method. We listed the results on all data sets
in Figure 3.

The results showed that our method is sensitive to parameters setting. Moreover, different
ranges of the parameter values need to be set for different data sets to get the best results.
From example, our proposed method easily achieves significant clustering results while
setting B € {101, 102,103 }. Moreover, the parameter 8 is more sensitive than the parameter
X in our objective function.
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Figure 3 ACC variations of our method at different parameter settings on 12 data sets

5 Conclusion

This paper has proposed a new clustering method, which learns the affinity matrix from the
low-dimensional space of original data as well as uses the robust estimator to reduce the
influence of outliers. Experimental results demonstrate the effectiveness of the method for
clustering tasks.
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